Near-Field Communication in Biomedical Applications
<p>Wireless power transfer circuitry between the reader antenna and tag antenna including reader integrated circuit (IC), matching network, and near field communication (NFC) IC [<a href="#B44-sensors-21-00703" class="html-bibr">44</a>].</p> "> Figure 2
<p>Examples of NFC applications for temperature and pressure sensing. (<b>a</b>) Construction of a multifunctional epidermal NFC sensor. FS, filamentary serpentine; EP, electrophysiological; RTD, resistance temperature detector [<a href="#B45-sensors-21-00703" class="html-bibr">45</a>]. (<b>b</b>) Temperature sensing results [<a href="#B45-sensors-21-00703" class="html-bibr">45</a>]. (<b>c</b>) Photographs of a NFC temperature sensor on a neck [<a href="#B46-sensors-21-00703" class="html-bibr">46</a>]. (<b>d</b>) The result of converting the voltage measured wirelessly to temperature through calibration of the infrared (IR) camera [<a href="#B46-sensors-21-00703" class="html-bibr">46</a>].</p> "> Figure 3
<p>Examples of NFC applications for temperature and pressure sensing. (<b>a</b>) Temperature and pressure sensor integrated with an NFC chip [<a href="#B47-sensors-21-00703" class="html-bibr">47</a>]. (<b>b</b>) Photograph of an NFC sensor pressed with the fingertip [<a href="#B47-sensors-21-00703" class="html-bibr">47</a>]. (<b>c</b>) Pressure measured by a device on the left forearm [<a href="#B47-sensors-21-00703" class="html-bibr">47</a>]. (<b>d</b>–<b>g</b>) Photographs of NFC-enabled clothing [<a href="#B48-sensors-21-00703" class="html-bibr">48</a>].</p> "> Figure 4
<p>Examples of NFC applications for electrophysiology sensing. (<b>a</b>) Construction of a soft flexible cardiac sensor [<a href="#B49-sensors-21-00703" class="html-bibr">49</a>]. (<b>b</b>) The device twisted and bent [<a href="#B49-sensors-21-00703" class="html-bibr">49</a>]. (<b>c</b>) Results of comparing the heart rate measured by the sensor with commercial products [<a href="#B49-sensors-21-00703" class="html-bibr">49</a>].</p> "> Figure 5
<p>Examples of NFC applications for electrophysiology sensing. (<b>a</b>–<b>d</b>) Schematics and architecture of an NFC sensor system [<a href="#B50-sensors-21-00703" class="html-bibr">50</a>].</p> "> Figure 6
<p>Examples of NFC applications for blood flow sensing. (<b>a</b>) Construction of an NFC-enabled pulse oximeter device. PD, photodetector [<a href="#B51-sensors-21-00703" class="html-bibr">51</a>]. (<b>b</b>) Photograph of an NFC device on a fingernail [<a href="#B51-sensors-21-00703" class="html-bibr">51</a>]. (<b>c</b>) Results of SpO<sub>2</sub> during a breath-hold test [<a href="#B51-sensors-21-00703" class="html-bibr">51</a>]. (<b>d</b>) Top view of an NFC heart rate sensor [<a href="#B52-sensors-21-00703" class="html-bibr">52</a>]. (<b>e</b>) Photograph of an NFC device on skin [<a href="#B52-sensors-21-00703" class="html-bibr">52</a>]. (<b>f</b>) Biosignal data measured by the device [<a href="#B52-sensors-21-00703" class="html-bibr">52</a>]. (<b>g</b>–<b>i</b>) Construction of an NFC heart valve monitoring device [<a href="#B53-sensors-21-00703" class="html-bibr">53</a>].</p> "> Figure 7
<p>Examples of NFC applications for sweat sensing. (<b>a</b>) Construction of an NFC sweat monitoring device [<a href="#B54-sensors-21-00703" class="html-bibr">54</a>]. (<b>b</b>) Photograph of the sweat monitoring device [<a href="#B54-sensors-21-00703" class="html-bibr">54</a>]. (<b>c</b>) Construction of a integrated NFC sweat sensor [<a href="#B55-sensors-21-00703" class="html-bibr">55</a>]. (<b>d</b>,<b>e</b>) Photograph of the device attached to the forearm during sweating [<a href="#B55-sensors-21-00703" class="html-bibr">55</a>]. (<b>f</b>) Results of reading distance between the device and reader antenna [<a href="#B55-sensors-21-00703" class="html-bibr">55</a>].</p> "> Figure 8
<p>Examples of NFC applications for sweat sensing. (<b>a</b>) Block diagram of an electrochemical patch. MCU, microcontroller; EEPROM, electrically erasable programmable read-only memory [<a href="#B56-sensors-21-00703" class="html-bibr">56</a>]. (<b>b</b>) Photograph of the patch on the arm [<a href="#B56-sensors-21-00703" class="html-bibr">56</a>]. (<b>c</b>) Construction of a sweat sensor [<a href="#B57-sensors-21-00703" class="html-bibr">57</a>]. (<b>d</b>) Photograph of the device on the arm [<a href="#B57-sensors-21-00703" class="html-bibr">57</a>].</p> "> Figure 9
<p>NFC application in hospitals. (<b>a</b>) Photograph of a blue light dosimeter/photometer for hospital application. SoC, system on chip; SC, supercapacitor [<a href="#B36-sensors-21-00703" class="html-bibr">36</a>]. (<b>b</b>) Photograph of the NFC device on the chest of a jaundiced infant [<a href="#B36-sensors-21-00703" class="html-bibr">36</a>]. (<b>c</b>) Results from the NFC device on the chest of a jaundiced infant [<a href="#B36-sensors-21-00703" class="html-bibr">36</a>].</p> "> Figure 10
<p>NFC application in hospitals. (<b>a</b>) Construction of an NFC electrocardiogram (ECG) sensor. EES, epidermal electronic system; PPGs, photoplethysmograms [<a href="#B37-sensors-21-00703" class="html-bibr">37</a>]. (<b>b</b>) Photograph of the ECG sensor on the chest and foot of an infant [<a href="#B37-sensors-21-00703" class="html-bibr">37</a>]. (<b>c</b>) Biosignal results compared to gold-standard monitoring equipment [<a href="#B37-sensors-21-00703" class="html-bibr">37</a>].</p> ">
Abstract
:1. Introduction
2. Near-Field Communication
2.1. History of NFC
2.2. NFC Circuit and Design
3. Biomedical Applications
3.1. Temperature and Pressure Sensors
3.2. Electrophysiology Sensors
3.3. Blood Flow Sensors
3.4. Sweat Sensors
3.5. Hospital Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ceipidor, U.B.; Medaglia, C.; Volpi, V.; Moroni, A.; Sposato, S.; Carboni, M.; Caridi, A. NFC technology applied to touristic-cultural field: A case study on an Italian museum. In Proceedings of the 2013 5th International Workshop on Near Field Communication (NFC), Zurich, Switzerland, 5 February 2013; pp. 1–6. [Google Scholar]
- Sallinen, M.; Strömmer, E.; Ylisaukko-oja, A. Application scenario for NFC: Mobile tool for industrial worker. In Proceedings of the 2008 Second International Conference on Sensor Technologies and Applications (Sensorcomm 2008), Cap Esterel, France, 25–31 August 2008; pp. 586–591. [Google Scholar]
- Ramanathan, R.; Imtiaz, J. NFC in industrial applications for monitoring plant information. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–4. [Google Scholar]
- Zhang, H.; Li, J. NFC in medical applications with wireless sensors. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 718–721. [Google Scholar]
- Morak, J.; Kumpusch, H.; Hayn, D.; Modre-Osprian, R.; Schreier, G. Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices. IEEE Trans. Inf. Technol. Biomed. 2011, 16, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Jara, A.J.; Zamora, M.A.; Skarmeta, A.F. Secure use of NFC in medical environments. In Proceedings of the 5th European Workshop on RFID Systems and Technologies, Bremen, Germany, 16–17 June 2009; pp. 1–8. [Google Scholar]
- Sethia, D.; Gupta, D.; Mittal, T.; Arora, U.; Saran, H. NFC based secure mobile healthcare system. In Proceedings of the 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 6–10 January 2014; pp. 1–6. [Google Scholar]
- Kwak, J.W.; Han, M.; Xie, Z.; Chung, H.U.; Lee, J.Y.; Avila, R.; Yohay, J.; Chen, X.; Liang, C.; Patel, M. Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Sci. Transl. Med. 2020, 12, eabc4327. [Google Scholar] [CrossRef]
- Madhvapathy, S.R.; Wang, H.; Kong, J.; Zhang, M.; Lee, J.Y.; Park, J.B.; Jang, H.; Xie, Z.; Cao, J.; Avila, R. Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Sci. Adv. 2020, 6, eabd7146. [Google Scholar] [CrossRef] [PubMed]
- Gutruf, P.; Yin, R.T.; Lee, K.B.; Ausra, J.; Brennan, J.A.; Qiao, Y.; Xie, Z.; Peralta, R.; Talarico, O.; Murillo, A. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Castro, D.C.; Han, Y.; Wu, Y.; Guo, H.; Weng, Z.; Xue, Y.; Ausra, J.; Wang, X.; Li, R. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 21427–21437. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.; Obaid, S.N.; Vázquez-Guardado, A.; Schmit, M.B.; Stuart, T.; Cai, L.; Chen, Z.; Kandela, I.; Haney, C.R.; Waters, E.A. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 2835–2845. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.U.; Rwei, A.Y.; Hourlier-Fargette, A.; Xu, S.; Lee, K.; Dunne, E.C.; Xie, Z.; Liu, C.; Carlini, A.; Kim, D.H. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 2020, 26, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Shobha, N.S.S.; Aruna, K.S.P.; Bhagyashree, M.D.P.; Sarita, K.S.J. NFC and NFC payments: A review. In Proceedings of the 2016 International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 18–19 November 2016; pp. 1–7. [Google Scholar]
- Putra, E.P.; Juwitasary, H. Trend of NFC Technology for payment transaction. Telkomnika 2018, 16, 795–802. [Google Scholar] [CrossRef]
- Pourghomi, P.; Ghinea, G. A proposed NFC payment application. arXiv 2013, arXiv:1312.2828. [Google Scholar] [CrossRef] [Green Version]
- Timalsina, S.K.; Bhusal, R.; Moh, S. NFC and its application to mobile payment: Overview and comparison. In Proceedings of the 2012 8th International Conference on Information Science and Digital Content Technology (ICIDT2012), Seogwipo-si, Korea, 26–28 June 2012; pp. 203–206. [Google Scholar]
- Monteiro, D.M.; Rodrigues, J.J.; Lloret, J. A secure NFC application for credit transfer among mobile phones. In Proceedings of the 2012 International Conference on Computer, Information and Telecommunication Systems (CITS), Amman, Jordan, 14–16 May 2012; pp. 1–5. [Google Scholar]
- Lazaro, A.; Villarino, R.; Girbau, D. A survey of NFC sensors based on energy harvesting for IoT applications. Sensors 2018, 18, 3746. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Pan, K.; Leng, T.; Hu, Z. Smart textile integrated wireless powered near field communication (NFC) body temperature and sweat sensing system. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 4, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Xu, L.; Pan, K.; Leng, T.; Li, Y.; Danoon, L.; Hu, Z. e-Textile embroidered wearable near-field communication RFID antennas. IET Microw. Antennas Propag. 2018, 13, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Lazaro, A.; Boada, M.; Villarino, R.; Girbau, D. Color measurement and analysis of fruit with a battery-less NFC sensor. Sensors 2019, 19, 1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boada, M.; Lázaro, A.; Villarino, R.; Girbau, D. NFC battery-less colour sensor and its applications. In Proceedings of the 2020 Global Congress on Electrical Engineering (GC-ElecEng), Valencia, Spain, 4–6 September 2020; pp. 46–50. [Google Scholar]
- Borgia, E. The Internet of Things vision: Key features, applications and open issues. Comput. Commun. 2014, 54, 1–31. [Google Scholar] [CrossRef]
- Kassal, P.; Steinberg, M.D.; Steinberg, I.M. Wireless chemical sensors and biosensors: A review. Sens. Actuators B Chem. 2018, 266, 228–245. [Google Scholar] [CrossRef]
- Saghlatoon, H.; Boroujeni, R.M.; Honari, M.M.; Mousavi, P. Low-cost inkjet printed passive booster for increasing the magnetic coupling in proximity of metal object for NFC systems. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 996–998. [Google Scholar] [CrossRef]
- Lee, B.; Kim, B.; Harackiewicz, F.J.; Mun, B.; Lee, H. NFC antenna design for low-permeability ferromagnetic material. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 59–62. [Google Scholar]
- Dementyev, A.; Hodges, S.; Taylor, S.; Smith, J. Power consumption analysis of bluetooth low energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario. In Proceedings of the 2013 IEEE International Wireless Symposium (IWS), Beijing, China, 14–18 April 2013; pp. 1–4. [Google Scholar]
- Shahzad, K.; Oelmann, B. A comparative study of in-sensor processing vs. raw data transmission using ZigBee, BLE and Wi-Fi for data intensive monitoring applications. In Proceedings of the 2014 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona, Spain, 26–29 August 2014; pp. 519–524. [Google Scholar]
- Moraru, A.; Ursachi, C.; Helerea, E. A new washable UHF RFID tag: Design, fabrication, and assessment. Sensors 2020, 20, 3451. [Google Scholar] [CrossRef]
- Miao, Z.; Liu, D.; Gong, C. An adaptive impedance matching network with closed loop control algorithm for inductive wireless power transfer. Sensors 2017, 17, 1759. [Google Scholar] [CrossRef] [Green Version]
- NFC Forum. Available online: http://www.nfc-forum.org (accessed on 17 October 2019).
- Chen, C.-J.; Chen, L.-Y. Mobile Device and NFC Service Protection Method of the Mobile Device. U.S. Patent 8,903,359, 2 December 2014. [Google Scholar]
- Strommer, E.; Kaartinen, J.; Parkka, J.; Ylisaukko-oja, A.; Korhonen, I. Application of near field communication for health monitoring in daily life. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 3246–3249. [Google Scholar]
- Patil, V.; Varma, N.; Vinchurkar, S.; Patil, B. NFC based health monitoring and controlling system. In Proceedings of the 2014 IEEE Global Conference on Wireless Computing & Networking (GCWCN), Lonavala, India, 22–24 December 2014; pp. 133–137. [Google Scholar]
- Heo, S.Y.; Kim, J.; Gutruf, P.; Banks, A.; Wei, P.; Pielak, R.; Balooch, G.; Shi, Y.; Araki, H.; Rollo, D. Wireless, battery-free, flexible, miniaturized dosimeters monitor exposure to solar radiation and to light for phototherapy. Sci. Transl. Med. 2018, 10, eaau1643. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.U.; Kim, B.H.; Lee, J.Y.; Lee, J.; Xie, Z.; Ibler, E.M.; Lee, K.; Banks, A.; Jeong, J.Y.; Kim, J.; et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alabdulhafith, M.; Sampangi, R.V.; Sampalli, S. NFC-enabled smartphone application for drug interaction and drug allergy detection. In Proceedings of the 2013 5th International Workshop on Near Field Communication (NFC), Zurich, Switzerland, 5 February 2013; pp. 1–6. [Google Scholar]
- Puma, J.P.; Huerta, M.; Alvizu, R.; Clotet, R. Mobile identification: Nfc in the healthcare sector. In Proceedings of the 2012 VI Andean Region International Conference, Cuenca, Ecuador, 7–9 November 2012; pp. 39–42. [Google Scholar]
- AlZuhair, M.S.; Najjar, A.B.; Kanjo, E. NFC based applications for visually impaired people—A review. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Chengdu, China, 14–18 July 2014; pp. 1–6. [Google Scholar]
- Du, H. NFC technology: Today and tomorrow. Int. J. Future Comput. Commun. 2013, 2, 351. [Google Scholar] [CrossRef]
- Paredes, F.; Cairó, I.; Zuffanelli, S.; Zamora, G.; Bonache, J.; Martin, F. Compact design of UHF RFID and NFC antennas for mobile phones. IET Microw. Antennas Propag. 2017, 11, 1016–1019. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Ha, T.; Kuang, I.; Shen, L.; Dai, Z.; Sun, N.; Lu, N. NFC-enabled, tattoo-like stretchable biosensor manufactured by “cut-and-paste” method. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Jeju Island, Korea, 11–15 July 2017; pp. 4094–4097. [Google Scholar]
- Lazaro, A.; Boada, M.; Villarino, R.; Girbau, D. NFC Sensors based on energy harvesting for IoT applications. In Recent Wireless Power Transfer Technologies; IntechOpen: London, UK, 2 October 2019. [Google Scholar]
- Yang, S.; Chen, Y.C.; Nicolini, L.; Pasupathy, P.; Sacks, J.; Su, B.; Yang, R.; Sanchez, D.; Chang, Y.F.; Wang, P. “Cut-and-paste” manufacture of multiparametric epidermal sensor systems. Adv. Mater. 2015, 27, 6423–6430. [Google Scholar] [CrossRef]
- Krishnan, S.R.; Su, C.J.; Xie, Z.; Patel, M.; Madhvapathy, S.R.; Xu, Y.; Freudman, J.; Ng, B.; Heo, S.Y.; Wang, H.; et al. Wireless, battery-free epidermal electronics for continuous, quantitative, multimodal thermal characterization of skin. Small 2018, 14, e1803192. [Google Scholar] [CrossRef]
- Han, S.; Kim, J.; Won, S.M.; Ma, Y.; Kang, D.; Xie, Z.; Lee, K.-T.; Chung, H.U.; Banks, A.; Min, S. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 2018, 10, eaan4950. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Kim, H.J.; Achavananthadith, S.; Kurt, S.A.; Tan, S.C.C.; Yao, H.; Tee, B.C.K.; Lee, J.K.W.; Ho, J.S. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 2020, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.P.; Ha, G.; Wright, D.E.; Ma, Y.; Sen-Gupta, E.; Haubrich, N.R.; Branche, P.C.; Li, W.; Huppert, G.L.; Johnson, M.; et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit Med. 2018, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Zulqarnain, M.; Stanzione, S.; Rathinavel, G.; Smout, S.; Willegems, M.; Myny, K.; Cantatore, E. A flexible ECG patch compatible with NFC RF communication. NPJ Flex. Electron. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Kim, J.; Gutruf, P.; Chiarelli, A.M.; Heo, S.Y.; Cho, K.; Xie, Z.; Banks, A.; Han, S.; Jang, K.I.; Lee, J.W.; et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Salvatore, G.A.; Araki, H.; Chiarelli, A.M.; Xie, Z.; Banks, A.; Sheng, X.; Liu, Y.; Lee, J.W.; Jang, K.-I. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2016, 2, e1600418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vennemann, B.; Obrist, D.; Rösgen, T. A smartphone-enabled wireless and batteryless implantable blood flow sensor for remote monitoring of prosthetic heart valve function. PLoS ONE 2020, 15, e0227372. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Cheng, C.; Yuan, W.; Liu, Z.; Zhu, L.; Li, X.; Lu, Y.; Chen, Z.; Liu, J.; Cui, Z.; et al. Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sens. Actuators B Chem. 2019, 297, 126743. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, C.; Liu, Z.; Yuan, W.; Wu, X.; Lu, Y.; Low, S.S.; Liu, J.; Zhu, L.; Ji, D.; et al. Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis. Adv. Mater. Technol. 2019, 4, 1800658. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-G.; Song, M.-S.; Kim, J.-W.; Lee, J.W.; Kim, J. Near-Field Communication in Biomedical Applications. Sensors 2021, 21, 703. https://doi.org/10.3390/s21030703
Kang S-G, Song M-S, Kim J-W, Lee JW, Kim J. Near-Field Communication in Biomedical Applications. Sensors. 2021; 21(3):703. https://doi.org/10.3390/s21030703
Chicago/Turabian StyleKang, Sung-Gu, Min-Su Song, Joon-Woo Kim, Jung Woo Lee, and Jeonghyun Kim. 2021. "Near-Field Communication in Biomedical Applications" Sensors 21, no. 3: 703. https://doi.org/10.3390/s21030703