Sensing Technology for Fish Freshness and Safety: A Review
Abstract
:1. Introduction
2. Analytical and Chemical Biosensors
3. Electronic Multi-Sensory Techniques
3.1. Electronic Nose and Tongue
3.2. Colorimetric Sensor Array and Colorimetric Systems
System | Measured Parameters | Species | Place of Application | Statistical Analysis | R2/ Classification Rate (%) | Reference |
---|---|---|---|---|---|---|
Gas sensor array (FishNose) | TVC, Off Odor Rancid, LAB | Atlantic salmon | Both confined and open air | PLSR | 94% | [38] |
Integrated metal oxide micro-sensors | TVC | Sardine | Confined air (sampling vessel) | SVM/PLSR | 0.91, 100% | [39] |
Optical electronic nose | Bacterial growth | Tilapia | Confined air | ----- | ----- | [40] |
MOS sensors (Mastersense) | TVC | Plaice, salmon | Confined air | KNN | 92% | [41] |
Metal oxide sensors | TVBN, bacterial counts | Hairtail fish | Confined air | PCA | 0.91 0.97 | [42] |
Metal oxide sensors (UTS NOS.E) | Freshness state | Salmon | Confined air | Hidden Markov model | 96% | [43] |
Potentiometric electrodes | pH, TVBN, Microbial analysis | Sea bream | Contact with filet samples | MPL, PLSR | 0.96 | [44] |
Au/Ag wires | K-value | Sea bream | Contact with sample solution | Least Square Method | 0.96 | [45] |
Voltammetric sensors | K-value, TVB-N | Cod | Contact with filet samples | PLSR | 0.79 0.73 | [46] |
Commercial e-tongue (ASTREE) | K-value | Canned tuna | Contact with sample filtrate | PCA | ---- | [47] |
Commercial e-tongue (SA402B) | 8 basic sense of taste | Grass carp | Contact with sample solution | ---- | ---- | [48] |
Alluminium and silica-based materials | Microbial counts | Sea bream | Near to the sample (open air) | PLSR | 0.92 | [50] |
Chemo-sensitive compounds | TVB-N, TBA, pH | Atlantic salmon | Near to the sample (confined air) | Linear fit | 0.73 0.89 0.91 | [51] |
Copolymer substances | TVB-N, Microbial growth | Tilapia | Near to the sample (confined air) | ---- | ---- | [52] |
Anthocyanin extracts | TVB-N | Mud Carp | Near to the sample (confined air) | ---- | ---- | [53] |
Filter paper coated with a sol-gel matrix | TVB-N | Red drum | Fish package | Linear fit | 0.97 | [54] |
Polydiacetylene nanofibers (ForceSpun) | Biogenic ammines | Not specified | Near to the sample | Linear fit | 0.97 | [55] |
Agar with natural dyes | Volatile compounds | Wuchang sea bream | Near to the sample | PCA | 87.5% | [56] |
Computer vision system | Lightness, Yellowness, Redness | Salmon | ---- | ---- | [57] | |
Canon EOS digital camera | Gill and eye color changes | Gilthead sea bream | ANN | >96% | [58] | |
Nikon D300 digital camera | Eye lightness | Snapper | Excel correlation function | ---- | [59] | |
Nikon D90 digital camera | Gill color changes | Indian rohu | Statistical mean and STD calculation | ---- | [60] | |
Computer vision system | Gill and pupil color changes | Tilapia | Linear fit | >0.98 | [61] | |
Nikon D7000 digital camera | Eye chromatic | European hake | PCA | r > 0.82 | [62] | |
Computer vision system | Texture features | Common carp | SVM K-NN ANN | 91.5% 90.5% 93.0% | [63] |
4. Dielectric Techniques in the Radio Frequency Range
5. Nuclear Magnetic Resonance Spectroscopy
6. Optical Spectroscopic Techniques
6.1. Fluorescence Spectroscopy
6.2. Infrared Spectroscopy
6.3. Hyperspectral Imaging
6.4. Raman Spectroscopy
Spectrocopic Technique | Measured Parameters | Species | Statistical Analysis | Best R2/ Classification Rate (%) | Reference |
---|---|---|---|---|---|
SFS | Pyrene | Carp | ----- | ----- | [86] |
EEM | Geographical origins Species | Shrimp | SIMCA | 91.7% | [87] |
EEM | K-value | Horse mackerel | PLSR | 0.89/87.5% | [88] |
EEM | Freshness value | Horse mackerel | PLSR | 0.94 | [89] |
Fluorescence Fingerprint | ATP content | Horse mackerel | PLSR | 0.88 | [90] |
FFFS | Thawing/Refrigerating process | Sea bass | CCSWA | 94.9% | [91] |
UV-LED system | K-value | Japanese Dace | PLSR | 0.92 | [92] |
NIR (800–2500 nm) | Growth of microbial load | Atlantic salmon | PLSR | 0.95 | [94] |
NIR (300–2500 nm) | Fresh/thawed | Tuna | PLS-DA | 92% | [95] |
NIR (400–1000 nm) | Cold-storage time | Salmon | PLSR, BP-NN, SDAE-NN | 0.98 (SDAE-NN) | [96] |
NIR/MIR (800–14,000 nm) | Species Fresh/thawed | Red mullet, Plaice Atlantic mullet, Flounder | LDA, SIMCA | 97.5% | [98] |
NIR (1000–2500 nm) | TMA concentration | Silver carp | PLSR, GA-PLS | 0.98 (GA-PLS) | [97] |
NIR (1000–1800 nm) | K-value TVB-N TBARS pH | Bighead carp | PLSR | 0.81 0.93 0.95 0.95 | [99] |
FT-MIR (2500–25,000 nm) | Chemicophysical parameters | Atlantic bluefin tuna, Crevalle jack, Atlantic Spanish mackerel | PLSR | >0.92 | [100] |
FT-MIR (2500–25,000 nm) | Microbial growth | Sea bream | PLSR | 0.73 | [101] |
FTIR-ATR (5500–10,500 nm) | TVC | Salmon | PLSR | 0.8 | [102] |
HSI (400–1000 nm) | K-value | Grass and silver carp | PLSR, LS-SVM | 0.94 (PLSR) | [106] |
HSI (400–1000 nm) | K-value TVB-N TBARS | Grass carp | LS-SVM MLR | 0.93 (MLR) 0.87 (LS-SVM) 0.94 (MLR) | [107] |
HSI (400–1000 nm) | TVB-N | Grass carp | PLSR LS-SVM | 0.98 (PLSR) | [108] |
HSI (400–1000 nm) | Shelf-life prediction | Salmon | PLSR | 0.89 | [109] |
HSI (430–1010 nm) | TVB-N PPC Sensory score | Rainbow trout | PLSR, BP-NN, LS-SVM, MLR | 0.91 (LS-SVM) | [110] |
HIS (900–1700 nm) | Gross energy density | Salmon | PLSR, epsilon-PLSR | 0.91 (both) | [111] |
HSI (400–1000 nm) | Moisture content | Grass carp | PLSR | 0.91 | [112] |
HIS (400–2500 nm) | Species Fresh/thawed | Red snapper, Vermilion snapper, Malabar snapper, Tilapia white bass, Summer flounder | 24 different ML algorithms | 100% (VNIR) 99% (SWIR) | [113] |
FT–Raman (900–4000 cm−1) | Lipid content | Hake | --- | ---- | [115] |
SERS (1050–1650 cm−1) | Histamine content | Atlantic mackerel | PLSR | 0.96 | [116] |
SERS (600–1800 cm−1) | Histamine content | Ribbonfish, Tuna | ---- | ---- | [117] |
SERS (300–1700 cm−1) | Green malachite | Not specified | ---- | ---- | [118] |
Standard Raman (200–2000 cm−1) | Fresh/thawed | Horse mackerel, Flying gurnard red mullet, European anchovy, Atlantic salmon, Bluefish | PCA | ---- | [119] |
Raman HIS (820–2847 cm−1) | Detection of fish spines | Grass carp | SVDD | 90.5% | [120] |
7. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State of Food and Agricolture 2009; FAO: Rome, Italy, 2009.
- Gorga, C.; Rosinvalli, J. Quality Assurance of Seafood; Van Nostrand Reinhold: New York, NY, USA, 1988. [Google Scholar]
- Sen, D.P. Advances in Fish Processing Technology; Allied Publisher Private Limited: Mumbai, India, 2005. [Google Scholar]
- Alasalvar, C.; Shahidi, F.; Miyashita, K.; Wanasundara, U. Seafood quality, safety, and health applications: An overview. In Handbook of Seafood Quality, Safety and Health Applications; Blackwell Publishing Ltd.: Oxford, UK, 2010; pp. 1–10. [Google Scholar]
- Wu, L.; Pu, H.; Sun, D. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci. Technol. 2019, 83, 259–273. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Mallouchos, A.; Haroutounian, S.S.; Boziaris, I.S. Microbiological spoilage and investigation of volatile profile during storage of sea bream fillets under various conditions. Int. J. Food Microbiol. 2014, 189, 153–163. [Google Scholar] [CrossRef]
- Hyldig, G.; Green-Petersen, D.M.B. Quality Index Method—An Objective Tool for Determination of Sensory Quality. J. Aquat. Food Prod. Technol. 2008, 13, 71–80. [Google Scholar] [CrossRef]
- Saito, T.; Arai, K.; Matsuyoshi, M. A new method for estimating the freshness of fish. Bull. Jpn. Soc. Sci. Fish. 1959, 24, 749–750. [Google Scholar] [CrossRef]
- Casas, C.; Martinez, O.; Guillen, M.D.; Pin, C.; Salmeron, J. Textural properties of raw Atlantic salmon (Salmo salar) at three points along the fillet, determined by different methods. Food Control 2006, 17, 511–515. [Google Scholar] [CrossRef]
- Yao, L.; Luo, Y.; Sun, Y.; Shen, H. Establishment of kinetic models based on electrical conductivity and freshness indictors for the forecasting of crucian carp (Carassius carassius) freshness. J. Food Eng. 2011, 107, 147–151. [Google Scholar] [CrossRef]
- Olafsdottir, G.; Nesvadba, P.; Di Natale, C.; Careche, M.; Oehlenschläger, J.; Tryggvadóttir, S.V.; Schubring, S.; Kroeger, M.; Heia, K.; Esaiassen, M.; et al. Multisensor for fish quality determination. Trends Food Sci. Technol. 2004, 15, 86–93. [Google Scholar]
- Caggiano, M. Quality in harvesting and post-harvesting procedures–influence on quality. Fish freshness and quality assessment for sea bass and sea bream. Cah. Options. Méditerr. 2000, 51, 55–61. [Google Scholar]
- Cheng, J.; Sun, D.; Han, Z.; Zeng, X. Texture and Structure Measurements and Analyses for Evaluation of Fish and Fillet Freshness Quality: A Review. Compr. Ren. Food Sci. F 2014, 13, 52–61. [Google Scholar] [CrossRef]
- Lavine, B.K.; Mirjankar, N. Clustering and Classification of Analytical Data, update based on the original article by Lavine, B.K. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Meyers, R.A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Nayak, J.; Vakula, K.; Dinesh, P.; Naik, B.; Pelusi, D. Intelligent food processing: Journey from artificial neural network to deep learning. Comput. Sci. Rev. 2020, 38. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 30, 1–8. [Google Scholar]
- Lawal, A.T.; Adeloju, S.B. Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: A review. Talanta 2012, 100, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.S.; Ragavan, K.V. Biosensors in food processing. J. Food Sci. Technol. 2013, 50, 625–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkhey, P.; Mohan, S.V. Biosensing Applications of Microbial Fuel Cell: Approach Toward Miniaturization. In Microbial Electrochemical Technology; Mohan, S.V., Varjani, S., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Tang, X.; Liu, Y.; Hou, H.; You, T. A nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode. Talanta 2011, 83, 1410–1414. [Google Scholar] [CrossRef] [PubMed]
- Apetrei, I.M.; Apetrei, C. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection. Sensors 2016, 16, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcon-Angeles, G.; Álvarez-Romero, G.A.; Merkoçi, A. Electrochemical biosensors: Enzyme kinetics and role of nanomaterials. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 140–155. [Google Scholar]
- Heising, J.K.; Dekker, M.; Bartels, P.V.; van Boekel, M.J.A.S. A non-destructive ammonium detection method as indicator for freshness for packed fish: Application on cod. J. Food Process Eng. 2012, 110, 254–261. [Google Scholar] [CrossRef]
- Heising, J.K.; Bartels, P.V.; van Boekel, M.J.A.S.; Dekker, M. Non-destructive sensing of the freshness of packed cod fish using conductivity and pH electrodes. J. Food Process Eng. 2014, 124, 80–85. [Google Scholar] [CrossRef]
- Chang, L.; Chuang, M.; Zan, H.; Meng, H.; Lu, C.; Yeh, P.; Chen, J. One-Minute Fish Freshness Evaluation by Testing the Volatile Amine Gas with an Ultrasensitive Porous-Electrode-Capped Organic Gas Sensor System. ACS Sens. 2017, 2, 531–539. [Google Scholar] [CrossRef]
- Vishnu, N.; Gandhi, M.; Rajagopalb, D.; Kumar, A.S. Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples. Anal. Methods 2017, 9, 2265–2274. [Google Scholar] [CrossRef]
- Lee, M.; Wu, C.; Sari, M.I.; Hsieh, Y. A disposable non-enzymatic histamine sensor based on the nafion-coated copper phosphate electrodes for estimation of fish freshness. Electrochim. Acta 2018, 283, 772–779. [Google Scholar] [CrossRef]
- Li, C.; Hao, J.; Wu, K. Triethylamine-controlled Cu-BTC frameworks for electrochemical sensing fish freshness. Anal. Chim. Acta 2019, 1085, 68–74. [Google Scholar] [CrossRef]
- Thandavan, K.; Gandhi, S.; Sethuraman, S.; Rayappan, J.B.B.; Krishnan, U.M. Development of electrochemical biosensor with nano-interface for xanthine sensing—A novel approach for fish freshness estimation. Food Chem. 2013, 139, 963–969. [Google Scholar] [CrossRef]
- Narang, J.; Malhotra, N.; Singhal, C.; Pundir, C.S. Evaluation of Freshness of Fishes Using MWCNT/TiO2 Nanobiocomposites Based Biosensor. Food Anal. Methods 2017, 10, 522–528. [Google Scholar] [CrossRef]
- Borisova, B.; Sánchez, A.; Jiménez-Falcao, S.; Martín, M.; Salazar, P.; Parrado, C.; Pingarrón, J.M.; Villalonga, R. Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors. Sens. Actuators B Chem. 2016, 232, 84–90. [Google Scholar] [CrossRef]
- Pierini, G.D.; Robledo, S.N.; Zon, M.A.; Di Nezio, M.S.; Granero, A.M.; Fernández, H. Development of an electroanalytical method to control quality in fish samples based on an edge plane pyrolytic graphite electrode. Simultaneous determination of hypoxanthine, xanthine and uric acid. Microchem. J. 2018, 138, 58–64. [Google Scholar] [CrossRef]
- Torre, R.; Costa-Rama, E.; Nouws, H.P.A.; Delerue-Matos, C. Diamine oxidase-modified screen-printed electrode for the redox-mediated determination of histamine. J. Anal. Sci. Technol. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Yazdanparast, S.; Benvidi, A.; Abbasi, S.; Rezaeinasab, M. Enzyme-based ultrasensitive electrochemical biosensor using poly(l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: A meat freshness marker. Microchem. J. 2019, 149. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yan, F.; Wu, Y.; Huang, D.; Weng, Z. A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chem. 2020, 310, 125922. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Karoui, R. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Crit. Rev. Food Sci. Nutr. 2017, 57, 1976–1998. [Google Scholar] [CrossRef]
- Haugen, J.E.; Chanie, E.; Westad, F.; Jonsdottir, R.; Bazzo, S.; Labreche, S.; Marcq, P.; Lundby, F.; Olafsdottir, G. Rapid control of smoked Atlantic salmon (Salmo salar) quality by electronic nose: Correlation with classical evaluation methods. Sens. Actuators B Chem. 2006, 116, 72–77. [Google Scholar] [CrossRef]
- El Barbri, N.; Mirhisse, J.; Ionescu, R.; El Bari, N.; Correig, X.; Bouchikhi, B.; Llobet, E. An electronic nose system based on a micro-machined gas sensor array to assess the freshness of sardines. Sens. Actuators B Chem. 2009, 141, 538–543. [Google Scholar] [CrossRef]
- Semeano, A.T.S.; Maffei, D.F.; Palma, S.; Li, R.W.C.; Franco, B.D.G.M.; Roque, A.C.A.; Gruber, J. Tilapia fish microbial spoilage monitored by a single optical gas sensor. Food Control 2018, 89, 72–76. [Google Scholar] [CrossRef]
- Grassi, S.; Benedetti, S.; Opizzio, M.; di Nardo, E.; Buratti, S. Meat and Fish Freshness Assessment by a Portable and Simplified Electronic Nose System (Mastersense). Sensors 2019, 19, 3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.-Y.; Cai, Q.; Zhang, Y.-M. Rapid Classification of Hairtail Fish and Pork Freshness Using an Electronic Nose Based on the PCA Method. Sensors 2012, 12, 260–277. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, W.; Yuwono, M.; Zhang, M.; Ueland, M.; Forbes, S.L.; Su, S.W. A data-driven meat freshness monitoring and evaluation method using rapid centroid estimation and hidden Markov models. Sens. Actuators B Chem. 2020, 311, 127868. [Google Scholar] [CrossRef]
- Gil, L.; Barat, J.; Escriche, I.; Garcia-Breijo, E.; Martınez-Manez, R.; Soto, J. An electronic tongue for fish freshness analysis using a thick-film array of electrodes. Microchim. Acta 2008, 163, 121–129. [Google Scholar] [CrossRef]
- Barat, J.M.; Gil, L.; García-Breijo, E.; Aristoy, M.C.; Toldrá, F.; Martínez-Máñez, R.; Soto, J. Freshness monitoring of sea bream (Sparus aurata) with a potentiometric sensor. Food Chem. 2008, 108, 681–688. [Google Scholar] [CrossRef]
- Ruiz-Rico, M.; Fuentes, A.; Masot, R.; Alcañiz, M.; Fernández-Segovia, I.; Barat, J.M. Use of the voltammetric tongue in fresh cod (Gadus morhua) quality assessment. Innov. Food Sci. Emerg. Technol. 2013, 18, 256–263. [Google Scholar] [CrossRef]
- Miao, H.; Liu, Q.; Bao, H.; Wang, X.; Miao, S. Effects of different freshness on the quality of cooked tuna steak. Innov. Food Sci. Emerg. Technol. 2017, 44, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Pattarapon, P.; Zhang, M.; Bhandari, B.; Gao, Z. Effect of vacuum storage on the freshness of grass carp (Ctenopharyngodon idella) fillet based on normal and electronic sensory measurement. J. Food Process. Preserv. 2018, 42, 13418. [Google Scholar] [CrossRef]
- Huang, X.; Xin, J.; Zhao, J. A novel technique for rapid evaluation of fish freshness using colorimetric sensor array. J. Food Eng. 2011, 105, 632–637. [Google Scholar] [CrossRef]
- Zaragozá, P.; Fuentes, A.; Fernández-Segovia, I.; Vivancos, J.; Rizo, A.; Ros-Lis, J.V.; Barat, J.M.; Martínez-Máñez, R. Evaluation of sea bream (Sparus aurata) shelf life using an optoelectronic nose. Food Chem. 2013, 138, 1374–1380. [Google Scholar]
- Morsy, M.K.; Zór, K.; Kostesha, N.; Alstrøm, T.S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H.; et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control 2016, 60, 346–352. [Google Scholar] [CrossRef]
- Domínguez-Aragón, A.; Olmedo-Martínez, J.A.; Zaragoza-Contreras, E.A. Colorimetric sensor based on a poly(ortho-phenylenediamine-co-aniline) copolymer for the monitoring of tilapia (Orechromis niloticus) freshness. Sens. Actuators B Chem. 2018, 259, 170–176. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, X.; Qin, Y.; Zhang, Y.; Wang, X.; Wang, J.; Ning, Z.; Ruan, Q.; Zhang, Y. Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Int. Food Res. J. 2019, 126, 108604. [Google Scholar] [CrossRef]
- Liu, X.; Chen, K.; Wang, J.; Wang, Y.; Tang, Y.; Gao, X.; Zhu, L.; Li, X.; Li, J. An on-package colorimetric sensing label based on a sol-gel matrix for fish freshness monitoring. Food Chem. 2020, 307, 125580. [Google Scholar] [CrossRef] [PubMed]
- Valdez, M.; Gupta, S.K.; Lozano, K.; Mao, Y. ForceSpun polydiacetylene nanofibers as colorimetric sensor for food spoilage detection. Sens. Actuators B Chem. 2019, 297, 126734. [Google Scholar] [CrossRef]
- Huang, S.; Xiong, Y.; Zou, Y.; Dong, Q.; Ding, F.; Liu, X.; Li, H. A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocoll. 2019, 90, 198–205. [Google Scholar] [CrossRef]
- Quevedo, R.; Aguilera, J.; Pedreschi, F. Color of Salmon Fillets by Computer Vision and Sensory Panel. Food Bioprocess Tech. 2010, 3, 637–643. [Google Scholar] [CrossRef]
- Dowlati, M.; Mohtasebi, S.S.; Omid, M.; Razavi, S.H.; Jamzad, M.; de la Guardia, M. Freshness assessment of gilthead sea bream (Sparus aurata) by machine vision based on gill and eye color changes. J. Food Eng. 2013, 119, 277–287. [Google Scholar] [CrossRef]
- Balaban, M.Ö.; Alçiçek, Z. Use of polarized light in image analysis: Application to the analysis of fish eye color during storage. LWT Food Sci. Technol. 2015, 60, 365–371. [Google Scholar] [CrossRef]
- Issac, A.; Dutta, M.K.; Sarkar, B. Computer vision based method for quality and freshness check for fish from segmented gills. Comput. Electron. Agric. 2017, 139, 10–21. [Google Scholar] [CrossRef]
- Shi, C.; Qian, J.; Han, S.; Fan, B.; Yang, X.; Wu, X. Developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia (Oreochromis niloticus) pupil and gill color during storage at 4 °C. Food Chem. 2018, 243, 134–140. [Google Scholar] [CrossRef]
- Rocculi, P.; Cevoli, C.; Tappi, S.; Genovese, J.; Urbinati, E.; Picone, G.; Fabbri, A.; Capozzi, F.; Dalla Rosa, M. Freshness assessment of European hake (Merluccius merluccius) through the evaluation of eye chromatic and morphological characteristics. Int. Food Res. J. 2019, 115, 234–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheri-Garavand, A.; Fatahi, S.; Banan, A.; Makino, Y. Real-time nondestructive monitoring of Common Carp Fish freshness using robust vision-based intelligent modeling approaches. Comput. Electron. Agric. 2019, 159, 16–27. [Google Scholar] [CrossRef]
- Damez, J.; Clerjon, S.; Abouelkaram, S.; Lepetit, J. Dielectric behavior of beef meat in the 1–1500 kHz range: Simulation with the Fricke/Cole–Cole model. Meat Sci. 2007, 77, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, A.; Piuzzi, E.; Cannazza, G.; De Benedetto, E. Dielectric spectroscopy of liquids through a combined approach: Evaluation of the metrological performance and feasibility study on vegetable oils. IEEE Sens. J. 2009, 9, 1226–1233. [Google Scholar] [CrossRef]
- Ragni, L.; Berardinelli, A.; Cevoli, C.; Filippi, M.; Iaccheri, E.; Romani, A. Assessment of food compositional parameters by means of a Waveguide Vector Spectrometer. J. Food Eng. 2017, 205, 25–33. [Google Scholar] [CrossRef]
- Ragni, L.; Berardinelli, A.; Cevoli, C.; Iaccheri, E.; Valli, E.; Zuffi, E.; Lazzarini, R.; Toschi, T.G. Multi-analytical approach for monitoring the freezing process of a milkshake based product. J. Food Eng. 2016, 168, 20–26. [Google Scholar] [CrossRef]
- Iaccheri, E.; Laghi, L.; Cevoli, C.; Berardinelli, A.; Ragni, L.; Romani, S.; Rocculi, O. Different analytical approaches for the study of water features in green and roasted coffee beans. J. Food Eng. 2015, 146, 28–35. [Google Scholar] [CrossRef]
- Kim, Y.R.; Morgan, M.T.; Okos, M.R.; Stroshine, R.L. Measurement and prediction of dielectric properties of biscuit dough at 27 MHz. J. Microw. Power Electromagn. Energy 1998, 33, 184–194. [Google Scholar] [CrossRef]
- Ryynänen, S. The electromagnetic properties of food materials: A review of the basic principles. J. Food Eng. 2005, 26, 409–429. [Google Scholar]
- Sosa-Morales, M.E.; Valerio-Junco, L.; López-Malo, A.; García, H.S. Dielectric properties of foods: Reported data in the 21st Century and their potential applications. LWT Food Sci. Technol. 2010, 43, 1169–1179. [Google Scholar] [CrossRef]
- Kent, M.; Knöchel, R.; Daschner, F.; Schimmer, O.; Oehlenschläger, J.; Mierke-Klemeyer, S.; Barr, U.K.; Floberg, P.; Tejada, M.; Huidobro, A.; et al. Time domain reflectometry as a tool for the estimation of quality in foods. Int. Agrophys. 2004, 18, 225–229. [Google Scholar]
- Wang, Y.; Tang, J.; Rasco, B.; Kong, F.; Wang, S. Dielectric properties of salmon fillets as a function of temperature and composition. J. Food Eng. 2008, 87, 236–246. [Google Scholar] [CrossRef]
- Vaz-Pires, P.; Seixas, P.; Mota, M.; Lapa-Guimarães, J.; Pickova, J.; Lindo, A.; Silva, T. Sensory, microbiological, physical and chemical properties of cuttlefish (Sepia officinalis) and broadtail shortfin squid (Illex coindetii) stored in ice. LWT Food Sci. Technol. 2008, 41, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Badiani, A.; Bonaldo, A.; Testi, S.; Rotolo, M.; Serratore, P.; Giulini, G.; Pagliuca, G.; Gatta, P. Good handling practices of the catch: The effect of early icing on the freshness quality of cuttlefish (Sepia officinalis L.). Food Control 2013, 32, 327–333. [Google Scholar] [CrossRef]
- Rutkayová, J.; Voříšková, J.; Beneš, K.; Kašparů, M.; Škrleta, J.; Klečacký, D. The Dielectric Properties Detection of Frozen-thawed Fish Meat by Using Freshness Meter. Chem. Listy 2019, 113, 515–517. [Google Scholar]
- Ciampa, A.; Picone, G.; Laghi, L.; Nikzad, H.; Capozzi, F. Changes in the Amino Acid Composition of Bogue (Boops boops) Fish during Storage at Different Temperatures by 1H-NMR Spectroscopy. Nutrients 2012, 4, 542–553. [Google Scholar] [CrossRef]
- Shumilina, E.; Ciampa, A.; Capozzi, F.; Rustad, T.; Dikiy, A. NMR approach for monitoring post-mortem changes in Atlantic salmon fillets stored at 0 and 4 °C. Food Chem. 2015, 184, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Shumilina, E.; Slizyte, R.; Mozuraityte, R.; Dykyy, A.; Stein, T.A.; Dikiy, A. Quality changes of salmon by-products during storage: Assessment and quantification by NMR. Food Chem. 2016, 211, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Heude, C.; Lemasson, E.; Elbayed, K.; Piotto, M. Rapid Assessment of Fish Freshness and Quality by 1H HR-MAS NMR Spectroscopy. Food Anal. Methods 2015, 8, 907–915. [Google Scholar] [CrossRef]
- Jin, Y.; Cai, H.; Lin, Y.; Cui, X.; Chen, Z. Usage of the ultrafast intermolecular single-quantum coherence (UF iSQC) sequence for NMR spectroscopy of ex vivo tissue. Int. Food Res. J. 2015, 77, 636–642. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Feng, J.; Li, Z.; Cai, S. Freshness assessment of intact fish via 2D 1H J-resolved NMR spectroscopy combined with pattern recognition methods. Sens. Actuators B Chem. 2018, 255, 348–356. [Google Scholar] [CrossRef]
- Carneiro, C.; Mársico, E.T.; Ribeiro, R.O.R.; Conte-Júnior, C.A.; Mano, S.B.; Augusto, C.J.C.; de Jesus, E.F.O. Low-Field Nuclear Magnetic Resonance (LF NMR 1H) to assess the mobility of water during storage of salted fish (Sardinella brasiliensis). J. Food Eng. 2016, 169, 321–325. [Google Scholar] [CrossRef]
- Sadecka, J.; Tothova, J. Fluorescence Spectroscopy and Chemometrics in the Food Classification—A Review. Czech J. Food Sci. 2007, 25, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Karoui, R.; Blecker, C. Fluorescence Spectroscopy Measurement for Quality Assessment of Food Systems—A Review. Food Bioprocess Technol. 2011, 4, 364–386. [Google Scholar] [CrossRef]
- Liu, X.; Jing, J.; Li, S.; Zhang, G.; Zou, T.; Xia, X.; Huang, W. Measurement of pyrene in the gills of exposed fish using synchronous fluorescence spectroscopy. Chemosphere 2012, 86, 198–201. [Google Scholar] [CrossRef]
- Eaton, J.K.; Alcivar-Warren, A.M.; Kenny, J.E. Multidimensional fluorescence fingerprinting for classification of shrimp by location and species. Environ. Sci. Technol. 2012, 46, 2276–2282. [Google Scholar] [CrossRef] [PubMed]
- ElMasry, G.; Nagai, H.; Moria, K.; Nakazawa, N.; Tsuta, M.; Sugiyama, J.; Okazaki, E.; Nakauchi, S. Freshness estimation of intact frozen fish using fluorescence spectroscopy and chemometrics of excitation–emission matrix. Talanta 2015, 143, 145–156. [Google Scholar] [CrossRef]
- ElMasry, G.; Nakazawa, N.; Okazaki, E.; Nakauchi, S. Non-invasive sensing of freshness indices of frozen fish and fillets using pretreated excitation–emission matrices. Sens. Actuators B Chem. 2016, 228, 237–250. [Google Scholar] [CrossRef]
- Shibata, M.; ElMasry, G.; Moriya, K.; Rahman, M.M.; Miyamoto, Y.; Ito, K.; Nakazawa, N.; Nakauchi, S.; Okazaki, E. Smart technique for accurate monitoring of ATP content in frozen fish fillets using fluorescence fingerprint. LWT 2018, 92, 258–264. [Google Scholar] [CrossRef]
- Karoui, R.; Hassoun, A.; Ethuin, P. Front face fluorescence spectroscopy enables rapid differentiation of fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets. J. Food Eng. 2017, 202, 89–98. [Google Scholar] [CrossRef]
- Omwange, K.A.; Al Riza, D.F.; Sen, N.M.; Shiigi, T.; Kuramoto, M.; Ogawa, Y.; Kondo, N.; Suzuki, T. Fish freshness monitoring using UV-fluorescence imaging on Japanese dace (Tribolodon hakonensis) fisheye. J. Food Eng. 2020, 287, 110111. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Feng, Y.-Z.; Sun, D.-W. Recent Progress of Hyperspectral Imaging on Quality and Safety Inspection of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. F 2015, 14, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Tito, N.B.; Rodemann, T.; Powell, S.M. Use of near infrared spectroscopy to predict microbial numbers on Atlantic salmon. Food Microbiol. 2012, 32, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.M.; Martínez, E.; Saitua, E.; Rodríguez, R.; Pérez, I.; Olabarrieta, I. Non-invasive differentiation between fresh and frozen/thawed tuna fillets using near infrared spectroscopy (Vis-NIRS). LWT 2017, 78, 129–137. [Google Scholar] [CrossRef]
- Wu, T.; Zhong, N.; Yang, L. Application of VIS/NIR Spectroscopy and SDAE-NN Algorithm for Predicting the Cold Storage Time of Salmon. J. Spectrosc. 2018, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Agyekum, A.A.; Kutsanedzie, F.Y.H.; Mintah, B.K.; Annavaram, V.; Zareef, M.; Hassan, M.M.; Arslan, M.; Chen, Q. Rapid and Nondestructive Quantification of Trimethylamine by FT-NIR Coupled with Chemometric Techniques. Food Anal. Methods 2019, 12, 2035–2044. [Google Scholar] [CrossRef]
- Alamprese, C.; Casiraghi, E. Application of FT-NIR and FT-IR spectroscopy to fish fillet authentication. LWT 2015, 63, 720–725. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, X.; Chen, Z.; You, J.; Xiong, S. Evaluation of freshness in freshwater fish based on near infrared reflectance spectroscopy and chemometrics. LWT 2019, 106, 145–150. [Google Scholar] [CrossRef]
- Hernández-Martínez, M.; Gallardo-Velázquez, T.; Osorio-Revilla, G.; Almaraz-Abarca, N.; Ponce-Mendoza, A.; Vásquez-Murrieta, M.S. Prediction of total fat, fatty acid composition and nutritional parameters in fish fillets using MID-FTIR spectroscopy and chemometrics. LWT 2013, 52, 12–20. [Google Scholar] [CrossRef]
- Fengou, L.; Lianou, A.; Tsakanikas, P.; Gkana, E.N.; Panagou, E.Z.; Nychas, G.E. Evaluation of Fourier transform infrared spectroscopy and multispectral imaging as means of estimating the microbiological spoilage of farmed sea bream. Food Microbiol. 2019, 79, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, C.; Vasconcelos, H.; de Almeida, J.M.M.M. A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored under modified atmospheres. Int. J. Food Microbiol. 2017, 241, 331–339. [Google Scholar] [CrossRef]
- Jia, B.; Wang, W.; Ni, X.; Lawrence, K.C.; Zhuang, H.; Yoon, S.; Gao, Z. Essential processing methods of hyperspectral images of agricultural and food products. Chemom. Intell. Lab. Syst. 2020, 198, 103936. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, D. Hyperspectral imaging as an effective tool for quality analysis and control of fish and other seafoods: Current research and potential applications. Trends Food Sci. Technol. 2014, 37, 78–91. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D. Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends Food Sci. Technol. 2017, 69, 25–35. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, D.; Pu, H.; Zhu, Z. Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chem. 2015, 185, 245–253. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, D.; Qu, J.; Pu, H.; Zhang, X.; Song, Z.; Chen, X.; Zhang, H. Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. J. Food Eng. 2016, 182, 9–17. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, D.W.; Wei, Q. Enhancing Visible and Near-Infrared Hyperspectral Imaging Prediction of TVB-N Level for Fish Fillet Freshness Evaluation by Filtering Optimal Variables. Food Anal. Methods 2017, 10, 1888–1898. [Google Scholar] [CrossRef]
- Ivorra, E.; Sánchez, A.J.; Verdú, S.; Barat, J.M.; Grau, R. Shelf life prediction of expired vacuum-packed chilled smoked salmon based on a KNN tissue segmentation method using hyperspectral images. J. Food Eng. 2016, 178, 110–116. [Google Scholar] [CrossRef]
- Khoshnoudi-Nia, S.; Moosavi-Nasab, M. Prediction of various freshness indicators in fish fillets by one multispectral imaging system. Sci. Rep. 2019, 9, 14704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Riccioli, C.; Sun, D. Development of an alternative technique for rapid and accurate determination of fish caloric density based on hyperspectral imaging. J. Food Eng. 2016, 190, 185–194. [Google Scholar] [CrossRef]
- Qu, J.; Sun, D.; Cheng, J.; Pu, H. Mapping moisture contents in grass carp (Ctenopharyngodon idella) slices under different freeze drying periods by Vis-NIR hyperspectral imaging. LWT 2017, 75, 529–536. [Google Scholar] [CrossRef]
- Qin, J.; Vasefi, F.; Hellberg, R.S.; Akhbardeh, A.; Isaacs, R.B.; Yilmaz, A.G.; Hwang, C.; Baek, I.; Schmidt, W.F.; Kim, M.S. Detection of fish fillet substitution and mislabeling using multimode hyperspectral imaging techniques. Food Control 2020, 114, 107234. [Google Scholar] [CrossRef]
- Afseth, N.A.; Wold, J.P.; Segtnan, V.H. The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Anal. Chim. Acta 2006, 572, 85–92. [Google Scholar] [CrossRef]
- Sánchez-Alonso, I.; Carmona, P.; Careche, M. Vibrational spectroscopic analysis of hake (Merluccius merluccius L.) lipids during frozen storage. Food Chem. 2012, 132, 160–167. [Google Scholar]
- Janči, T.; Valinger, D.; Kljusurić, J.G.; Mikac, L.; Vidaček, S.; Ivanda, M. Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates. Food Chem. 2017, 224, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wang, Y.; Chen, Y.; Xu, X.; Jin, Z.; Ding, Y.; Yang, N.; Wu, F. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish. Food Chem. 2017, 230, 547–552. [Google Scholar] [CrossRef]
- Deng, D.; Lin, Q.; Li, H.; Huang, Z.; Kuang, Y.; Chen, H.; Kong, J. Rapid detection of malachite green residues in fish using a surface-enhanced Raman scattering-active glass fiber paper prepared by in situ reduction method. Talanta 2019, 200, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Velioğlu, H.M.; Temiz, H.T.; Boyaci, I.H. Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis. Food Chem. 2015, 172, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Liu, Z.; Huang, M.; Zhu, Q.; Qin, J.; Kim, M.S. Detection of fish bones in fillets by Raman hyperspectral imaging technology. J. Food Eng. 2020, 272, 109808. [Google Scholar] [CrossRef]
System | Measured Substance | Species | Application | LOD | Detection Range | Reference |
---|---|---|---|---|---|---|
Amperometric enzymatic biosensor | Xa | Crucian carp | Contact with sample solution | 20 nm | 0.03–21.19 µM | [21] |
Ammonium ion-selective electrode | Volatile ammines | Cod | Package atmosphere | 0.01 ppm | 1–250 ppm | [24] |
Amperometric enzymatic biosensor | Xa | Channa striatus | Contact with sample solution | 2.5 pM | 0.4–2.4 nM | [30] |
Acqueous phase electrode | Conductivity/pH | Cod | Package atmosphere | ----- | ----- | [25] |
Amperometric enzymatic biosensor | Xa | Labeo fish | Contact with sample solution | 0.5 µM | 0.5–500 µM | [31] |
Amperometric enzymatic biosensor | Xa | Hake | Contact with sample solution | 13 nM | 0.05–12 µM | [32] |
Amperometric enzymatic biosensor | Hystamine | Carp, Prussian carp, Tench, Wels catfish, European perch | Contact with sample solution | 25.4 nM | 0.1–300 µM | [22] |
Organic gas sensor | Volatile ammines | Tilapia, Beltfish, Mackerel | Air pushed in the sensor chamber | 0.1 ppm | 0.1–1 ppm | [26] |
Graphite electrode | HxA Xa UA | Barracuda, Lady fish, Mackerel, Blue cat fish, Channel cat fish | Contact with sample solution | ---- | 6–30 µM 8–36 µM 3–21 µM | [27] |
Pyrolitic graphite electrode | HxA Xa UA | Tuna, Hake, Myleus paku, Silverside | Contact with sample solution | 0.08 µM 0.06 µM 0.03 µM | 0.1–50 µM 0.1–50 µM 0.1–25 µM | [33] |
Carbon electrode | Histamine | Spiked tuna, Mackerel | Contact with sample solution | 0.97 mgL−1 | ---- | [34] |
Copper phosphate electrode | Histamine | ---- | Contact with sample solution | 3.0 ppm | 5–500 ppm | [28] |
Cu-BTC framework | HxA Xa | ---- | Contact with sample solution | ---- | 0–10 µM 0–8 µM | [29] |
Glassy carbon electrode | Xa | Salmon | Contact with sample solution | 0.35 nM | 0.001–50 µM | [35] |
Fluorescent biosensor | HxA | Fish, Shrimp, Squid | Contact with sample solution | 2.88 µM | 8–2500 µM | [36] |
System | Studied Parameter | Species | Place of Application | Reference |
---|---|---|---|---|
Open-ended coaxial probe | Storage time | Baltic cod, Atlantic hake, Pacific hake, Atlantic salmon | Contact with sample | [72] |
Impedance analyzer | Dielectric properties and penetration depth | Salmon | Cylindrical samples placed in a test cell | [73] |
Fish freshness meter | Fish freshness | Cuttlefish, Shortfin squid | Contact with sample | [74] |
Fish freshness meter | Storage time, icing treatments | Cuttlefish | Contact with sample | [75] |
Fish freshness meter | Dielectric property changes for different icing treatments | Common carp | Contact with sample | [76] |
Spectroscopic Technique | Measured Parameters | Species | Reference |
---|---|---|---|
1H-NMR | Amino acid, organic acid, alcohols | Bogue fish | [77] |
1H-NMR | K-value | Salmon | [78] |
1H-NMR | Maximum storage time | Salmon | [79] |
HR-MAS | K-value TMA-N | Sea bream, Sea bass trout, Red mullet | [80] |
UF–iSQC | Amino acids Fatty acids | Salmon, Shishamo zebra fish | [81] |
1H 2D J-resolved NMR | Metabolites content | Zebra fish | [82] |
LF-NMR | Water mobility | Salted sardines | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franceschelli, L.; Berardinelli, A.; Dabbou, S.; Ragni, L.; Tartagni, M. Sensing Technology for Fish Freshness and Safety: A Review. Sensors 2021, 21, 1373. https://doi.org/10.3390/s21041373
Franceschelli L, Berardinelli A, Dabbou S, Ragni L, Tartagni M. Sensing Technology for Fish Freshness and Safety: A Review. Sensors. 2021; 21(4):1373. https://doi.org/10.3390/s21041373
Chicago/Turabian StyleFranceschelli, Leonardo, Annachiara Berardinelli, Sihem Dabbou, Luigi Ragni, and Marco Tartagni. 2021. "Sensing Technology for Fish Freshness and Safety: A Review" Sensors 21, no. 4: 1373. https://doi.org/10.3390/s21041373
APA StyleFranceschelli, L., Berardinelli, A., Dabbou, S., Ragni, L., & Tartagni, M. (2021). Sensing Technology for Fish Freshness and Safety: A Review. Sensors, 21(4), 1373. https://doi.org/10.3390/s21041373