Nothing Special   »   [go: up one dir, main page]

Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Linearity enhancement of scale factor in an optical interrogated micromechanical accelerometer

Not Accessible

Your library or personal account may give you access

Abstract

A method to reduce the residual stress of support arms in an optical interrogated micromechanical accelerometer is proposed in order to enhance the linearity of the scale factor of the accelerometer. First, the behavior of residual stress in support arms is analyzed in detail, and the simulation of shape curvature caused by residual stress in aluminum-made support arms is completed using finite element analysis. Then, by comparing two different materials of support arms (aluminum-made and silicon-made support arms), a modified fabrication is introduced in order to reduce the unexpected residual stress in support arms. Finally, based on contrast experiments, the linearity of the scale factor of accelerometers with aluminum-made and silicon-made support arms is measured using the force feedback test system, respectively. Results show that the linearity of the scale factor of the accelerometer with silicon-made support arms is 0.85%, which is reduced about an order of magnitude compared to that of the accelerometer with aluminum-made support arms with the linearity of scale factor of 7.48%; linearity enhancement of the scale factor is validated. This allows accuracy improvement of the optical interrogated micromechanical accelerometer in the application of inertial navigation and positioning.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error

Yu Zhang, Shan Gao, Heng Xiong, and Lishuang Feng
Opt. Express 27(5) 6565-6579 (2019)

High-resolution micro-optical accelerometer with an electromagnetic driver: design and analysis

Shan Gao, Zhen Zhou, Zhuang Huang, and Lishuang Feng
Appl. Opt. 60(26) 7989-7994 (2021)

Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal

Arash Sheikhaleh, Kambiz Abedi, Kian Jafari, and Reza Gholamzadeh
Appl. Opt. 55(32) 8993-8999 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel