Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
<p>Architecture of basic generative adversarial networks (GANs).</p> "> Figure 2
<p>Architecture of conditional GANs.</p> "> Figure 3
<p>Architecture of proposed model.</p> "> Figure 4
<p>Architecture of (<b>a</b>) generator and (<b>b</b>) discriminator.</p> "> Figure 5
<p>(<b>a</b>) Architecture of pre-trained classifier, (<b>b</b>) the schematic diagram of pre-trained classifier employed in GAN training.</p> "> Figure 6
<p>Schematic diagram of seismic signal cropping with 2048 window size.</p> "> Figure 7
<p>Samples of synthetic seismic waveforms generated by our model.</p> "> Figure 8
<p>(<b>a</b>) Shows the sample’s input to the generator, (<b>b</b>) shows samples generated by models without the pre-trained feature extractor, and (<b>c</b>) shows the samples generated by our model.</p> "> Figure 9
<p>Comparisons of the picked arrival times distribution in the testing dataset. The blue and green histograms indicate the distributions of P- and S- wave arrival times in the synthetic seismic data generated by the architecture with or without feature extractor, respectively. The red histogram indicates those distributions in real data. (<b>a</b>) P-wave and (<b>b</b>) S-wave.</p> "> Figure 10
<p>Mean of spectrogram obtained by: (<b>a</b>) real dataset, (<b>b</b>) synthetic dataset (w/o feature extractor) and (<b>c</b>) synthetic dataset (with feature extractor).</p> "> Figure 11
<p>The spectrum comparison between the real dataset and synthetic dataset.</p> ">
Abstract
:1. Introduction
2. Background
2.1. GANs
2.2. Conditional GANs
3. Seismic Signal Synthesis with Conditional GANs
3.1. Network Architecture
3.1.1. Generator
3.1.2. Discriminator
3.1.3. Pre-Trained Feature Extractor
3.2. Loss Function
4. Experiment and Analysis of Results
4.1. Training Details and Data Preprocessing
4.2. Results and Discussion
4.2.1. Analysis Results by Visual Comparison
4.2.2. Time-Frequency Domain Analysis
4.2.3. Analysis Results by Classification
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shearer, P. Earthquakes and source theory. In Introduction to seismology; Cambridge University Press: Cambridge, UK, 2009; pp. 241–300. [Google Scholar]
- Harris, D.; Dodge, D. An autonomous system for grouping events in a developing aftershock sequence. Bull. Seismol. Soc. Am. 2011, 101, 763–774. [Google Scholar] [CrossRef]
- Barrett, S.A.; Beroza, G.C. An empirical approach to subspace detection. Seismol. Res. Lett. 2014, 85, 594–600. [Google Scholar] [CrossRef]
- Yoon, C.E.; O’Reilly, O.; Bergen, K.J.; Beroza, G.C. Earthquake detection through computationally efficient similarity search. Sci. Adv. 2015, 1, e1501057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM. 2017, 60, pp. 84–90. [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Perol, T.; Gharbi, M.; Denolle, M. Convolutional neural network for earthquake detection and location. Sci. Adv. 2018, 4, e1700578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Xiao, Z.; Liu, C.; Zhao, D.; Yao, Z. Deep learning for picking seismic arrival times. J. Geophys. Res. Solid Earth 2019, 124, 6612–6624. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Zhou, P.; Li, B.; Yuan, X. Convolutional Neural Network-Based Moving Ground Target Classification Using Raw Seismic Waveforms as Input. IEEE Sens. J. 2019, 19, 5751–5759. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Donahue, C.; McAuley, J.; Puckette, M. Adversarial audio synthesis. arXiv 2018, arXiv:1802.04208. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Kaneko, T.; Kameoka, H.; Tanaka, K.; Hojo, N. Cyclegan-vc2: Improved cyclegan-based non-parallel voice conversion. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6820–6824. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the European conference on computer vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 694–711. [Google Scholar]
- Li, Z.; Meier, M.A.; Hauksson, E.; Zhan, Z.; Andrews, J. Machine learning seismic wave discrimination: Application to earthquake early warning. Geophys. Res. Lett. 2018, 45, 4773–4779. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhang, Z.; Li, Y. EarthquakeGen: Earthquake generator using generative adversarial networks. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: Tulsa, OK, USA, 2019; pp. 2674–2678. [Google Scholar]
- Uehara, M.; Sato, I.; Suzuki, M.; Nakayama, K.; Matsuo, Y. Generative adversarial nets from a density ratio estimation perspective. arXiv 2016, arXiv:1610.02920. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2642–2651. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Mousavi, S.M.; Sheng, Y.; Zhu, W.; Beroza, G.C. STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access 2019, 7, 179464–179476. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zhu, W.; Sheng, Y.; Beroza, G.C. CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
Dataset | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
Real | 96.84 | 99.96 | 91.54 | 0.956 |
Synthetic | 90.45 | 97.86 | 75.94 | 0.855 |
Real + 20% | 94.60 | 99.93 | 91.04 | 0.953 |
Real + 40% | 95.65 | 99.95 | 88.32 | 0.938 |
Real + 60% | 97.92 | 98.74 | 95.62 | 0.972 |
Real + 80% | 95.55 | 96.03 | 91.82 | 0.939 |
Real + 100% | 94.80 | 88.28 | 99.14 | 0.934 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ku, B.; Zhang, S.; Ahn, J.-K.; Ko, H. Seismic Data Augmentation Based on Conditional Generative Adversarial Networks. Sensors 2020, 20, 6850. https://doi.org/10.3390/s20236850
Li Y, Ku B, Zhang S, Ahn J-K, Ko H. Seismic Data Augmentation Based on Conditional Generative Adversarial Networks. Sensors. 2020; 20(23):6850. https://doi.org/10.3390/s20236850
Chicago/Turabian StyleLi, Yuanming, Bonhwa Ku, Shou Zhang, Jae-Kwang Ahn, and Hanseok Ko. 2020. "Seismic Data Augmentation Based on Conditional Generative Adversarial Networks" Sensors 20, no. 23: 6850. https://doi.org/10.3390/s20236850