Towards Privacy-Preserved Aging in Place: A Systematic Review
Abstract
:1. Introduction
2. Methods
Search Strategy
- Smart Home AND (Elderly OR Aging in place) OR (Non-Intrusive OR Privacy)
- Smart Home AND (Elderly OR Aging in place) AND Non-Intrusive
- Smart Home AND Elderly AND Privacy
- The inclusion criteria were:
- Studies published in English.
- Studies that used technology in the home, both technologies embedded in the home or independent technology (such as a robot).
- Addressed the needs of older adults living independently both healthy and elderly with health issues (monitoring of activities of daily living or health).
- Studies that entailed implementation or deployment of technology, even if in a pilot form, or proposed studies, to assess the feasibility and outcomes.
- Studies that were published within the last decade, so that the latest researched were included.
- Studies published as academic theses.
- Studies which were reviews, book chapters.
- Studies which were not health-related and focused on other aspects such as energy-conservation or security surveillance systems
3. Results
3.1. Application of Environmental Sensors, Wearables and Cameras
3.2. Security and Privacy of Data
3.3. AI Machine Learning and Robots in Smart Homes
3.4. Usage Safety, Emergency Services and Fall Detection
3.5. User Feedback, Satisfaction and Effects of Smart Homes
4. Discussion
4.1. Application of Environmental Sensors, Wearables, and Cameras
4.2. Security and Privacy of Data
4.3. AI Machine Learning and Robots In Smart Homes
4.4. Usage Safety, Emergency Services and Fall Detection
4.5. User Feedback, Satisfaction and Effects of Smart Homes
4.5.1. Statistical Analysis
4.5.2. Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
SVM | Support Vector Machine |
RiSH | A robot-integrated smart home |
STRETCH | Socio-Technical Resilience for Enhancing Targeted Community Healthcare |
ADL | Activities of Daily Living |
LSTM | Long-Short Term Memory |
GRU | Gated Recurrent Units |
BLSTM | Bidirectional Long Short-Term Memory |
CASAS-AR | Center for Advanced Studies in Adaptive Systems-Activity Recognition |
ML | Machine Learning |
GSM | Global System for Mobile Communications |
HMM | Hidden Markov Model |
MQTT | Message Queuing Telemetry Transport |
References
- United Nations. World Population Ageing 2019; United Nations: New York, NY, USA, 2019. [Google Scholar]
- McColl, D.; Louie, W.Y.G.; Nejat, G. Brian 2.1: A Socially assistive robot for the elderly and cognitively impaired. IEEE Robot. Autom. Mag. 2013. [Google Scholar] [CrossRef]
- Grimby, G. Physical Activity and Muscle Training in the Elderly. Acta Med. Scand. 1986, 711, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Alnajjar, F.; Khalid, S.; Vogan, A.A.; Shimoda, S.; Nouchi, R.; Kawashima, R. Emerging Cognitive Intervention Technologies to Meet the Needs of an Aging Population: A Systematic Review. Front. Aging Neurosci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.G.; Dendukuri, N. Risk factors for depression among elderly community subjects: A systematic review and meta-analysis. Am. J. Psychiatry 2003, 160, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Mainetti, L.; Patrono, L.; Rametta, P. Capturing Behavioral Changes of Elderly People through UNOBTRUISIVE Sensing Technologies. In Proceedings of the 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 22–24 September 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Yorkston, K.M.; Bourgeois, M.S.; Baylor, C.R. Communication and Aging. Phys. Med. Rehabil. Clin. 2011, 21, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Mattimore, T.J.; Wenger, N.S.; Desbiens, N.A.; Teno, J.M.; Hamel, M.B.; Liu, H.; Califf, R.; Connors, A.F.; Lynn, J.; Oye, R.K. Surrogate and physician understanding of patients’ preferences for living permanently in a nursing home. J. Am. Geriatr. Soc. 1997, 45, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Bemelmans, R.; Jan, G.; Jonker, P.; de Witte, L. Socially Assistive Robots in Elderly Care: A Systematic Review into Effects and Effectiveness. JMDA 2020, 13, 114–120.e1. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh-Tehran, H.; Mondal, T.; Pang, Z.; Deen, M.J. Smart homes for elderly healthcare—Recent advances and research challenges. Sensors 2017, 17, 2496. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.J. Health monitoring and assistance to support aging in place. J. Univers. Comput. Sci. 2006, 12, 15–19. [Google Scholar]
- The Benefits of Remote Patient Monitoring Technologies. Available online: https://www.itij.com/latest/long-read/benefits-remote-patient-monitoring-technologies (accessed on 21 April 2021).
- Pal, D.; Triyason, T.; Funikul, S. Smart Homes and Quality of Life for the Elderly: A Systematic Review. In Proceedings of the 2017 IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan, 11–13 December 2017; pp. 413–419. [Google Scholar]
- World Health Organization. WHOQOL Measuring Quality of Life; Division of Mental Health and Prevention of Substance Abuse of the WHO: Geneva, Switzerland, 1997. [Google Scholar]
- Guo, X.; Shen, Z.; Zhang, Y.; Wu, T. Review on the Application of Artificial Intelligence in Smart Homes. Smart Cities 2019, 2, 402–420. [Google Scholar] [CrossRef] [Green Version]
- Giffinger, R.; Fertner, C.; Kramar, H.; Kalasek, R.; Pichler, N.; Meijers, E. Smart Cities-Ranking of European Medium-Sized Cities, Centre of Regional Science. 2007. Available online: http://www.smart-cities.eu/download/smart_cities_final_report.pdf (accessed on 21 April 2021).
- Guillemin, P.; Friess, P. Internet of things strategic research roadmap. In The Cluster of European Research Projects; In Tech. Report; River Publishers: Aalborg, Denmark, 2009. [Google Scholar]
- Kochovski, P.; Gec, S.; Stankovski, V.; Bajec, M.; Drobintsev, P.D. Trust management in a blockchain based fog computing platform with trustless smart oracles. Futur. Gener. Comput. Syst. 2019, 101, 747–759. [Google Scholar] [CrossRef] [Green Version]
- Lou, W.; Ren, K. Security, Privacy, And Accountability in Wireless Access Networks. IEEE Wirel. Commun. 2009, 16, 80–87. [Google Scholar] [CrossRef]
- Bertino, E. Data Privacy for IoT Systems. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 3645–3647. [Google Scholar]
- Ou, L.; Yin, H.; Qin, Z.; Xiao, S.; Yang, G.; Hu, Y. An Efficient and Privacy-Preserving Multiuser Cloud-Based LBS Query Scheme. Cyberspace Secur. Future Internet 2018, 2018. [Google Scholar] [CrossRef]
- Chakravorty, A.; Wlodarczyk, T.; Rong, C. Privacy preserving data analytics for smart homes. In Proceedings of the 2013 IEEE Security and Privacy Workshops, San Francisco, CA, USA, 23–24 May 2013; pp. 23–27. [Google Scholar]
- Marikyan, D.; Papagiannidis, S.; Alamanos, E. A systematic review of the smart home literature: A user perspective. Technol. Forecast. Soc. Change 2018, 138, 139–154. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Amerighi, O.; Boteler, B. Technology Analysis & Strategic Management A comparison of consumer perceptions towards smart homes in the UK, Germany and Italy: Reflections for policy and future research. Technol. Anal. Strateg. Manag. 2014, 26, 37–41. [Google Scholar]
- Mazorra, M.L.; Oliveira, M.; Souza, A.; Silva, W.B.; dos Santos, G.M.; da Silva, L.R.A.; da Silva, M.G.; Bartoli, C.G.; de Oliveira, J.G. Involvement of brassinosteroids and ethylene in the control of mitochondrial electron transport chain in postharvest papaya fruit. Theor. Exp. Plant Physiol. 2013, 25, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Shin, J.; Lee, J. Strategic management of next-generation connected life: Focusing on smart key and car–home connectivity. Technol. Forecast. Soc. Chang. 2016, 103, 11–20. [Google Scholar] [CrossRef]
- Sepasgozar, S.; Hawken, S.; Sargolzaei, S.; Foroozanfa, M. Implementing citizen centric technology in developing smart cities: A model for predicting the acceptance of urban technologies. Technol. Forecast. Soc. Chang. 2019, 142, 105–116. [Google Scholar] [CrossRef]
- Silverio-Fernández, M.; Renukappa, S.; Suresh, S. What is a smart device?—A conceptualisation within the paradigm of the internet of things. Vis. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ransing, R.S.; Rajput, M. Smart home for elderly care, based on wireless sensor network. In Proceedings of the 2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE), Navi Mumbai, India, 9–10 January 2015. [Google Scholar]
- Byun, J.; Jeon, B.; Noh, J.; Kim, Y.; Park, S. An Intelligent Self-Adjusting Sensor for Smart Home Services based on ZigBee Communications. IEEE Trans. Consum. Electron. 2012, 58, 794–802. [Google Scholar] [CrossRef]
- Ghayvat, H.; Liu, J.; Mukhopadhyay, S.C.; Gui, X. Wellness Sensor Networks: A Proposal and Implementation for Smart Home for Assisted Living. IEEE Sens. J. 2015. [Google Scholar] [CrossRef]
- Zimmermann, L.; Member, S.; Weigel, R.; Fischer, G. Fusion of Non-Intrusive Environmental Sensors for Occupancy Detection in Smart Homes. IEEE Internet Things J. 2017. [Google Scholar] [CrossRef]
- Hu, C.-L.; Bamrung, C.; Kamintra, W.; Ruengittinun, S.; Mongkolwat, P.; Hui, L.; Lo, S.-H. Using Camera Array to Detect Elderly Falling and Distribute Alerting Media for Smart Home Care. In Proceedings of the 2019 8th International Conference on Innovation, Communication and Engineering (ICICE), Zhengzhou, China, 25–30 October 2019; IEEE: Piscataway, NJ, USA, 2020; pp. 98–101. [Google Scholar]
- Gregory, A.; Mackintosh, S.; Kumar, S.; Grech, C. Experiences of health care for older people who need support to live at home: A systematic review of the qualitative literature. Geriatr. Nurs. 2017. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, C.; Ludvigsen, M.S.; Moe, C.E.; Haraldstad, K.; Thygesen, E. Experiences of community-dwelling older adults with the use of telecare in home care services: A qualitative systematic review. JBI Database Syst. Rev. Implement. Rep. 2017. [Google Scholar] [CrossRef] [PubMed]
- Graybill, E.M.; McMeekin, P.; Wildman, J. Can aging in place be cost effective? A systematic review. PLoS ONE 2014, 9, e102705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peek, S.T.M.; Wouters, E.J.M.; van Hoof, J.; Luijkx, K.G.; Boeije, H.R.; Vrijhoef, H.J.M. Factors influencing acceptance of technology for aging in place: A systematic review. Int. J. Med. Inform. 2014, 83, 235–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenwohl-Mack, A.; Schumacher, K.; Fang, M.L.; Fukuoka, Y. Experiences of aging in place in the United States: Protocol for a systematic review and meta-ethnography of qualitative studies 11 Medical and Health Sciences 1117 Public Health and Health Services. Syst. Rev. 2018, 7, 1–7. [Google Scholar]
- Golant, S.M. Commentary: Irrational exuberance for the aging in place of vulnerable low-income older homeowners. J. Aging Soc. Policy 2008. [Google Scholar] [CrossRef] [PubMed]
- Rho, S.; Min, G.; Chen, W. Engineering Applications of Artificial Intelligence Advanced issues in artificial intelligence and pattern recognition for intelligent surveillance system in smart home environment. Eng. Appl. Artif. Intell. 2012, 25, 1299–1300. [Google Scholar] [CrossRef]
- Dermody, G.; Fritz, R. A conceptual framework for clinicians working with artificial intelligence and health-assistive Smart Homes. Nurs. Inq. 2019, 26, 1–8. [Google Scholar] [CrossRef]
- Kumar, S.; Qadeer, M.A. Application of AI in Home Automation. IACSIT Int. J. Eng. Technol. 2012, 4, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Liu, N.; Tan, H.X.; Chu, C.H. Unobtrusive Monitoring to Detect Depression for Elderly with Chronic Illnesses. IEEE Sens. J. 2017, 17, 5694–5704. [Google Scholar] [CrossRef]
- Deen, M.J. Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquitous Comput. 2015, 19, 573–599. [Google Scholar] [CrossRef]
- Sprint, G.; Cook, D.J.; Fritz, R.; Schmitter-Edgecombe, M. Using Smart Homes to Detect and Analyze Health Events. Computer 2016, 49, 29–37. [Google Scholar] [CrossRef]
- Wilson, G.; Pereyda, C.; Raghunath, N.; de la Cruz, G.V.; Goel, S.; Nesaei, S.; Minor, B.; Schmitter-Edgecombe, M.; Taylor, M.E.; Cook, D.J. Robot-enabled support of daily activities in smart home environments. Cogn. Syst. Res. 2019, 54, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Alberdi, A.; Weakley, A.; Schmitter-Edgecombe, M.; Cook, D.J.; Goenaga, A.A.; Basarab, A.; Barrenechea Carrasco, M. Smart Homes Predicting the Multi-Domain Symptoms of Alzheimer’s Disease. IEEE J. Biomed. Health Inform. 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dawadi, P.N.; Member, S.; Cook, D.J.; Fellow, I.; Schmitter-Edgecombe, M. Smart Home Monitoring of Complex Tasks. IEEE Trans Syst. Man Cybern. Part C Appl. Rev. 2013, 43, 1302–1313. [Google Scholar] [CrossRef] [Green Version]
- Aramendi, A.A.; Weakley, A.; Goenaga, A.A.; Schmitter-Edgecombe, M.; Cook, D.J. Automatic assessment of functional health decline in older adults based on smart home data. J. Biomed. Inform. 2018, 81, 119–130. [Google Scholar] [CrossRef]
- Kshirsagar, S.; Sachdev, S.; Singh, N.; Tiwari, A.; Sahu, S. IoT Enabled Gesture-Controlled Home Automation for Disabled and Elderly. In Proceedings of the 2020 4th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 821–826. [Google Scholar]
- Yu, J.; An, N.; Hassan, T.; Kong, Q. A Pilot Study on a Smart Home for Elders Based on Continuous In-Home Unobtrusive Monitoring Technology. Health Environ. Res. Des. J. 2019, 12, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Jekel, K.; Damian, M.; Storf, H.; Hausner, L.; Frölich, L. Development of a Proxy-Free Objective Assessment Tool of Instrumental Activities of Daily Living in Mild Cognitive Impairment Using Smart Home Technologies. J. Alzheimer’s Dis. 2016, 52, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Gnanavel, R.; Anjana, P.; Nappinnai, K.S.; Sahari, N.P. Smart home system using a Wireless Sensor Network for elderly care. In Proceedings of the 2016 2nd International Conference on Science Technology Engineering and Management (ICONSTEM), Chennai, India, 30–31 March 2016; pp. 51–55. [Google Scholar]
- Rizvi, S.; Sohail, I.; Saleem, M.M.; Irtaza, A.; Zafar, M.; Syed, M. A Smart Home Appliances Power Management System for Handicapped, Elder and Blind People. In Proceedings of the 2018 4th International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 13–14 August 2018; pp. 2018–2021. [Google Scholar]
- Lotfi, A.; Langensiepen, C.; Mahmoud, S.M.; Akhlaghinia, M.J. Smart homes for the elderly dementia sufferers: Identification and prediction of abnormal behaviour. J. Ambient Intell. Humaniz. Comput. 2012, 3, 205–218. [Google Scholar] [CrossRef]
- Nisar, K.; Ibrahim, A.A.A.; Wu, L.; Adamov, A.; Deen, M.J. Smart home for elderly living using Wireless Sensor Networks and an Android application. In Proceedings of the 2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 12–14 October 2016. [Google Scholar]
- Saunders, J.; Syrdal, D.S.; Koay, K.L.; Burke, N.; Dautenhahn, K. Teach Me-Show Me’-End-User Personalization of a Smart Home and Companion Robot. IEEE Trans. Hum. Mach. Syst. 2016, 46, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Do, H.M.; Pham, M.; Sheng, W.; Yang, D.; Liu, M. RiSH: A robot-integrated smart home for elderly care. Rob. Auton. Syst. 2018, 101, 74–92. [Google Scholar] [CrossRef]
- Bennasar, M.; McCormick, C.; Price, B.; Gooch, B.; Stuart, A.; Mehta, V.; Clare, L.; Bennaceur, A.; Cohen, J.; Bandara, A.; et al. A Sensor Platform for Non-invasive Remote Monitoring of Older Adults in Real Time. Innov. Med. Healthc. Syst. Multimed. 2019, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Taramasco, C.; Espinoza, C.; Riquelme, F. Telemonitoring ADL Platform Based on Non-Intrusive and Privacy-friendly Sensors for the Care of the Elderly in Smart Homes. Journées d’Etudesur sur la TéléSanté. 2019. Available online: https://hal.archives-ouvertes.fr/hal-02161094 (accessed on 21 April 2021).
- Iakovakis, D.E.; Papadopoulou, F.A.; Hadjileontiadis, L.J. Fuzzy logic-based risk of fall estimation using smartwatch data as a means to form an assistive feedback mechanism in everyday living activities. Healthc. Technol. Lett. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Liang, Y.; Guo, B.; Zhou, X.; Ni, H. Facilitating medication adherence in elderly care using ubiquitous sensors and mobile social networks. Comput. Commun. 2015. [Google Scholar] [CrossRef]
- Tsukiyama, T. In-home health monitoring system for solitary elderly. Procedia Comput. Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- Suryadevara, N.K.; Mukhopadhyay, S.C.; Wang, R.; Rayudu, R.K. Forecasting the behavior of an elderly using wireless sensors data in a smart home. Eng. Appl. Artif. Intell. 2013, 26, 2641–2652. [Google Scholar] [CrossRef]
- Grgurić, A.; Mošmondor, M.; Huljenić, D. The smarthabits: An intelligent privacy-aware home care assistance system. Sensors 2019, 19, 907. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Rhuma, A.; Naqvi, S.M.; Wang, L.; Chambers, J. A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 2012. [Google Scholar] [CrossRef] [Green Version]
- Portet, F.; Vacher, M.; Golanski, C.; Roux, C.; Meillon, B. Design and evaluation of a smart home voice interface for the elderly: Acceptability and objection aspects. Pers. Ubiquitous Comput. 2013, 17, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Hattink, B.J.J.; Meiland, F.J.M.; Overmars-Marx, T.; de Boer, M.; Ebben, P.W.G.; van Blanken, M.; Verhaeghe, S.; Stalpers-Croeze, I.; Jedlitschka, A.; Flick, S.E.; et al. The electronic, personalizable Rosetta system for dementia care: Exploring the user-friendliness, usefulness and impact. Disabil. Rehabil. Assist. Technol. 2016, 11, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Lupiani, E.; Juarez, J.M.; Palma, J.; Marin, R. Monitoring elderly people at home with temporal Case-Based Reasoning. Knowl. Based Syst. 2017, 134, 116–134. [Google Scholar] [CrossRef]
- Rudzicz, F.; Wang, R.; Begum, M.; Mihailidis, A. Speech interaction with personal assistive robots supporting aging at home for individuals with Alzheimer’s disease. ACM Trans. Access. Comput. 2015. [Google Scholar] [CrossRef]
- Hu, R.; Kabouteh, A.; Pawlitza, K.; Güttler, J.; Linner, T.; Bock, T. Developing personalized intelligent interior units to promote activity and customized healthcare for aging society. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC 2019), Banff, AB, Canada, 21–24 May 2019; pp. 234–241. [Google Scholar]
- Bianchi, V.; Bassoli, M.; Lombardo, G.; Fornacciari, P.; Mordonini, M.; de Munari, I. IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment. IEEE Internet Things J. 2019, 6, 8553–8562. [Google Scholar] [CrossRef]
- Fischinger, D.; Einramhof, P.; Papoutsakis, K.; Wohlkinger, W.; Mayer, P.; Panek, P.; Hofmann, S.; Körtner, T.; Weiss, A.; Argyros, A.A.; et al. Hobbit, a care robot supporting independent living at home: First prototype and lessons learned. Rob. Auton. Syst. 2016. [Google Scholar] [CrossRef]
- Jose, A.C.; Malekian, R. Smart Home Automation Security: A Literature Review. Smart Comput. Rev. 2015. [CrossRef]
- Kim, S.; Jeong, Y.; Park, S.O. RFID-based indoor location tracking to ensure the safety of the elderly in smart home environments. Pers. Ubiquitous Comput. 2012, 17, 1699–1707. [Google Scholar] [CrossRef]
- Chatrati, S.P.; Hossain, G.; Goyal, A.; Bhan, A.; Bhattacharya, S.; Gaurav, D.; Tiwari, S.M. Smart home health monitoring system for predicting type 2 diabetes and hypertension. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Lee, J.K.B.; Kwon, O.; Lee, I. Companionship with smart home devices: The impact of social connectedness and interaction types on perceived social support and companionship in smart homes. Comput. Human Behav. 2017, 75, 922–934. [Google Scholar] [CrossRef]
- The Health Impacts of Wearable Technology. Available online: https://wp.nyu.edu/dispatch/2018/12/17/the-health-impacts-of-wearable-technology (accessed on 21 April 2021).
- Here Are Five Reasons Consumers Won’t Buy Your Smart Home Device. Available online: https://www.hkstrategies.com/en/here-are-five-reasons-consumers-wont-buy-your-smart-home-device/ (accessed on 21 April 2021).
- Klemmer, S.R.; Hartmann, B.; Takayama, L. How bodies matter: Five themes for interaction design. In Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS, University Park, PA, USA, 26–28 June 2006. [Google Scholar]
- Demiris, G.; Hensel, B.K.; Skubic, M.; Rantz, M. Senior residents’ perceived need of and preferences for ‘smart home’ sensor technologies. Int. J. Technol. Assess. Health Care 2008, 24, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Van Hoof, J.; Kort, H.S.M.; Rutten, P.G.S.; Duijnstee, M.S.H. Ageing-in-place with the use of ambient intelligence technology: Perspectives of older users. Int. J. Med. Inform. 2011, 80, 310–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gochoo, M.; Tan, T.-H.; Huang, S.-C.; Alnajjar, F.; Yung-Fu, C.; Tsedevdorj, B. Novel IoT-Based Privacy-Preserving Yoga Posture Recognition System Using Low-Resolution Infrared Sensors and Deep Learning. IEEE Internet Things J. 2019, 6, 7192–7200. [Google Scholar] [CrossRef]
- Gochoo, M.; Tan, T.H.; Alnajjar, F.; Hsieh, J.W.; Chen, P.Y. Lownet: Privacy Preserved Ultra-Low Resolution Posture Image Classification. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, UAE, 25–28 October 2020; pp. 663–667. [Google Scholar]
- Gochoo, M.; Tan, T.-H.; Liu, S.-H.; Jean, F.-R.; Alnajjar, F.; Huang, S.-C. Unobtrusive Activity Recognition of Elderly People Living Alone Using Anonymous Binary Sensors and DCNN. IEEE J. Biomed. Health Inform. 2018. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.H.; Gochoo, M.; Huang, S.C.; Liu, Y.H.; Liu, S.H.; Huang, Y.F. Multi-resident activity recognition in a smart home using RGB activity image and DCNN. IEEE Sens. J. 2018, 18, 9718–9727. [Google Scholar] [CrossRef]
- Gochoo, M.; Tan, T.H.; Velusamy, V.; Liu, S.H.; Bayanduuren, D.; Huang, S.C. Device-free non-privacy invasive classification of elderly travel patterns in a smart house using PIR sensors and DCNN. IEEE Sens. J. 2017, 18, 390–400. [Google Scholar] [CrossRef]
- Mourshed, M.; Zhao, Y. Healthcare providers’ perception of design factors related to physical environments in hospitals. J. Environ. Psychol. 2012, 32, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Alsinglawi, B.; Alnajjar, F.; Mubin, O.; Novoa, M. A Framework for Home-Based Stroke Rehabilitation Using Interactive Games and Augmented Reality Feedback. Biosyst. Biorobot. 2018, 252–255. [Google Scholar] [CrossRef]
- Yang, N.; An, Q.; Yamakawa, H.; Tamura, Y.; Yamashita, A.; Takahashi, K.; Kinomoto, M.; Yamasaki, H.; Itkonen, M.; Alnaj-jar, F.S.; et al. Clarification of muscle synergy structure during standing-up motion of healthy young, elderly and post-stroke patients. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017. [Google Scholar]
- Al-Shaqi, R.; Mourshed, M.; Rezgui, Y. Progress in ambient assisted systems for independent living by the elderly. SpringerPlus 2016, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Vogan, A.A.; Alnajjar, F.; Gochoo, M.; Khalid, S. Robots, AI, and Cognitive Training in an Era of Mass Age-Related Cog-nitive Decline: A Systematic Review. IEEE Access 2020, 8, 18284–18304. [Google Scholar] [CrossRef]
No. | Reference | Subjects | Method Used | Features | Results |
---|---|---|---|---|---|
1 | Kim et al. 2017 [43] | 20 Elderly with depression |
|
|
|
2 | Deen 2015 [44] | Healthy Elderly Sample size: Not mentioned |
|
|
|
3 | Sprint et al. 2016 [45] | 3 females aged ≥ 80 years |
|
|
|
4 | Wilson et al. 2019 [46] | 26 subjects |
|
|
|
5 | Alberdi et al. 2018 [47] | 29 older adults | Unobtrusive collection of behavioral data of elderly living alone in Smart-Homes.
|
|
|
6 | Dawadi et al. 2013 [48] | 179 participants |
|
|
|
7 | Aramendi et al. 2018 [49] | 29 elderly |
|
|
|
8 | Kshirsagar et al. 2020 [50] | Proposed study, No subjects |
|
|
|
9 | Yu et al. 2019 [51] | 1 female elderly |
|
|
|
10 | Jekel et al. 2016 [52] | 65-80 year old patients with MCI and healthy elderly |
|
|
|
11 | Gnanavel et al. 2016 [53] | Proposed system, no subjects |
|
|
|
12 | Rizvi et al. 2018 [54] | Proposed system for elderly/blind//handicapped people |
|
|
|
13 | Lotfi et al. 2012 [55] | Elderly people with dementia Sample size: Not mentioned |
|
|
|
14 | Nisar et al. 2016 [56] | Proposed system, no subjects |
|
|
|
15 | Saunders et al. 2016 [57] | T&L component 20 subjects Interaction component 3 subjects |
|
|
|
16 | Do et al. 2018 [58] | Graduate students Sample Size: 10 |
|
|
|
17 | Bennaser et al. 2019 [59] | Elderly people Sample size: Not mentioned |
|
|
|
18 | Taramasco et al. 2019 [60] | Proposed system No subjects |
|
|
|
19 | Iakovakis et al. 2016 [61] | 15 Elderly (10 Parkinson’s disease and 5 healthy) |
|
|
|
20 | Yu et al. 2015 [62] | 5 Healthy elderly |
|
|
|
21 | Tsukiyama 2015 [63] | 1 Healthy elderly |
|
|
|
22 | Suryadevara et al. 2013 [64] | Healthy elderly Sample Size not mentioned |
|
|
|
23 | Grguric et al. 2019 [65] | Elderly people Sample size: Not mentioned |
|
|
|
24 | Yu et al. 2012 [66] | 15 Healthy Elderly |
|
|
|
25 | Portet et al. 2013 [67] | Healthy elderly people Sample size: 8 |
|
|
|
26 | Hattink et al. 2016 [68] | 42 elderly with MCI or dementia and 32 informal caregivers |
|
|
|
27 | Lupiani et al. 2015 [69] | 25 Healthy elderly |
|
|
|
28 | Rudzicz et al. 2015 [70] | 10 Elderly with Alzheimer’s disease |
|
|
|
29 | Hu et al. 2020 [71] | Proposed system, no subjects |
|
|
|
30 | Bianchi et al. 2019 [72] | Proposed system for the elderly |
|
|
|
31 | Fischinger et al. 2016 [73] | 49 Healthy elderly |
|
|
|
Study | Wearable | Body Sensors | Environmental Sensors | Camera | Voice Command | AI and ML | Robots | Privacy Preserving | Fall Detection | ADL Monitorirng | Feedback Provided by User |
---|---|---|---|---|---|---|---|---|---|---|---|
Kim et al. 2017 [43] | No | No | Yes | No | No | Yes | No | Yes | No | Yes | No |
Deen 2015 [44] | Yes | Yes | Yes | No | No | Yes | No | Yes | Yes | Yes | No |
Sprint et al. 2016 [45] | No | No | Yes | No | No | Yes | No | No | Yes | Yes | No |
Wilson et al. 2019 [46] | No | No | Yes | Yes | No | Yes | Yes | Not mentioned | Yes | Yes | Yes |
Alberdi et al. 2018 [47] | No | No | Yes | No | No | Yes | No | Yes | No | Yes | No |
Dawadi et al. 2013 [48] | No | No | Yes | No | No | Yes | No | Not mentioned | No | Yes | No |
Aramendi et al. 2018 [49] | No | No | Yes | No | No | Yes | No | Yes | No | Yes | No |
Kshirsagar et al. 2020 [50] | Yes | Yes | Yes | No | No | Yes | No | Not mentioned | No | No | Yes |
Yu et al. 2019 [51] | No | No | Yes | No | No | No | No | Yes | No | yes | Yes |
Jekel et al. 2016 [52] | No | No | Yes | Yes | No | No | No | No | No | Yea | Yes |
Gnanavel et al. 2016 [53] | No | Yes | Yes | No | No | No | No | Not mentioned | Yes | Yes | No |
Rizvi et al. 2018 [54] | No | No | Yes | No | No | No | No | No | No | No | No |
Lotfi et al. 2012 [55] | No | No | Yes | No | No | Yes | No | Yes | No | Yes | No |
Nisar et al. 2016 [56] | No | No | Yes | No | No | No | No | No | No | Yes | No |
Saunders et al. 2016 [57] | No | No | Yes | No | Yes | Yes | Yes | Not mentioned | No | No | Yes |
Do et al. 2018 [58] | Yes | No | Yes | Yes (on robot) | No | Yes | Yes | Yes | Yes | Yes | No |
Bennaser et al. 2019 [59] | Yes | Yes | Yes | No | No | Yes | No | Yes | No | Yes | No |
Taramasco et al. 2019 [60] | No | No | Yes | Yes | No | Yes | No | Yes | Yes | No | No |
Iakovakis et al. 2016 [61] | Yes | Yes | Yes | No | No | Yes | No | Not Mentioned | Yes | Yes | No |
Yu et al. 2015 [62] | No | No | Yes | No | No | Yes | No | No | No | No | No |
Tsukiyama 2015 [63] | No | No | Yes | No | No | Yes | No | Not mentioned | No | Yes | No |
Suryadevara et al. 2013 [64] | No | No | Yes | No | No | No | No | No | No | Yes | No |
Grguric et al. 2019 [65] | No | No | Yes | No | No | Yes | No | Yes | No | No | Yes |
Yu et al. 2012 [66] | No | No | No | Yes | No | Yes | No | Not Mentioned | Yes | Yes | No |
Portet et al. 2013 [67] | No | No | Yes | Yes (video conference) | Yes | No | No | Yes | Yes | Yes | Yes |
Hattink et al. 2016 [68] | No | No | Yes | Yes | No | No | No | No | No | No | NO |
Lupiani et al. 2015 [69] | No | No | Yes | No | No | Yes | NO | Not mentioned | No | Yes | No |
Rudzicz et al. 2015 [70] | No | No | No | Yes (on robot) | Yes | Yes | Yes | Not mentioned | No | No | Yes |
Rudzicz et al. 2015 [70] | No | No | No | Yes (on robot) | Yes | Yes | Yes | Not mentioned | No | No | Yes |
Hu et al. 2020 [71] | No | No | Yes | Yes | No | No | No | No | No | no | No |
Bianchi et al. 2019 [72] | Yes | Yes | No | No | No | Yes | No | Not mentioned | No | No | No |
Fischinger et al. 2016 [73] | No | No | No | No | Yes | Yes | Yes | Not mentioned | No | No | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gochoo, M.; Alnajjar, F.; Tan, T.-H.; Khalid, S. Towards Privacy-Preserved Aging in Place: A Systematic Review. Sensors 2021, 21, 3082. https://doi.org/10.3390/s21093082
Gochoo M, Alnajjar F, Tan T-H, Khalid S. Towards Privacy-Preserved Aging in Place: A Systematic Review. Sensors. 2021; 21(9):3082. https://doi.org/10.3390/s21093082
Chicago/Turabian StyleGochoo, Munkhjargal, Fady Alnajjar, Tan-Hsu Tan, and Sumayya Khalid. 2021. "Towards Privacy-Preserved Aging in Place: A Systematic Review" Sensors 21, no. 9: 3082. https://doi.org/10.3390/s21093082
APA StyleGochoo, M., Alnajjar, F., Tan, T. -H., & Khalid, S. (2021). Towards Privacy-Preserved Aging in Place: A Systematic Review. Sensors, 21(9), 3082. https://doi.org/10.3390/s21093082