Correlation between Acoustic Emission Behaviour and Dynamics Model during Three-Stage Deformation Process of Soil Landslide
<p>Landslide experiment system. For the 3-D perspective in (<b>a</b>), the loading equipment is indicated by the blue part, the artificial substratum is indicated by the brown part, and the sliding body is indicated by the yellow part. (<b>b</b>) is a photograph of the experiment system in a laboratory.</p> "> Figure 2
<p>Three-stage deformation curve of a progressive landslide (after Saito [<a href="#B37-sensors-21-02373" class="html-bibr">37</a>]).</p> "> Figure 3
<p>Diagram for mechanical analysis of the landslide test.</p> "> Figure 4
<p>Time series of thrust and other resistance during a steady stage under a horizontal condition.</p> "> Figure 5
<p>The factor of safety (FoS) is inversely proportional to the thrust. (<b>a</b>–<b>d</b>) show the inverse relationship between FoS and thrust for the four experiments.</p> "> Figure 6
<p>Reciprocal of the factor of safety (FoS) is proportional to the thrust. (<b>a</b>–<b>d</b>) show the proportional relationship between reciprocal of FoS and thrust for the four experiments.</p> "> Figure 7
<p>Landslide kinematics parameters of the model test. (<b>a</b>) This is expected displacement and velocity change with time based on the velocity-controlled method in <a href="#sensors-21-02373-t002" class="html-table">Table 2</a>. (<b>b</b>) This is measured displacement plotted against time for each test.</p> "> Figure 8
<p>Displacement and inverse velocity plotted against time (80–110 s) in (<b>a</b>–<b>d</b>) for the four experiments. All data points are the average value of 1 s.</p> "> Figure 9
<p>Thrust and factor of safety (FoS) plotted against time in (<b>a</b>–<b>d</b>) for the four experiments. All data points are the average value of 1 s.</p> "> Figure 10
<p>Acceleration and thrust plotted against time in (<b>a</b>–<b>d</b>) for the four experiments. All data points are the moving average value of 5 s.</p> "> Figure 11
<p>Velocity and ring down count (RDC) plotted against time in (<b>a</b>–<b>d</b>) for the four experiments. All experimental data points are the moving average value of 5 s.</p> "> Figure 12
<p>Displacement and cumulative ring down count (RDC) plotted against time in (<b>a</b>–<b>d</b>) for the four experiments. All data points are the moving average value of 5 s.</p> "> Figure 13
<p>Linear relationship between cumulative ring down count (RDC) and displacement. (<b>a</b>–<b>d</b>) show the relationship for the four experiments. All data points are the moving average value of 5 s.</p> "> Figure 14
<p>Acceleration, factor of safety (FoS), and ring down count (RDC) plotted against time in (<b>a</b>–<b>d</b>) for the four experiments. All data points are the moving average value of 5 s.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Experimental Detail
2.2. Physical Analysis of a Landslide Model Test
3. Results and Analysis
3.1. Calculation of Other Resistance f and Simplification of the FoS Equation
3.2. Analysis of Kinematics and Dynamic Parameters
3.2.1. Displacement and Inverse Velocity
3.2.2. FoS and Thrust
3.2.3. Acceleration and Thrust
3.3. Analysis of AE and Kinematics Parameters
3.3.1. RDC and Velocity
3.3.2. Cumulative RDC and Displacement
3.4. Comprehensive Analysis of Kinematics, Dynamics, and AE Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Schuster, R.L.; Highland, L. Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere; U.S. Geological Survey: Denver, CO, USA, 2001.
- Klose, M.; Maurischat, P.; Damm, B. Landslide impacts in Germany: A historical and socioeconomic perspective. Landslides 2016, 13, 183–199. [Google Scholar] [CrossRef]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Perkins, S. Death toll from landslides vastly underestimated. Nature News, 8 August 2012. [Google Scholar] [CrossRef]
- Van Natijne, A.L.; Lindenbergh, R.C.; Bogaard, T.A. Machine Learning: New Potential for Local and Regional Deep-Seated Landslide Nowcasting. Sensors 2020, 20, 1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glade, T. Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ. Geol. 1998, 35, 160–174. [Google Scholar] [CrossRef]
- Spiker, E.C.; Gori, P.L. National Landslide Hazards Mitigation Strategy—A Framework for Loss Reduction; U.S. Geological Survey: Denver, CO, USA, 2003.
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Li, Z.H.; Jiang, Y.J.; Lv, Q.; Sousa, L.R.; He, M.C. Consistent modeling of a catastrophic flowslide at the Shenzhen landfill using a hydro-elasto-plastic model with solid–fluid transition. Acta Geotech. 2018, 13, 1451–1466. [Google Scholar] [CrossRef]
- Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-Sci. Rev. 2019, 193, 333–349. [Google Scholar] [CrossRef]
- Smith, A.; Dixon, N. Quantification of landslide velocity from active waveguide-generated acoustic emission. Can. Geotech. J. 2015, 52, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Frattini, P.; Crosta, G.B.; Rossini, M.; Allievi, J. Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides 2018, 15, 1053–1070. [Google Scholar] [CrossRef]
- Meisina, C.; Zucca, F.; Notti, D.; Colombo, A.; Cucchi, A.; Savio, G.; Giannico, C.; Bianchi, M. Geological Interpretation of PSInSAR Data at Regional Scale. Sensors 2008, 8, 7469–7492. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Huang, G.; Zhang, Q.; Gao, Y.; Gao, Y. Asynchronous RTK Method for Detecting the Stability of the Reference Station in GNSS Deformation Monitoring. Sensors 2020, 20, 1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardi, F.; Raspini, F.; Ciampalini, A.; Kristensen, L.; Rouyet, L.; Lauknes, T.R.; Frauenfelder, R.; Casagli, N. Space-Borne and Ground-Based InSAR Data Integration: The angstrom knes Test Site. Remote Sens. 2016, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Monserrat, O.; Criosetto, M.; Luzi, G. A review of ground-based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote Sens. 2014, 93, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring strategies for local landslide early warning systems. Landslides 2019, 16, 213–231. [Google Scholar] [CrossRef]
- Ruzza, G.; Guerriero, L.; Revellino, P.; Guadagno, F.M. A Multi-Module Fixed Inclinometer for Continuous Monitoring of Landslides: Design, Development, and Laboratory Testing. Sensors 2020, 20, 3318. [Google Scholar] [CrossRef]
- Smethurst, J.; Smith, A.; Uhlemann, S.; Wooff, C.; Chambers, J.; Hughes, P.; Lenart, S.; Saroglou, H.; Springman, S.M.; Löfroth, H. Current and future role of instrumentation and monitoring in the performance of transport infrastructure slopes. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J. Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology 2016, 253, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Dixon, N.; Smith, A.; Flint, J.A.; Khanna, R.; Clark, B.; Andjelkovic, M. An acoustic emission landslide early warning system for communities in low-income and middle-income countries. Landslides 2018, 15, 1631–1644. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Dixon, N.; Meldrum, P.; Haslam, E.; Chambers, J. Acoustic emission monitoring of a soil slope: Comparisons with continuous deformation measurements. Géotech. Lett. 2014, 4, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Dixon, N.; Spriggs, M.P.; Smith, A.; Meldrum, P.; Haslam, E. Quantification of reactivated landslide behaviour using acoustic emission monitoring. Landslides 2015, 12, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Codeglia, D.; Dixon, N.; Fowmes, G.J.; Marcato, G. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms. Eng. Geol. 2017, 219, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Dixon, N.; Fowmes, G.J. Early detection of first-time slope failures using acoustic emission measurements: Large-scale physical modelling. Geotechnique 2017, 67, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Ingraham, M.D.; Issen, K.A.; Holcomb, D.J. Use of acoustic emissions to investigate localization in high-porosity sandstone subjected to true triaxial stresses. Acta Geotech. 2013, 8, 645–663. [Google Scholar] [CrossRef]
- Smith, A.; Moore, I.D.; Dixon, N. Acoustic Emission Sensing of Pipe-Soil Interaction: Full-Scale Pipelines Subjected to Differential Ground Movements. J. Geotech. Geoenviron. Eng. 2019, 145, 04019113. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Dixon, N. Acoustic emission behaviour of dense sands. Géotechnique 2019, 69, 1107–1122. [Google Scholar] [CrossRef]
- Dixon, N.; Hill, R.; Kavanagh, J. Acoustic emission monitoring of slope instability: Development of an active waveguide system. Proc. Inst. Civ. Eng.—Geotech. Eng. 2003, 156, 83–95. [Google Scholar] [CrossRef]
- Dixon, N.; Smith, A.; Spriggs, M.; Ridley, A.; Meldrum, P.; Haslam, E. Stability monitoring of a rail slope using acoustic emission. Proc. Inst. Civ. Eng. Geotech. Eng. 2015, 168, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Dixon, N.; Spriggs, M. Quantification of slope displacement rates using acoustic emission monitoring. Can. Geotech. J. 2007, 44, 966–976. [Google Scholar] [CrossRef] [Green Version]
- Lacasse, S.; Nadim, F. Landslide Risk Assessment and Mitigation Strategy. In Landslides–Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 31–61. [Google Scholar]
- Wang, Z.; Zhang, W.; Gao, X.; Liu, H.; Böhlke, T. Stability analysis of soil slopes based on strain information. Acta Geotech. 2020, 15, 3121–3134. [Google Scholar] [CrossRef]
- Saito, M. Forecasting the time of occurrence of a slope failure. In Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, QC, Canada, 8–15 September 1965; Volume 2, pp. 537–541. [Google Scholar]
- Saito, M. Forecasting time of slope failure by tertiary creep. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico; 1969; Volume 2, pp. 677–683. [Google Scholar]
- Fukuzono, T. New methods for predicting the failure time of a slope: Fukuzono, T Proc 4th International Conference and Field Workshop on Landslides, Japan, 23–31 Aug 1985 P145–150. Publ Tokyo: Japan Landslide Society, 1985. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1987, 24, A34. [Google Scholar]
- Fukuzono, T. A method to predict the time of slope failure caused by rainfall using the inverse number of velocity of surface displacement. J. Jap. Landslide Soc. 1985, 22, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Fukuzono, T. Recent studies on time prediction of slope failure. Landslide News 1990, 4, 9–12. [Google Scholar]
- Petley, D.N.; Bulmer, M.H.; Murphy, W. Patterns of movement in rotational and translational landslides. Geology 2002, 30, 719–722. [Google Scholar] [CrossRef]
- Petley, D.N. The evolution of slope failures: Mechanisms of rupture propagation. Nat. Hazards Earth Syst. Sci. 2004, 4, 147–152. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G. Landslide forecasting and factors influencing predictability. Nat. Hazards Earth Syst. Sci. 2016, 16, 2501–2510. [Google Scholar] [CrossRef] [Green Version]
- Dick, G.J.; Eberhardt, E.; Cabrejo-Liévano, A.G.; Stead, D.; Rose, N.D. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can. Geotech. J. 2014, 52, 515–529. [Google Scholar] [CrossRef]
- He, M.; Gong, W.; Wang, J.; Qi, P.; Tao, Z.; Du, S.; Peng, Y. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int. J. Rock Mech. Min. Sci. 2014, 67, 29–42. [Google Scholar] [CrossRef]
- Askarinejad, A.; Casini, F.; Bischof, P.; Beck, A.; Springman, S.M. Rainfall induced instabilities: A field experiment on a silty sand slope in northern Switzerland. Riv. Ital. Geotec. 2012, 3, 50–71. [Google Scholar]
- Cadman, J.D.; Goodman, R.E. Landslide noise. Science 1967, 158, 1182–1184. [Google Scholar] [CrossRef] [PubMed]
- Petley, D.N.; Higuchi, T.; Petley, D.J.; Bulmer, M.H.; Carey, J. Development of progressive landslide failure in cohesive materials. Geology 2005, 33, 201–204. [Google Scholar] [CrossRef]
- Huang, F.M.; Wu, P.; Ziggah, Y.Y. GPS monitoring landslide deformation signal processing using time-series model. Int. J. Signal. Process. Image Process. Pattern Recognit. 2016, 9, 321–332. [Google Scholar] [CrossRef]
- Wang, X.P.; Liao, Y.Q. Displacement Prediction Model of Landslide Based On Time Series and Visual Simulation of the Landslide Evolution. In Proceedings of the 32nd Chinese Control Conference, IEEE, Xi’an, China, 26–28 July 2013; pp. 8561–8566. [Google Scholar]
- Zhang, S.; Zhang, L.; Lacasse, S.; Nadim, F. Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, P.; Liu, Z.; Wu, S.R.; Liang, C.Y.; Lin, C. Rotational-translational landslides in the neogene basins at the northeast margin of the Tibetan Plateau. Eng. Geol. 2018, 244, 107–115. [Google Scholar] [CrossRef]
- Haeri, H.; Sarfarazi, V.; Shemirani, A.B.; Gohar, H.P.; Nejati, H.R. Field Evaluation of Soil Liquefaction and Its Confrontation in Fine-Grained Sandy Soils (Case Study: South of Hormozgan Province). J. Min. Sci. 2017, 53, 457–468. [Google Scholar] [CrossRef]
- Cho, S.E. Infiltration analysis to evaluate the surficial stability of two-layered slopes considering rainfall characteristics. Eng. Geol. 2009, 105, 32–43. [Google Scholar] [CrossRef]
- Caris, J.P.T.; Van Asch, T.W.J. Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps. Eng. Geol. 1991, 31, 249–276. [Google Scholar] [CrossRef]
- Santamarina, J.; Cho, G. Determination of Critical State Parameters in Sandy Soils—Simple Procedure. Geotech. Test. J. 2001, 24, 185–192. [Google Scholar]
- Al-Sanad, H.A.; Eid, W.K.; Ismael, N.F. Geotechnical Properties of Oil-Contaminated Kuwaiti Sand. J. Geotech. Eng. 1995, 121, 407–412. [Google Scholar] [CrossRef]
- Lin, W.; Liu, A.; Mao, W.; Koseki, J. Acoustic emission characteristics of a dry sandy soil subjected to drained triaxial compression. Acta Geotech. 2020, 15, 2493–2506. [Google Scholar] [CrossRef]
- Troncone, A.; Conte, E.; Donato, A. Two and three-dimensional numerical analysis of the progressive failure that occurred in an excavation-induced landslide. Eng. Geol. 2014, 183, 265–275. [Google Scholar] [CrossRef]
- Giri, P.; Ng, K.; Phillips, W. Laboratory simulation to understand translational soil slides and establish movement criteria using wireless IMU sensors. Landslides 2018, 15, 2437–2447. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, H.; Chen, J.; Sun, Z.; Fu, M.; Zhou, Y.; Yan, S.; Zhang, Z.; Chen, T. Experimental investigation on progressive deformation of soil slope using acoustic emission monitoring. Eng. Geol. 2019, 261, 105295. [Google Scholar] [CrossRef]
- Terzaghi, K. Theoretical Soil Mechanics; Wiley: New York, NY, USA, 1943. [Google Scholar]
- Eberhardt, E.; Stead, D.; Coggan, J.S. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int. J. Rock Mech. Min. Sci. 2004, 41, 69–87. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Huang, M.-H.; Fielding, E.J.; Booth, A.M.; Burgmann, R. A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.; Dixon, N.; Meldrum, P.; Haslam, E. Inclinometer casings retrofitted with acoustic real-time monitoring systems. Ground Eng. 2014, 16, 24–29. [Google Scholar]
- Smith, A.; Dixon, N.; Moore, R.; Meldrum, P. Photographic feature: Acoustic emission monitoring of coastal slopes in NE England, UK. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Michlmayr, G.; Cohen, D.; Or, D. Shear-induced force fluctuations and acoustic emissions in granular material. J. Geophys. Res. Solid Earth 2013, 118, 6086–6098. [Google Scholar] [CrossRef]
- Michlmayr, G.; Chalari, A.; Clarke, A.; Or, D. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure. Landslides 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng. Geol. 2017, 218, 173–186. [Google Scholar] [CrossRef]
- Dok, A.; Fukuoka, H. Tertiary Creep Reproduction by Back-Pressure-Controlled Test in DPRI-7. In Landslide Science and Practice: Volume 4: Global Environmental Change; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 295–301. [Google Scholar]
- Carlà, T.; Intrieri, E.; Di Traglia, F.; Nolesini, T.; Gigli, G.; Casagli, N. Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 2017, 14, 517–534. [Google Scholar] [CrossRef] [Green Version]
- Triantis, D.; Kourkoulis, S.K. An Alternative Approach for Representing the Data Provided by the Acoustic Emission Technique. Rock Mech. Rock Eng. 2018, 51, 2433–2438. [Google Scholar] [CrossRef]
Length (cm) | Width (cm) | Height (cm) | Bulk Density (Mg·m−3) | Internal Friction Angle φ (°) |
---|---|---|---|---|
70 | 34 | 30 | 1.6 | 24 |
General Conditions | Test Number | Inclination Angle | Velocity Control |
---|---|---|---|
Waveguide (Copper pipe): Length of 1 m External diameter of 30 mm Internal diameter of 20 mm Silica sand particles: Average size of 6 mm Rubber inclinometer: External diameter of 60 mm Internal diameter of 55 mm | (a) | 5° | Stage one (1) s |
(b) | 10° | Stage two (2) s | |
(c) | 15° | Stage three (3) | |
(d) | 20° | s |
Angle θ (°) | 5 | 10 | 15 | 20 |
---|---|---|---|---|
a (kN) | 1.0387 | 1.0358 | 1.0311 | 1.0244 |
b (kN) | 0.0498 | 0.0992 | 0.1478 | 0.1954 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Yuan, H.; Chen, J.; Sun, Z.; Fu, M.; Wang, F.; Yan, S.; Li, K.; Yu, M.; Chen, T. Correlation between Acoustic Emission Behaviour and Dynamics Model during Three-Stage Deformation Process of Soil Landslide. Sensors 2021, 21, 2373. https://doi.org/10.3390/s21072373
Deng L, Yuan H, Chen J, Sun Z, Fu M, Wang F, Yan S, Li K, Yu M, Chen T. Correlation between Acoustic Emission Behaviour and Dynamics Model during Three-Stage Deformation Process of Soil Landslide. Sensors. 2021; 21(7):2373. https://doi.org/10.3390/s21072373
Chicago/Turabian StyleDeng, Lizheng, Hongyong Yuan, Jianguo Chen, Zhanhui Sun, Ming Fu, Fei Wang, Shuan Yan, Kaiyuan Li, Miaomiao Yu, and Tao Chen. 2021. "Correlation between Acoustic Emission Behaviour and Dynamics Model during Three-Stage Deformation Process of Soil Landslide" Sensors 21, no. 7: 2373. https://doi.org/10.3390/s21072373