Design and Modification of a High-Resolution Optical Interferometer Accelerometer
<p>Schematic of the accelerometer. (<b>a</b>) Lumped model of the accelerometer. (<b>b</b>) The force on the sensitive mass. k is the elastic coefficient of the spring, c is the damping coefficient, x is the relative displacement between the mass and the base, a is the acceleration acting on the model.</p> "> Figure 2
<p>Structure of the spring-mass system.</p> "> Figure 3
<p>(<b>a</b>)~(<b>f</b>) The first six order vibration modal analysis results of the Micro-Electro-Mechanical Systems (MEMS) sensor chip. The resonant mode frequencies are approximately 24.8 Hz, 321.5 Hz, 321.6 Hz, 584.9 Hz, 585.4 Hz, 586.1 Hz, respectively.</p> "> Figure 4
<p>Schematic diagram of the optical displacement readout based on an interferometry cavity. <span class="html-italic">d</span> refers the distance between mass block and the micro-grating.</p> "> Figure 5
<p>(<b>a</b>) Light path simulation with microcavity interference. (<b>b</b>)The simulation figure of micro light intensity diffraction pattern with a 0, +1, and −1 level. The <span class="html-italic">Y</span>-axis is along the direction in which the diffraction orders separate.</p> "> Figure 6
<p>(<b>a</b>) Displacement-intensity curve for the +1 level. (<b>b</b>) Fitting of displacement-intensity magnification curve for the +1 level.</p> "> Figure 7
<p>(<b>a</b>)–(<b>f</b>) Cross-sectional view of the fabrication process flow of the MEMS sensing chip.</p> "> Figure 8
<p>Photograph of the fabricated MEMS sensing chip.</p> "> Figure 9
<p>(<b>a</b>)–(<b>d</b>)Fabrication process steps used to prototype the two-region diffraction micro-grating chip.</p> "> Figure 10
<p>(<b>a</b>) Photograph of a fabricated sample. (<b>b</b>) Morphology depth characterization diagram of the grating using a ZYGO white light interferometer.</p> "> Figure 11
<p>Schematic diagram of the internal structure of the sensor.</p> "> Figure 12
<p>(<b>a</b>) Static sensitivity measurement using a high precision turntable ARMS150. (<b>b</b>) Dynamic sensitivity measurement using a low frequency vibrator APS129.</p> "> Figure 13
<p>(<b>a</b>) Calibrating the self-noise of the MEMS accelerometer with a commercial seismometer for reference. (<b>b</b>) The power spectral density (PSD) of the output of the MOEMS accelerometers and the commercial seismometer.</p> ">
Abstract
:1. Introduction
2. Design
2.1. Micromachined Sensing Chip
2.1.1. Sensing Chip Theoretical Design
2.1.2. Finite Element Method (FEM) Analysis
2.2. Optical Displacement Readout
2.2.1. Micro Grating Interference Measurement System Design
2.2.2. Simulation Analysis
3. Experiments and Results
3.1. Device Processing
3.1.1. MEMS Sensor Chip
3.1.2. Micro-Grating Chip
3.2. System Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, L.; Chi, Y.; Zhou, Z.; Yao, B. Research and Development Status of MOEMS Accelerometers. Micronanoelectronic Technol. 2011, 48, 583–590. [Google Scholar]
- Wang, C.; Chen, F.; Wang, Y.; Sadeghpour, S.; Wang, C.; Baijot, M.; Esteves, R.; Zhao, C.; Bai, J.; Liu, H.; et al. Micromachined Accelerometers with Sub-µg/√ Hz Noise Floor: A Review. Sensors 2020, 20, 4054. [Google Scholar] [CrossRef]
- Zhao, S.; Hou, C.; Bai, J.; Yang, G.; Tian, F. Nanometer-scale displacement sensor based on phase-sensitive diffraction grating. Appl. Opt. 2011, 50, 1413–1416. [Google Scholar] [CrossRef] [PubMed]
- Hortschitz, W.; Kainz, A.; Kovacs, G.; Steiner, H.; Stifter, M.; Sauter, T.; Schalko, J.; Jachimowicz, A.; Keplinger, F. Robust, ultra sensitive MOEMS inertial sensor read out with infrared light. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 June 2018; pp. 952–955. [Google Scholar]
- Williams, R.P.; Hord, S.K.; Hall, N.A. Optically read displacement detection using phase-modulated diffraction gratings with reduced zeroth-order reflections. Appl. Phys. Lett. 2017, 110, 151104. [Google Scholar] [CrossRef]
- Williams, R.P.; Hall, N.A.; Avenson, B.D. Grating-Based Acceleration Sensors with Optical Interferometric Readout and Closed-Loop Control. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 507–510. [Google Scholar]
- Krause, A.G.; Winger, M.; Blasius, T.D.; Lin, Q.; Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photonics 2012, 6, 768. [Google Scholar] [CrossRef] [Green Version]
- Yao, B.; Feng, L.; Wang, X.; Liu, M.; Zhou, Z.; Liu, W. Design of out-of-plane MOEMS accelerometer with subwavelength gratings. IEEE Photonics Technol. Lett. 2014, 26, 1027–1030. [Google Scholar] [CrossRef]
- Loh, N.C.; Schmidt, M.A.; Manalis, S.R. Sub-10 cm/sup 3/interferometric accelerometer with nano-g resolution. J. Microelectromechanical Syst. 2002, 11, 182–187. [Google Scholar] [CrossRef]
- Weng, Y.; Qiao, X.; Guo, T.; Hu, M.; Feng, Z.; Wang, R.; Zhang, J. A robust and compact fiber Bragg grating vibration sensor for seismic measurement. IEEE Sens. J. 2011, 12, 800–804. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, T.; Lu, C.; Tam, H.Y. VCSEL-based tilted fiber grating vibration sensing system. IEEE Photonics Technol. Lett. 2010, 22, 1235–1237. [Google Scholar] [CrossRef]
- Stephens, M. A sensitive interferometric accelerometer. Rev. of Sci. Instrum. 1993, 64, 2612–2614. [Google Scholar] [CrossRef]
- Yu, B.; Wang, A.; Pickrell, G.R. Analysis of fiber Fabry-Pérot interferometric sensors using low-coherence light sources. J. Lightwave Technol. 2006, 24, 1758. [Google Scholar]
- Liu, C.H.; Kenny, T.W. A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. Microelectromechanical Syst. 2001, 10, 425–433. [Google Scholar]
- Hall, N.A.; Okandan, M.; Littrell, R.; Serkland, D.K.; Keeler, G.A.; Peterson, K.; Bicen, B.; Garcia, C.T.; Degertekin, F.L. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation. J. Microelectromechanical Syst. 2008, 17, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, N.A.; Okandan, M.; Degertekin, F.L. Surface and bulk-silicon-micromachined optical displacement sensor fabricated with the SwIFT-Lite™ process. J. Microelectromechanical Syst. 2006, 15, 770–776. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, C.; Bai, J.; Wang, K.; Lian, W.; Lou, S.; Jiao, X.; Yang, G. Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl. Opt. 2015, 54, 4188–4196. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, C.; Bai, J.; Wang, K.; Lou, S.; Jiao, X.; Han, D.; Yang, G.; Liu, D.; Yang, Y. Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers. Opt. Express 2016, 24, 9094–9111. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Bai, J.; Wang, K.; He, S. Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J. Microelectromechanical Syst. 2017, 26, 859–869. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, J.; Hou, C.; Yang, G. Optical accelerometer based on grating interferometer with phase modulation technique. Appl. Opt. 2012, 51, 7005–7010. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Wang, C.; Bai, J.; Chen, J.; Yao, Y.; Lu, Q. Investigation of the Thermal Deformation of a Chip-scale Packaged Optical Accelerometer. Measurement 2020, 163, 108017. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, Z.; Zhang, Y.; Deng, K.; Feng, L. High-resolution micro-grating accelerometer based on a gram-scale proof mass. Opt. Express 2019, 27, 34298–34311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, L.; Wang, X.; Wang, Y. Linearity enhancement of scale factor in an optical interrogated micromechanical accelerometer. Appl. Opt. 2016, 55, 6115–6120. [Google Scholar] [CrossRef]
- Wang, X.; Feng, L.; Yao, B.; Ren, X. Sensitivity improvement of micro-grating accelerometer based on differential detection method. Appl. Opt. 2013, 52, 4091–4096. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, T.B. Mechanical-Thermal Nosie in Micromachined Acoustic and Vibration Sensors. IEEE Trans. Electron Devices 1993, 40, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Gao, C.; Hao, Y.; Zhang, Y.; Yang, G. Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer. Micro Nano Lett. 2011, 6, 510–514. [Google Scholar] [CrossRef]
- Merchant, B.J. MEMS Applications in Seismology. In Proceedings of the 2009 Seismic Instrumentation Technology Symposium, Palm Springs Valley, CA, USA, 10–11 November 2009; pp. 296–298. [Google Scholar]
- Rao, K.; Wei, X.; Zhang, S.; Zhang, M.; Hu, C.; Liu, H.; Tu, L.C. A MEMS micro-g capacitive accelerometer based on through-silicon-wafer-etching process. Micromachines 2019, 10, 380. [Google Scholar] [CrossRef] [Green Version]
- Kempe, V. Inertial MEMS-Principles and Practice; Cambridge University Press: New York, NY, USA, 2011; pp. 296–298. [Google Scholar]
- Wu, W.; Liu, D.; Qiu, W.; Liu, H.; Hu, F.; Fan, J.; Hu, C.; Tu, L. A precise spacing-control method in MEMS packaging for capacitive accelerometer applications. J. Micromechanics Microengineering 2018, 28, 125016. [Google Scholar] [CrossRef]
- Chen, L.; Lin, Q.; Li, S.; Wu, X. Optical accelerometer based on high-order diffraction beam interference. Appl. Opt. 2010, 49, 2658–2664. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Fan, J.; Peng, D.; Liu, H.; Tu, L. A nano-g micromachined seismic sensor for levelling-free measurements. Sens. Actuators A Phys. 2018, 280, 238–244. [Google Scholar] [CrossRef]
- Bramsiepe, S.G.; Loomes, D.; Middlemiss, R.P.; Paul, D.J.; Hammond, G.D. A high stability optical shadow sensor with applications for precision accelerometers. IEEE Sens. J. 2018, 18, 4108–4116. [Google Scholar] [CrossRef] [Green Version]
- Pike, W.T.; Standley, I.M.; Calcutt, S.B.; Mukherjee, A.G. A broad-band silicon microseismometer with 0.25 NG/rtHz performance. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 June 2018; pp. 113–116. [Google Scholar]
- Milligan, D.J.; Homeijer, B.D.; Walmsley, R.G. An ultra-low noise MEMS accelerometer for seismic imaging. In Proceedings of the SENSORS, 2011 IEEE, Limerick, Ireland, 28–31 October 2011; pp. 1281–1284. [Google Scholar]
- Pike, W.T.; Delahunty, A.K.; Mukherjee, A.; Dou, G.; Liu, H.; Calcutt, S.; Standley, I.M. A self-levelling nano-g silicon seismometer. In Proceedings of the 2014 IEEE SENSORS, Valencia, Spain, 15 December 2014; pp. 1599–1602. [Google Scholar]
- Olsson, R.H.; Keeler, B.E.; Czaplewski, D.A.; Carr, D.W. Circuit Techniques for Reducing Low Frequency Noise in Optical MEMS Position and Inertial Sensors. In Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 2391–2394. [Google Scholar]
- Barzilai, A.; VanZandt, T.; Kenny, T. Technique for measurement of the noise of a sensor in the presence of large background signals. Rev. Sci. Instrum. 1998, 69, 2767–2772. [Google Scholar] [CrossRef]
Symbol | Parameter | Value | Symbol | Parameter | Value |
---|---|---|---|---|---|
cantilever beam width | 300 µm | Mass radius | 2650 µm | ||
t | cantilever beam thickness | 12 µm | T | Mass thickness | 500 µm |
supporting beam angle 1 | 15° | Inner radius of the nth cantilever | |||
supporting beam angle 2 | 7° | Outer radius of the nth cantilever | |||
cantilever beam angle 1 | 14° | L | Frame length | 13,000 µm | |
cantilever beam angle 2 | 25° | W | Frame width | 13,000 µm |
24.8 | 13.0 | 13.0 | 23.6 | 23.6 | 23.6 |
Frequency/Hz | DC | 0.1 | 0.5 | 1 | 5 | 10 |
---|---|---|---|---|---|---|
Sensitivity amplitude/(V/g) | 54.42 | 54.39 | 53.32 | 51.24 | 42.28 | 40.60 |
Accelerometers | California Institute of Technology [7] | Sandia National Laboratories [15] | University of Glasgow [3] | Beihang University [22] | This Work |
---|---|---|---|---|---|
Specification | Photonic-crystal nanocavity | Optomechanical | Light-intensity | Grating diffraction | Grating diffraction |
Self-noise (ng/√Hz) | 104 | 43.7 (thermal noise floor) | 41 | 137 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Pan, D.; Wang, J.; Dong, T.; Guo, J.; Wang, C.; Geng, A.; Fang, W.; Lu, Q. Design and Modification of a High-Resolution Optical Interferometer Accelerometer. Sensors 2021, 21, 2070. https://doi.org/10.3390/s21062070
Yao Y, Pan D, Wang J, Dong T, Guo J, Wang C, Geng A, Fang W, Lu Q. Design and Modification of a High-Resolution Optical Interferometer Accelerometer. Sensors. 2021; 21(6):2070. https://doi.org/10.3390/s21062070
Chicago/Turabian StyleYao, Yuan, Debin Pan, Jianbo Wang, Tingting Dong, Jie Guo, Chensheng Wang, Anbing Geng, Weidong Fang, and Qianbo Lu. 2021. "Design and Modification of a High-Resolution Optical Interferometer Accelerometer" Sensors 21, no. 6: 2070. https://doi.org/10.3390/s21062070
APA StyleYao, Y., Pan, D., Wang, J., Dong, T., Guo, J., Wang, C., Geng, A., Fang, W., & Lu, Q. (2021). Design and Modification of a High-Resolution Optical Interferometer Accelerometer. Sensors, 21(6), 2070. https://doi.org/10.3390/s21062070