Optimization of Bokashi-Composting Process Using Effective Microorganisms-1 in Smart Composting Bin
<p>Overall process flow of this research.</p> "> Figure 2
<p>The operating procedures of the bokashi composting bin.</p> "> Figure 3
<p>The components of the smart composting bin. (<b>a</b>) Shows the external view of the smart composting bin; (<b>b</b>) shows the additional cover on the composting bin; (<b>c</b>) shows the ultrasonic sensor and temperature and humidity sensor at the backside of the cover; (<b>d</b>) shows the DC motor and the spindle attached on the cover; (<b>e</b>) shows the soil moisture sensor attached on the wall of the bin; (<b>f</b>) shows the water level sensor attached to the bottom of the composting bin.</p> "> Figure 4
<p>The schematic diagram of the circuit connection of the sensors.</p> "> Figure 5
<p>The process flow of the preparation of bokashi brans.</p> "> Figure 6
<p>The observation of the temperature of different types of bokashi from day 1 to day 14.</p> "> Figure 7
<p>The observation of the moisture content of different types of bokashi from day 1 to 14.</p> "> Figure 8
<p>The air humidity observation in the bokashi composting bin of different bokashi types from day 1 to day 14.</p> "> Figure 9
<p>Soil sample after 21 days of soil composting.</p> "> Figure 10
<p>Soil samples after 21 days of soil composting. (<b>a</b>) Soil Sample 1 (Bokashi A1); (<b>b</b>) Soil Sample 2 (Bokashi A2); (<b>c</b>) Soil Sample 3 (Bokashi A3).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardware Development
2.2. Preparation of Bokashi Bran
2.3. The Procedure of Soil Buried with Bokashi
2.4. Analytical Method for Soil Analysis
3. Results
3.1. Intra-Bokashi Composting Period
3.2. Soil Samples after Bokashi Composting
4. Discussion
4.1. Intra-Bokashi Composting Period
4.2. Soil Samples after Bokashi Composted
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ngoc, U.N.; Schnitzer, H. Sustainable solutions for solid waste management in Southeast Asian countries. Waste Manag. 2009, 29, 1982–1995. [Google Scholar] [CrossRef]
- Dhillon, D.S. Battling Food Waste. 2016. Available online: https://www.malaysiakini.com/letters/359487 (accessed on 14 October 2019).
- Johari, A.; Alkali, H.; Hashim, H.; Ahmed, S.I.; Mat, R. Municipal Solid Waste Management and Potential Revenue from Recycling in Malaysia. Mod. Appl. Sci. 2014, 8, 37. [Google Scholar] [CrossRef]
- Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E. Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems. Atmosphere 2020, 11, 1306. [Google Scholar] [CrossRef]
- Department of Agriculture. Statistik Tanaman (Sub-Sektor Tanaman Makanan); Jabatan Pertanian Semenanjung Malaysia: Putrajaya, Malaysia, 2019.
- Tumin, S.A.; Shaharudin, A.A.A. Banana: The World’s Most Popular Fruit, Khazanah Research Institue. 2019. Available online: http://www.krinstitute.org/Views-@-Banana-;_The_Worlds_Most_Popular_Fruit.aspx (accessed on 27 February 2021).
- Risse, M.; Britt, F. Food Waste Composting: Institutional and Industrial Applications; University of Georgia: Athens, GA, USA, 2017. [Google Scholar]
- Nordin, N.H.; Kaida, N.; Othman, N.A.; Akhir, F.N.M.; Hara, H. Reducing Food Waste: Strategies for Household Waste Management to Minimize the Impact of Climate Change and Contribute to Malaysia’s Sustainable Development. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Kuala Lumpur, Malaysia, 25–26 November 2019; 479. [Google Scholar] [CrossRef]
- Hangyong, L.; Xin, Q.; Ali, E.H. Towards a better environment-the municipal organic waste management in Brisbane: Environmental life cycle and cost perspective. J. Clean. Prod. 2020, 258, 120756. [Google Scholar]
- Higa, T.; Parr, J.F. Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment; International Nature Farming Research Center: Atami, Japan, 1994; pp. 229–252. [Google Scholar]
- Daud, N.M.; Khalid, S.A.; Nawawi, W.N.W.; Ramli, N. Producing fertilizer from food waste recycling using berkeley and bokashi method. Ponte 2016, 72. [Google Scholar] [CrossRef]
- Formowitz, B.; Elango, F.; Okumoto, S.; Müller, T.; Buerkert, A. The role of ‘effective microorganisms’ in the composting of banana (Musa ssp.) residues. J. Plant Nutr. Soil Sci. 2007, 170, 649–656. [Google Scholar] [CrossRef]
- Christel, D.M. The Use of Bokashi as a Soil Fertility Amendment in Organic Spinach Cultivation. Master’s Thesis, The University of Vermont, Burlington, VT, USA, 2017. [Google Scholar]
- Ghanem, K.; El-Zabalawy, K.; Mustafa, A.; Elbanna, B. Impact of Using Compost Bokashi Resulting from Recycling Kitchen Waste on Head Lettuce (Lactuca sativa var. capitata L.)Grown Organically at Home. J. Soil Sci. Agric. Eng. 2017, 8, 21–27. [Google Scholar] [CrossRef]
- Lasmini, S.A.; Nasir, B.; Hayati, N.; Edy, N. Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Aust. J. Crop. Sci. 2018, 12, 1743–1749. [Google Scholar] [CrossRef]
- Ginting, S. Promoting Bokashi as an Organic Fertilizer in Indonesia: A Mini Review. Int. J. Environ. Sci. Nat. Resour. 2019, 21, 1–3. [Google Scholar] [CrossRef]
- 12L Compost Bin Recycle Composter Aerated Compost Bin PP Organic Homemade Trash Can Bucket Kitchen Garden Food Waste Bins | Lazada. Available online: https://www.lazada.com.my/products/12l-compost-bin-recycle-composter-aerated-compost-bin-pp-organic-homemade-trash-can-bucket-kitchen-garden-food-waste-bins-i1336674730-s4138454965.html?exlaz=d_1:mm_150050845_51350205_2010350205::12:12290482512!126042163148!!!pla-341430192418!c!341430192418!4138454965!197183839&gclid=Cj0KCQiAst2BBhDJARIsAGo2ldUh_0ZglogmjtHXmtGeDtvaH8IWYhqzXxgMlKO4eCltdGlpSu8Obn4aAj-YEALw_wcB (accessed on 25 February 2021).
- Corporation, A. Data Sheet ATmega328P; Atmel Corporation: San Jose, CA, USA, 2015; pp. 1–294. [Google Scholar]
- Shenzhen Four Primus Union Technology. ESP8266 Based Serial WiFi Shield for Arduino; Shenzhen Primus Technology Co., Ltd.: Shenzhen, China, 2015. [Google Scholar]
- Morgan, E.J. HC SR04 Ultrasonic Ranging Sensor Module. Eval. Tec. Sens. 2014, 16. [Google Scholar]
- Temperature Sensor DHT 11 Humidity & Temperature Sensor. Available online: https://datasheetspdf.com/pdf/785590/D-Robotics/DHT11/1 (accessed on 25 February 2021).
- Capacitive_Soil_Moisture_Sensor_SKU_SEN0193-DFRobot. Available online: https://wiki.dfrobot.com/Capacitive_Soil_Moisture_Sensor_SKU_SEN0193 (accessed on 25 February 2021).
- Water Sensor Module User’s Manual. Available online: https://server4.eca.ir/eshop/000/WATERMODULE/1480850810_water.pdf (accessed on 25 February 2021).
- Navarro, E.M.G.; Tagle, M.E.V.; Marín, M.T.L.; Alfonso, M.S.P. Comparison of USEPA 3050B and ISO 14869-1: 2001 digestion methods for sediment analysis by using FAAS and ICP-OES quantification techniques. Química Nova 2011, 34, 1443–1449. [Google Scholar] [CrossRef] [Green Version]
- Salvadó, Z.; Arroyo-López, F.N.; Guillamón, J.M.; Salazar, G.; Querol, A.; Barrio, E. Temperature Adaptation Markedly Determines Evolution within the GenusSaccharomyces. Appl. Environ. Microbiol. 2011, 77, 2292–2302. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Kanwal, R.; Ayub, N. Influence of temperature on growth pattern of lactococcus lactis, streptococcus cremoris and lactobacillus acidophilus isolated from camel milk. Biotechnology 2006, 5, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Hisada, T.; Okamura, K.; Hiraishi, A. Isolation and Characterization of Phototrophic Purple Nonsulfur Bacteria from Chloroflexus and Cyanobacterial Mats in Hot Springs. Microbes Environ. 2007, 22, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Pyar, H.; Peh, K.K. Chemical compositions of banana peels (Musa sapientum) fruits cultivated in Malaysia using proximate analysis. Res. J. Chem. Environ. 2018, 22, 108–113. [Google Scholar]
- Bazrafshan, E.; Zarei, A.; Mostafapour, F.K.; Poormollae, N.; Mahmoodi, S.; Zazouli, M.A. Maturity and Stability Evaluation of Composted Municipal Solid Wastes. Heal. Scope 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Jamaludin, N.; Mohammed, N.I.; Khamidi, M.F.; Wahab, S.N.A. Thermal Comfort of Residential Building in Malaysia at Different Micro-climates. Procedia Soc. Behav. Sci. 2015, 170, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Footer, A. Bokashi Composting: Scraps to Soil in Weeks; New Society Publisher: Gabriola, BC, Canada, 2014. [Google Scholar]
- Graves, R.E.; Hattemer, G.M.; Stettler, D.; Krider, J.N.; Chapman, D. Part 637 Environmental Engineering National Engineering Handbook; United States Department of Agriculture (USDA): Washington, DC, USA, 2000.
- Rastogi, M.; Nandal, M.; Khosla, B. Microbes as vital additives for solid waste composting. Heliyon 2020, 6, e03343. [Google Scholar] [CrossRef] [PubMed]
- Zu Schweinsberg-Mickan, M.S.; Müller, T. Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic-matter decomposition, and plant growth. J. Plant Nutr. Soil Sci. 2009, 172, 704–712. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [Green Version]
- Kalemelawa, F.; Nishihara, E.; Endo, T.; Ahmad, Z.; Yeasmin, R.; Tenywa, M.M.; Yamamoto, S. An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresour. Technol. 2012, 126, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Kadir, A.A.; Rahman, N.A.; Azhari, N.W. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Langkawi, Malaysia, 27–29 October 2015; Volume 136, p. 012055. [Google Scholar] [CrossRef]
Components | Specifications |
---|---|
ATmega328 microcontroller [18] |
QFN/MLF. |
ESP8266 WIFI Shield [19] |
|
Ultrasonic Sensor [20] |
|
DHT11 Humidity and Temperature Sensor [21] |
|
Capacitive Soil Moisture Sensor [22] |
|
Water Level Sensor [23] |
|
Bokashi Bran | Composition | Moisture Content | |||
---|---|---|---|---|---|
EM-1 | Molasses | Wheat Bran | Water | ||
Bokashi Bran-1 | 12 mL | 12 mL | 1.36 kg | 946 mL | 42.1% |
Bokashi Bran-2 | 22 mL | 22 mL | 1.36 kg | 946 mL | 42.4% |
Bokashi Bran-3 | 32 mL | 32 mL | 1.36 kg | 946 mL | 42.3% |
Soil Sample | C/N Ratio of Each Sample |
---|---|
Sample 1 | 25.39 |
Sample 2 | 27.39 |
Sample 3 | 25.36 |
Sample 4 | 20.22 |
Soil Sample | Phosphorus Percentage of Each Sample |
---|---|
Sample 1 | 0.08% |
Sample 2 | 0.10% |
Sample 3 | 0.11% |
Sample 4 | 0.06% |
Soil Sample | Potassium Percentage of Each Sample |
---|---|
Sample 1 | 0.58% |
Sample 2 | 0.39% |
Sample 3 | 0.37% |
Sample 4 | 0.41% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lew, P.S.; Nik Ibrahim, N.N.L.; Kamarudin, S.; Thamrin, N.M.; Misnan, M.F. Optimization of Bokashi-Composting Process Using Effective Microorganisms-1 in Smart Composting Bin. Sensors 2021, 21, 2847. https://doi.org/10.3390/s21082847
Lew PS, Nik Ibrahim NNL, Kamarudin S, Thamrin NM, Misnan MF. Optimization of Bokashi-Composting Process Using Effective Microorganisms-1 in Smart Composting Bin. Sensors. 2021; 21(8):2847. https://doi.org/10.3390/s21082847
Chicago/Turabian StyleLew, Pei Sze, Nik Nor Liyana Nik Ibrahim, Suryani Kamarudin, Norashikin M. Thamrin, and Mohamad Farid Misnan. 2021. "Optimization of Bokashi-Composting Process Using Effective Microorganisms-1 in Smart Composting Bin" Sensors 21, no. 8: 2847. https://doi.org/10.3390/s21082847
APA StyleLew, P. S., Nik Ibrahim, N. N. L., Kamarudin, S., Thamrin, N. M., & Misnan, M. F. (2021). Optimization of Bokashi-Composting Process Using Effective Microorganisms-1 in Smart Composting Bin. Sensors, 21(8), 2847. https://doi.org/10.3390/s21082847