A Review of Technologies and Techniques for Indoor Navigation Systems for the Visually Impaired
<p>Classification of indoor positioning systems (IPSs).</p> "> Figure 2
<p>Lateration method between three nodes (S1, S2, S3) indicating their distances (d1, d2, and d3).</p> "> Figure 3
<p>Method of trilateration between nodes S1, S2, S3.</p> "> Figure 4
<p>Proximity method concept.</p> "> Figure 5
<p>Roll, pitch, yaw (RPY) system reference.</p> "> Figure 6
<p>Pedestrian dead reckoning (PDR) scheme.</p> "> Figure 7
<p>Strapdown navigation system.</p> "> Figure 8
<p>Obstacle detection scheme using stereo vision.</p> "> Figure 9
<p>Spatial recognition of the area around the user.</p> "> Figure 10
<p>Indoor navigation system architecture.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Indoor Positioning Systems
3.1. Systems Based on Radio Frequency
3.1.1. Range-Based
- Calculating the difference in ToA of a signal transmitted to two different receivers: For each TDoA measurement, the transmitter must be in a hyperboloid with a constant range difference between the two positions of the receiver [9]. This method relaxes the synchronization restriction for the receivers.
- Calculating the difference in ToA of two signals with different propagation times: Usually, the first signal is the radio packet, propagated in electromagnetic waves (speed of light, 300,000 km/s), and the second is a type of sound signal (340 m/s) [48]. This method eliminates the need for synchronization. However, all nodes must have additional hardware to send both types of signals simultaneously.
- Use a matrix of sensors whose locations relative to the center of the node are known and use the difference in ToA of the signal at each sensor to calculate the AoA of the anchor node.
- Two or more directional antennas are pointed in different directions with overlapping main beams. The calculation of AoA takes place according to the RSSI proportion of the individual antennas.
3.1.2. Range-Free
3.2. Systems Based on Inertial Sensors
- Identify the subset of data of an individual step.
- Estimate the step length.
- Estimate the heading.
3.3. Systems Based on Sound
3.3.1. Audible Sound
3.3.2. Inaudible Sound
3.4. Systems Based on Light
3.4.1. Visible Light
3.4.2. Nonvisible Light
3.5. Systems Based on Computer Vision
3.5.1. Cameras Fixed to the Scene
3.5.2. Mobile Cameras
3.6. Hybrid Indoor Positioning Systems
3.6.1. RSSI-IMU Hybrid Systems
3.6.2. RSSI-Vision Hybrid Systems
3.6.3. IMU-Vision Hybrid Systems
3.6.4. RSSI-IMU-Vision Hybrid Systems
3.6.5. Other Hybrid Indoor Positioning Systems
4. Comparison of Systems Discussed
4.1. Application of Techniques and Technologies in Visually Impaired Navigation
4.2. Comparative Discussion on Technologies and Techniques
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiao, H.; Zhang, H.; Wang, Z.; Gulliver, T. An RSSI based DV-hop algorithm for wireless sensor networks. In Proceedings of the IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing (PACRIM), Victoria, BC, Canada, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- He, S.; Chan, S.H.G. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons. IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Ho, N.; Truong, P.; Jeong, G. Step-Detection and Adaptive Step-Length Estimation for Pedestrian Dead-Reckoning at Various Walking Speeds Using a Smartphone. Sensors 2016, 16, 1423. [Google Scholar] [CrossRef] [PubMed]
- Brena, R.; García-Vázquez, J.; Galván-Tejada, C.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J. Evolution of Indoor Positioning Technologies: A Survey. Hindawi J. Sens. 2017, 2017, 1–21. [Google Scholar] [CrossRef]
- Guo, X.; Shao, S.; Ansari, N.; Khreishah, A. Indoor Localization Using Visible Light Via Fusion of Multiple Classifiers. IEEE Photonics J. 2017, 9, 1–17. [Google Scholar] [CrossRef]
- Xiaochuan, Y.; Xiangwei, W.; Xiaoguo, D.; Qijun, C. Scale Recovery for Monocular Visual Odometry Using Depth Estimated with Deep Convolutional Neural Fields. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5870–5879. [Google Scholar] [CrossRef]
- Alakhras, M.; Hussein, M.; Oussalah, M. Deep Perception beyond the Visible Spectrum: Sensing, Algorithms, and Systems. Hindawi J. Sens. 2020, 2020, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kuang, J.; Niu, X.; Zhang, P.; Chen, X. Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones. Sensors 2018, 18, 4142. [Google Scholar] [CrossRef] [Green Version]
- Correa, A.; Barcelo, M.; Morell, A.; Vicario, J.L. Enhanced Inertial-Aided Indoor Tracking System for Wireless Sensor Networks: A Review. IEEE Sens. J. 2014, 14, 2921–2929. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, H.; Du, Q.; Tang, S. A Survey of the Research Status of Pedestrian Dead Reckoning Systems Based on Inertial Sensors. Int. J. Autom. Comput. 2019, 16, 65–83. [Google Scholar] [CrossRef]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra-Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 2016, 707. [Google Scholar] [CrossRef]
- Teng, X.; Guo, D.; Guo, Y.; Zhou, X.; Liu, Z. CloudNavi: Toward Ubiquitous Indoor Navigation Service with 3D Point Clouds. ACM Trans. Sens. Netw. 2019, 2019, 1–28. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, W.; Tang, W.; Zheng, X.; Peng, A.; Zheng, H. A 3D indoor positioning system based on low-cost MEMS sensors. Simul. Model. Pract. Theory 2016, 65, 45–56. [Google Scholar] [CrossRef]
- Jung, S.H.; Moon, B.C.; Han, D. Performance Evaluation of Radio Map Construction Methods for Wi-Fi Positioning Systems. IEEE Trans. Intell. Transp. Syst. 2017, 18, 80–889. [Google Scholar] [CrossRef]
- Wang, J.; Hu, A.; Li, X.; Wang, Y. An improved PDR/magnetometer/floor map integration algorithm for ubiquitous positioning using the adaptive unscented Kalman filter. ISPRS Int. J. GeoInf. 2015, 4, 2638–2659. [Google Scholar] [CrossRef] [Green Version]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2016, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Khelifi, F.; Bradai, A.; Benslimane, A.; Rawat, P.; Atri, M. A Survey of Localization Systems in Internet of Things. Mob. Netw. Appl. 2019, 24, 61–785. [Google Scholar] [CrossRef]
- Mainetti, L.; Patrono, L.; Sergi, I. A survey on indoor positioning systems. In Proceedings of the 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor 2019, 21, 2568–2599. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, P.; Al Moubayed, S.; Patel, S.N.; Alanson, P. Sample. ID-Match: A Hybrid Computer Vision and RFID System for Recognizing Individuals in Groups. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 4933–4944. [Google Scholar] [CrossRef]
- Nguyen, Q.; Vu, H.; Tran, T.; Nguyen, Q. A Vision-based System Supports Mapping Services for Visually Impaired People in Indoor Environments. In Proceedings of the 13th International Conference on Control, Automation, Robotics & Vision (ICARCV), Singapore, 10–12 September 2014; pp. 1518–1523. [Google Scholar] [CrossRef]
- Gharghan, S.; Nordin, R.; Ismail, M.; Ali, J. Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling. IEEE Sens. J. 2016, 16, 529–541. [Google Scholar] [CrossRef]
- Galioto, G.; Tinnirello, I.; Croce, D.; Inderst, F.; Pascucci, F.; Giarré, L. Demo: Sensor Fusion Localization and Navigation for Visually Impaired People. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking MobiCom 17, Snowbird, UT, USA, 16–20 October 2017; pp. 471–473. [Google Scholar] [CrossRef] [Green Version]
- Plikynas, D.; Žvironas, A.; Budrionis, A.; Gudauskis, M. Indoor Navigation Systems for Visually Impaired Persons: Mapping the Features of Existing Technologies to User Needs. Sensors 2020, 20, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aono, K.; Chakrabartty, S.; Yamasaki, T. Infrasonic scene fingerprinting for authenticating speaker location. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 361–365. [Google Scholar] [CrossRef]
- Lymberopoulos, D.; Liu, J.; Yang, X. A realistic evaluation and comparison of indoor location technologies: Experiences and lessons learned. In Proceedings of the 14th International Symposium on Information Processing in Sensor Networks (IPSN ’15), Seattle, WA, USA, 15–17 April 2015; pp. 178–189. [Google Scholar] [CrossRef]
- Radu, V.; Marina, M.K. HiMLoc: Indoor smartphone localization via activity aware Pedestrian Dead Reckoning with selective crowdsourced WiFi fingerprinting. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–10. [Google Scholar] [CrossRef]
- Chow, J.C.K.; Peter, M.; Scaioni, M.; Al-Durgham, M. Indoor tracking, mapping, and navigation: Algorithms, technologies, and applications. J. Sens. 2018, 2018, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.; Haghbayan, M.; Westerlun, T.; Heikkonen, J.; Tenhunen, H.; Plosila, J. A Survey on Odometry for Autonomous Navigation Systems. IEEE Access 2019, 7, 97466–97486. [Google Scholar] [CrossRef]
- Chen, C. A Wi-Fi-based Pedestrian Navigation System using Kalman Filter and Particle Filter. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; pp. 810–814. [Google Scholar] [CrossRef]
- Tiwari, S.; Jain, V. HILS: Hybrid indoor localization system using Wi-Fi received signal strength and inertial sensor’s measurements of smartphone. IET Digit. Libr. 2019, 13, 1595–1606. [Google Scholar] [CrossRef]
- Gante, A.; Siller, M. A survey of hybrid schemes for location estimation in wireless sensor networks. Procedia Technol. 2013, 7, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Subbu, K.; Luo, J.; Wu, J. GROPING: Geomagnetism and crowdsensing powered indoor navigation. IEEE Trans. Mob. Comput. 2015, 14, 387–400. [Google Scholar] [CrossRef]
- Kwak, H.; Lee, D.; Hwang, J.; Kim, J.; Kim, C.; Park, G. Improvement of the inertial sensor-based localization for mobile robots using multiple estimation windows filter. IEEE/RSJ Int. Conf. Intell. Robots Syst. IROS 2012, 876–881. [Google Scholar] [CrossRef]
- Robinson, M.; Ghrist, R. Topological localization via signals of opportunity. IEEE Trans. Sign. Process. 2012, 60, 2362–2373. [Google Scholar] [CrossRef]
- Yen, L.; Yan, C.; Renu, S.; Belay, A.; Lin, H.; Ye, Y. A modified WKNN indoor Wi-Fi localization method with differential coordinates. In Proceedings of the International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 1822–1824. [Google Scholar] [CrossRef]
- Davidson, P.; Piché, R. A Survey of Selected Indoor Positioning Methods for Smartphones. IEEE Commun. Surv. Tutor. 2016, 19, 1347–1370. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, S. A Survey on Cluster Based Routing Protocols in Wireless Sensor Networks. Procedia Comput. Sci. 2015, 45, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Ahmed, M.; Kim, J.; Kim, Y.; Rhee, P. Combining Obstacle Avoidance and Visual Simultaneous Localization and Mapping for Indoor Navigation. Symmetry 2020, 12, 119. [Google Scholar] [CrossRef] [Green Version]
- Dardari, D.; Closas, P.; Djuric, P.M. Indoor tracking: Theory, methods, and technologies. IEEE Trans. Veh. Technol. 2015, 64, 1263–1278. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Sospedra, J.; Montoliu, R.; Conesa, J.; Berkvens, R.; Caso, G.; Costa, C.; Dorigatti, N.; Hernández, N.; Knauth, S.; et al. Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation. Challenges, Experiences and Technology Roadmap Intelligent. Data Centric Syst. 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Correa, A.; Llade, M.B.; Morell, A.; Vicario, J.L. Indoor Pedestrian Tracking by On-body Multiple Receivers. IEEE Sens. J. 2016, 16, 2545–2551. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; Zhang, G.; Zhang, P. Indoor positioning system using Euclidean distance correction algorithm with Bluetooth low energy beacon. In Proceedings of the International Conference on Internet of Things and Applications (IOTA), Las Vegas, NV, USA, 22–24 January 2016; pp. 243–247. [Google Scholar] [CrossRef]
- Li, C.; Trogh, J.; Plets, D.; Tanghe, E.; Hoebeke, J.; Poorter, E.; Joseph, W. CRLB-based Positioning Performance of Indoor Hybrid AoA/RSS/ToF Localization. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Madrid, Spain, 4–7 October 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Poulose, A.; Kim, J.; Han, D. A Sensor Fusion Framework for Indoor Localization Using Smartphone Sensors and Wi-Fi RSSI Measurements. Sensors 2019, 9, 4379. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A. Best Practice in RSS Measurements and Ranging. IEEE Commun. Surv. Tutor. 2016, 18, 2662–2686. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, H.; Li, F. A Location and Optimal Coverage Based Filtering Scheme in Wireless Sensor Networks. IEEE Access 2020, 1–30. [Google Scholar] [CrossRef]
- Grissa, M.; Hamdaoui, B.; Yavuz, A. Location Privacy in Cognitive Radio Networks: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 1726–1760. [Google Scholar] [CrossRef]
- Hlaing, S.; Maung, N. An Enhanced Time-based Wireless Indoor Localization Using Synchronized TDoA Technique. In Proceedings of the 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology (ECTI-CON), Pattaya, Thailand, 10–13 July 2019; pp. 693–696. [Google Scholar] [CrossRef]
- Mendoza-Silva, G.; Torres-Sospedra, J. A Meta-Review of Indoor Positioning Systems. Sensors 2019, 19, 4507. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Gulliver, T.A.; Li, J.; Zhang, H. Vehicle Positioning Using 5G Millimeter-Wave Systems. IEEE Access 2016, 4, 6964–6973. [Google Scholar] [CrossRef]
- Caraiman, S.; Zvoristeanu, O.; Burlacu, A.; Herghelegiu, P. Stereo Vision Based Sensory Substitution for the Visually Impaired. Sensors 2019, 19, 2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aditya, S.; Molisch, A.; Behairy, H. A Survey on the Impact of Multipath on Wideband Time-of-Arrival Based Localization. Proc. IEEE 2018, 106, 1183–1203. [Google Scholar] [CrossRef]
- Pierlot, V.; Droogenbroeck, M.V. A New Three Object Triangulation Algorithm for Mobile Robot Positioning. IEEE Trans. Robotics 2014, 30, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Moghtadaiee, V.; Ghorashi, S.; Ghavami, M. New Reconstructed Database for Cost Reduction in Indoor Fingerprinting Localization. IEEE Access 2019, 7, 104462–104477. [Google Scholar] [CrossRef]
- Palumbo, F.; Barsocchi, P.; Chessa, S.; Augusto, J.C. A stigmergic approach to indoor localization using Bluetooth Low Energy beacons. In Proceedings of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Karlsruhe, Germany, 25–28 August 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor localization via channel response. ACM Comput. Surv. 2013, 1–32. [Google Scholar] [CrossRef]
- Faragher, R.; Harle, R. Location fingerprinting with Bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 2015, 33, 2418–2428. [Google Scholar] [CrossRef]
- Zhao, Y.; Fritsche, C.; Yin, F.; Gunnarsson, F.; Gustafsson, F. Sequential Monte Carlo Methods and Theoretical Bounds for Proximity Report Based Indoor Positioning. IEEE Trans. Veh. Technol. 2018, 67, 5372–5386. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H.; Al-Naffouri, T.; Alouini, M. A State-of-the-Art Survey on Multidimensional Scaling-Based Localization Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 3565–3583. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, B.; Shanmugam, V.; Ananthanarayanan, V.; Sivakumar, B. Localization and Indoor Navigation for Visually Impaired Using Bluetooth Low Energy. Smart Syst. IoT Innov. Comput. 2019, 249–259. [Google Scholar] [CrossRef]
- Lin, X.Y.; Ho, T.W.; Fang, C.C.; Yen, Z.S.; Yang, B.J.; Lai, F. A mobile indoor positioning system based on iBeacon technology. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4970–4973. [Google Scholar] [CrossRef]
- Choi, M.; Park, W.K.; Lee, I. Smart office energy management system using Bluetooth low energy-based beacons and a mobile app. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2015; pp. 501–502. [Google Scholar] [CrossRef]
- Fujihara, A.; Yanagizawa, T. Proposing an Extended iBeacon System for Indoor Route Guidance. In Proceedings of the International Conference on Intelligent Networking and Collaborative Systems, Taipei, Taiwan, 2–4 September 2015; pp. 31–37. [Google Scholar] [CrossRef]
- Bolic, M.; Rostamian, M.; Djuric, P.M. Proximity Detection with RFID: A Step Toward the Internet of Things. IEEE Pervasive Comput. 2015, 14, 70–76. [Google Scholar] [CrossRef]
- Singh, S.; Aggarwal, A. Article: Survey on Localization Techniques of RFID for IoT. Int. J. Comput. Appl. 2016, 137, 23–27. [Google Scholar] [CrossRef]
- Qian, Z.; Yan, R.; Cheng, Z.; Wu, J.; He, X. Magnetic Positioning Technique Integrated with Near-Field Communication for Wireless EV Charging. Energies 2020, 13, 1081. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Tao, B.; Gong, Z.; Yin, Z.; Ding, H. A Fast UHF RFID Localization Method Using Unwrapped Phase-Position Model. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1698–1707. [Google Scholar] [CrossRef]
- Despaux, F.; Bossche, A.; Jaffrès-Runser, K.; Val, T. N-TWR: An accurate time-of-flight-based N-ary ranging protocol for Ultra-Wideband. Ad Hoc Netw. 2018, 79, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kanaris, L.; Kokkinis, A.; Liotta, A.; Stavrou, S. Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization. Sensors 2017, 17, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, M.; Owens, T.; Khaleeq-uz-Zaman, U.; Akbar, M. RSSI Based Localization of Bluetooth Devices for Visually Impaired. J. Signal Inform. Process. 2019, 10, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Wang, C.; Huang, T.; Yang, C.; Chen, Y. An enhanced ZigBee indoor positioning system with an ensemble approach. IEEE Commun. Lett. 2012, 16, 564–567. [Google Scholar] [CrossRef]
- Paul, A.; Sato, T. Localization in Wireless Sensor Networks: A Survey on Algorithms, Measurement Techniques, Applications, and Challenges. J. Sens. Actuator Netw. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Ghosal, A. A survey on mobility-assisted localization techniques in wireless sensor networks. J. Netw. Comput. Appl. 2016, 60, 82–94. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, J.; Luo, N.; Wang, L.; Wang, W.; Wen, K. Improving Wi-Fi Fingerprint Positioning with a Pose Recognition-Assisted SVM Algorithm. Remote Sens. 2019, 11, 652. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Wang, Y.; Wu, Z.; Mao, B.; Cao, J. Indoor Region Localization With Asynchronous Sensing Data: A Bayesian Probabilistic Model. IEEE Sens. J. 2018, 18, 10174–10182. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, Z.; Yi, Y.; Ni, L. A Survey on Wireless Indoor Localization from the Device Perspective. ACM Comput. Surv. 2016, 1–31. [Google Scholar] [CrossRef]
- Mirowski, P.; Whiting, P.; Steck, H.; Palaniappan, R.; MacDonald, M.; Hartmann, D.; Ho, T. Probability Kernel Regression for WiFi Localisation. J. Locat. Based Serv. 2012, 6, 81–100. [Google Scholar] [CrossRef]
- Gu, F.; Hu, X.; Ramezani, M.; Acharya, D.; Khoshelham, K.; Valaee, S.; Shang, J. Indoor Localization Improved by Spatial Context—A Survey. ACM Comput. Surv. 2019, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Kasmi, Z.; Norrdine, A.; Blankenbach, J. Towards a decentralized magnetic indoor positioning system. Sensors 2015, 15, 30319–30339. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Mo, Z.; Tan, J.; He, S.; Chan, S. Efficient Indoor Localization Based on Geomagnetism. ACM Trans. Sens. Netw. 2019, 1–25. [Google Scholar] [CrossRef]
- Sridharan, M.; Bigham, J.; Campbell, P.; Phillips, C.; Bodanese, E. Inferring Micro-Activities Using Wearable Sensing for ADL Recognition of Home-Care Patients. IEEE J. Biomed. Health Inform. 2020, 24, 747–759. [Google Scholar] [CrossRef] [PubMed]
- Khalajmehrabadi, A.; Gatsis, N.; Akopian, D. Modern WLAN Fingerprinting Indoor Positioning Methods and Deployment Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 1974–2002. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.M.; Soh, W.S. A survey of calibration-free indoor positioning systems. Comput. Commun. 2015, 66, 1–13. [Google Scholar] [CrossRef]
- Akiyama, T.; Ohashi, H.; Sato, A.; Nakahara, G.; Yamasaki, K. Pedestrian Dead Reckoning using adaptive particle filter to human moving mode. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [Green Version]
- Munoz Diaz, E. Inertial pocket navigation system: Unaided 3D positioning. Sensors 2015, 15, 9156–9178. [Google Scholar] [CrossRef] [Green Version]
- Leppakoski, H.; Collin, J.; Takala, J. Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals. J. Signal Process. Syst. 2013, 71, 287–296. [Google Scholar] [CrossRef]
- Yan, W.; Leng, X.; Wang, Z.; Jin, Y.; Wang, J. High precision tri-axial MEMS gyroscope module based on redundant implementation and sensor fusion. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE Int. Conf. 2016, 376–379. [Google Scholar] [CrossRef]
- Kok, M.; Trom, N.; Schön, T.B.; Gustafsson, F. MEMS-based inertial navigation based on a magnetic field map. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing ICASSP 2013, Vancouver, BC, Canada, 26–31 May 2013; pp. 6466–6470. [Google Scholar] [CrossRef] [Green Version]
- Dabove, P.; Ghinamo, G.; Lingua, A. Inertial sensors for smartphones navigation. SpringerPlus 2015, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jingjing, S.; Mingrong, R.; Pu, W.; Juan, M. Indoor pedestrian positioning algorithm with feature point detection and virtual path matching. In Proceedings of the Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 6567–6571. [Google Scholar] [CrossRef]
- Wang, Y.; Shkel, A. Adaptive Threshold for Zero-Velocity Detector in ZUPT-Aided Pedestrian Inertial Navigation. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, H.; Du, Q.; Tang, S. A Pedestrian Dead-Reckoning System for Walking and Marking Time Mixed Movement Using an SHSs Scheme and a Foot-Mounted IMU. IEEE Sens. J. 2019, 19, 1661–1671. [Google Scholar] [CrossRef]
- Zou, H.; Chen, Z.; Jiang, H.; Xie, L.; Spanos, C. Accurate indoor localization and tracking using mobile phone inertial sensors, WiFi and iBeacon. In Proceedings of the IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 27–30 March 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Kang, W.; Han, Y. SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sens. J. 2015, 15, 2906–2916. [Google Scholar] [CrossRef]
- Kang-Wook, K.; Jihye, K.; Chang-Gun, L.; Junghee, H. Accurate Indoor Location Tracking Exploiting Ultrasonic Reflections. IEEE Sens. J. 2016, 16, 9075–9088. [Google Scholar] [CrossRef]
- Li, S.; Rashidzadeh, R. Hybrid indoor location positioning system. IET Digit. Libr. 2019, 9, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chowdhury, M.; Kavehrad, M. Asynchronous indoor positioning system based on visible light communications. Opt. Eng. 2014, 53. [Google Scholar] [CrossRef]
- Khalighi, M.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Yi, K.; Kim, D.; Yi, K. Development of a localization system based on VLC technique for an indoor environment. J. Electr. Eng. Technol. 2015, 10, 436–442. [Google Scholar] [CrossRef]
- Pathak, P.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential, and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Mariya, A.; Ettiyil, A.G.; George, A.; Nisha, S.; Joseph, I.T. Li-Fi Based Blind Indoor Navigation System. In Proceedings of the 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 675–677. [Google Scholar] [CrossRef]
- Alam, F.; Faulkner, N.; Legg, M.; Demidenko, S. Indoor Visible Light Positioning Using Spring-Relaxation Technique in Real-World Setting. IEEE Access 2019, 7, 91347–91359. [Google Scholar] [CrossRef]
- Martín-Gorostiza, E.; García-Garrido, M.; Pizarro, D.; Torres, P.; Miguel, M.; Salido-Monzú, D. Infrared and Camera Fusion Sensor for Indoor Positioning. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, X.; Wang, S.; Mo, L. Cooperative motion parameter estimation using RSS measurements in robotic sensor networks. J. Netw. Comput. Appl. 2019, 136, 57–70. [Google Scholar] [CrossRef]
- Garrote, L.; Barros, T.; Pereira, R.; Nunes, U. Absolute Indoor Positioning-aided Laser-based Particle Filter Localization with a Refinement Stage. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14—17 October 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Anup, S.; Goel, A.; Padmanabhan, S. Visual positioning system for automated indoor/outdoor navigation. In Proceedings of the TENCON 2017—IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 1027–1031. [Google Scholar] [CrossRef]
- Fraundorfer, F.; Scaramuzza, D. Visual odometry: Part II: Matching, robustness, optimization, and applications. IEEE Robotics Autom. Mag. 2012, 19, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Shahjalal, M.; Hossan, T.; Hasan, K.; Chowdhury, M.; Le, N.; Jang, Y. An Implementation Approach and Performance Analysis of Image Sensor Based Multilateral Indoor Localization and Navigation System. Wirel. Commun. Mob. Comput. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rao, X.; Li, Z. MSDFL: A robust minimal hardware low-cost device-free WLAN localization system. Neural Comput. Appl. 2019, 31, 9261–9278. [Google Scholar] [CrossRef]
- Yang, S.; Hans, A.; Zhao, W.; Luo, X. Indoor Localization and Human Activity Tracking with Multiple Kinect Sensors. Smart Assist. Living Springer 2019, 23–42. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, J.; Wu, J.; Hao, J.; Qian, H. Enhancing Camera-Based Multimodal Indoor Localization With Device-Free Movement Measurement Using WiFi. IEEE Internet Things J. 2020, 7, 1024–1038. [Google Scholar] [CrossRef]
- Cheng, L.; Song, B.; Dai, Y.; Wu, H.; Chen, Y. Mobile robot indoor dual Kalman filter localization based on the inertial measurement and stereo vision. CAAI Trans. Intel. Technol. 2017, 2, 173–181. [Google Scholar] [CrossRef]
- Llorca, D.; Quintero, R.; Parra, I.; Sotelo, M. Recognizing individuals in groups in outdoor environments combining stereo vision, RFID, and BLE. Cluster Comput. 2017, 20, 769–779. [Google Scholar] [CrossRef]
- Röbesaat, J.; Zhang, P.; Abdelaal, M.; Theel, O. An Improved BLE Indoor Localization with Kalman-Based Fusion: An Experimental Study. Sensors 2017, 17, 951. [Google Scholar] [CrossRef] [PubMed]
- Bolat, U.; Akcakoca, M. A hybrid indoor positioning solution based on Wi-Fi, magnetic field, and inertial navigation. In Proceedings of the 14th Workshop on Positioning, Navigation, and Communications (WPNC), Bremen, Germany, 25–26 October 2017; pp. 16–22. [Google Scholar] [CrossRef]
- Zou, Q.; Xia, W.; Zhu, Y.; Zhang, J.; Huang, B.; Yan, F.; Shen, L. A VLC, and IMU integration indoor positioning algorithm with weighted unscented Kalman filter. In Proceedings of the 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 887–891. [Google Scholar] [CrossRef]
- Shen, T.; Chen, X.; Bu, L.; Feng, N. Predictive Adaptive Kalman Filter and Its Application to INS/UWB-integrated Human Localization with Missing UWB-based Measurements. Int. J. Autom. Comput. 2019, 16, 604–613. [Google Scholar] [CrossRef]
- Li, J.; Xie, Z.; Sun, X.; Tang, J.; Liu, H.; Stankovic, J. An Automatic and Accurate Localization System for Firefighters. In Proceedings of the IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, FL, USA, 17–20 April 2018; pp. 13–24. [Google Scholar] [CrossRef]
- Bejuri, W.; Mohamad, M.; Radzi, R.; Salleh, S. An Improved Resampling Scheme for Particle Filtering in Inertial Navigation System. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, ACIIDS 2019: Intelligent Information and Database Systems, Yogyakarta, Indonesia, 8–11 April 2019; pp. 555–563. [Google Scholar] [CrossRef]
- Vaidya, B.; Patel, A.; Panchal, A.; Mehta, R.; Mehta, K.; Vaghasiya, P. Smart home automation with a unique door monitoring system for old age people using Python, OpenCV, Android, and Raspberry Pi. In Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017; pp. 82–86. [Google Scholar] [CrossRef]
- Doush, I.; Damaj, I.; Al-Betar, M.; Awadallah, M.; Al-khatib, R.; Alchalabi, A.; Bolaji, A. A Survey on Accessible Context-Aware Systems. In Technological Trends in Improved Mobility of the Visually Impaired; Paiva, S., Ed.; Springer: Cham, Switzerland, 2019; pp. 29–63. [Google Scholar] [CrossRef]
- Heya, T.; Arefin, S.; Chakrabarty, A.; Alam, M. Image Processing Based Indoor Localization System for Assisting Visually Impaired People. Ubiquitous Position. Indoor Navig. Locat. Based Serv. UPINLBS 2018, 1–7. [Google Scholar] [CrossRef]
- Presti, G.; Ahmetovic, D.; Ducci, M.; Bernareggi, C.; Ludovico, L.; Avanzini, A.; Mascetti, F. WatchOut: Obstacle Sonification for People with Visual Impairment or Blindness. In Proceedings of the ASSETS 21st International ACM SIGACCESS Conference on Computers and Accessibility, Pittsburgh, PA, USA, 28–30 October 2019; pp. 402–413. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, X.; Li, Q.; Fang, Z. A Visual-Based Approach for Indoor Radio Map Construction Using Smartphones. Sensors 2017, 17, 1790. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Han, D.; Chen, Y.; Zhang, R.; Zhang, Y.; Hedgpeth, T. IndoorWaze: A Crowdsourcing-Based Context-Aware Indoor Navigation System. IEEE Trans. Wirel. Commun. 2019, 1–12. [Google Scholar] [CrossRef]
- Simoes, W.; Silva, Y.; Pio, J.; Jazdi, N.; De Lucena, V.F. Audio Guide for the Visually Impaired People Based on Combination of Stereo Vision and Musical Tones. Sensors 2020, 2020, 151. [Google Scholar] [CrossRef] [Green Version]
- Simoes, W.; Silva, W.; De Lucena, M.; Jazdi, N.; De Lucena, V.F. A Hybrid Indoor Positioning System Using a Linear Weighted Policy Learner and Iterative PDR. IEEE Access 2020, 8, 43630–43656. [Google Scholar] [CrossRef]
- Gala, K.; Bryden, P.; Paolini, C.; Wang, M.; Mihovska, A. Real-Time Indoor Geolocation Tracking for Assisted Healthcare Facilities. Int. J. Interdiscip. Telecommun. Netw. IJITN 2020, 12, 1–21. [Google Scholar] [CrossRef]
- Han, D.; Jung, S.; Lee, M.; Yoon, G. Building a Practical Wi-Fi-Based Indoor Navigation System. IEEE Pervasive Comput. 2014, 13, 72–79. [Google Scholar] [CrossRef]
- Norrdine, A.; Kasmi, Z.; Blankenbach, Z. Step Detection for ZUPT-Aided Inertial Pedestrian Navigation System Using Foot-Mounted Permanent Magnet. IEEE Sens. J. 2016, 16, 6766–6773. [Google Scholar] [CrossRef]
- Luo, J.; Fan, L.; Li, H. Indoor Positioning Systems Based on Visible Light Communication: State of the Art. IEEE Commun. Surv. Tutor. 2017, 19, 2871–2893. [Google Scholar] [CrossRef]
- Chopra, G.; Kumar, R.; Jain, S. A survey on ultra-dense network and emerging technologies: Security challenges and possible solutions. J. Netw. Comput. Appl. 2017, 5, 54–78. [Google Scholar] [CrossRef]
System | Type | Scalability | Limitations | Error Value |
---|---|---|---|---|
Hlaing et al. [49] | TDoA 1 | Limited | Time | 1.34 m |
Zafari et al. [19] | RSSI 2/SNR 3 | Yes | Does not identify the direction | 2.40 m |
Li et al. [98] | Audio | Limited | Noise | 1.30 m |
Kam-Wook et al. [4] | Ultrasonic/ultrasonic with TDoA 1 | Limited | Line view | 0.35–1.00 m |
Guo et al. [5] | VLC 4 | – | 93.03% (0.20 m) | |
Shahjalal et al. [110] | Fixed IP camera | Limited | Requires high processing | 0.10 m |
Rao et al. [111] | Fixed IP camera | Limited | Work only horizontal plane | 0.10 m |
Zhao et al. [113] | Mobile camera/inertial sensor/Wi-Fi 5 | Limited | Navigation direction identification | 92% accuracy (0.2 m) |
Zou et al. [118] | Adaptive Kalman filter, VLC 4/Wi-Fi 5/inertial sensor | Limited | Optical angles of incidence and irradiance should not exceed the field of view limitations | 0.23 m |
Garrote et al. [107] | VLC 4/hyperbolic trilateration | No | Optical angles of incidence and irradiance should not exceed the field of view limitations | 1.10 m |
Akiyama et al. [85] | Monte Carlo filter Inertial sensor | No | Processing time | 1.50 m |
Zhao et al. [59] | Particle filter Inertial sensor | No | Processing time | 1.50 m 6.00 m (only Wi-Fi 5 signals) |
Poulose et al. [45] | Wi-Fi 5/inertial sensor | Yes | Complexity in adding/removing network nodes | 1.53 m 5.73 m (only Wi-Fi 5 signals) |
Li et al. [20] | Camera/RFID 7 | Yes | Distance | 96.6% |
Cheng et al. [114] | Kalman filter Inertial/camera (stereovision) | No | Insufficient acquisition of visual information during displacement | 0.50 m |
Llorca et al. [115] | Wi-Fi 5/RFID 6/BLE 7/inertial/camera | Yes | Distance | - |
Li et al. [20] | Camera 3D/inertial sensors/RFID 6 | No | High processing and network consumption, interference from other sources emitting infrared signals | 96% |
Martin et al. [105] | Infrared sensor/camera | No | High computational cost, interference from other sources emitting infrared signals | 0.70 m |
Hlaing et al. [49] | TDoA 1 | Limited | Time | 1.50 m |
Gala et al. [130] | Wi-Fi 5 | Limited | Requires additional infrastructure | 3.0 m |
Correa et al. [42] | Wi-Fi 5/inertial | Yes | Fluctuations in Wi-Fi 5 values and cumulative error of inertial sensors | 1.4 m |
Palumbo et al. [56] | RSSI 2 | Yes | Distance | 1.8 m |
Lin et al. [62] | BLE 7/proximity | Yes | Requires additional infrastructure | 97.22% |
Bolic et al. [65] | RFID 6/proximity | Yes | Passive RFID 6 tags cannot perform complex operations, such as proximity detection and location | 0.32 m |
Zafari et al. [19] | Fingerprinting | Limited | High computational cost to add/remove records | 2.0–69.0 m |
Han et al. [131] | Fingerprinting | Limited | Room layout affects signal strength | 3.0–9.0 m |
Youssef et al. [77] | Fingerprinting | Limited | High level of complexity for tracking multiple targets | 1.4 m |
Kuang et al. [8] | Magnetic fingerprinting | Limited | Motion estimate error | 2.5 m |
Norrdine et al. [132] | Inertial | Yes | Cumulative error of inertial sensors | 0.3–1.2 m |
Teng et al. [12] | Inertial | Limited | Cumulative error of inertial sensors | 1.0–2.0 m |
Li et al. [120] | RSSI 2, inertial (SHS 8) | Yes | Requires additional infrastructure, has low accuracy, electromagnetic interference, low security, and long response | 4.00 m |
Shen et al. [119] | RSSI 2, inertial | Yes | Fluctuations in Wi-Fi 5 values and cumulative error of inertial sensors | 1.35 m |
Fang et al. [72] | ZigBee | No | Requires additional infrastructure | 98.67% (1.25 m from the reference point) |
Liu et al. [126] | RSSI 2, inertial | Limited | Requires additional infrastructure, has low accuracy, need to recalibrate | 0.8–3.0 m |
Galioto et al. [23] | Mobile camera, inertial | Limited | Cumulative error of inertial sensors, Optical angles of incidence and irradiance should not exceed the field of view limitations | 92.01% (1.48 m from the reference point) |
Caraiman et al. [52] | Kalman filter Inertial, camera (stereovision) | Limited | Cumulative error of inertial sensors | 0.15 m |
Simoes et al. [128] | Kalman filter camera (stereovision) | No | Lateral perception failure above 15 degrees | 0.33 m (horizontal plane), 0.20 m (vertical plane) |
Simoes et al. [129] | RSSI 2, inertial, Camera Kalman filter, Particle filter | Yes | High level of complexity for tracking multiple targets | 0.108 m, 0.186 rad |
Li et al. [127] | RSSI 2, Fingerprinting | Yes | Time, Requires additional infrastructure | 88.0% (1.60 m from the reference point |
Technology | Precision | Weaknesses |
---|---|---|
TDoA 1 | 1.34–1.50 m | Infrastructure |
RSSI 2 | 1.80–6.00 m | Low precision, access point |
RSSI 2/ SNR 3 | 2.40 m | Infrastructure |
RFID 4 | 0.32 m | Very low precision |
ZigBee | 0.25 m | Special equipment |
Audio | 1.30 m | Sensitive to audio noise |
Ultrasonic | 1.00 m | Infrastructure |
Ultrasonic with TDoA 1 | 0.35 m | Infrastructure |
VLC 5 | 0.20–0.23 m | Infrastructure |
Fixed camera | 0.10 m | Sensitive to light conditions |
Mobile camera | 0.20 m | Sensitive to light conditions |
VLC 5/Wi-Fi 6/inertial sensor | 0.23 m | Infrastructure |
Inertial | 0.30–2.50 m | Sensitive to the presence of metallic materials and people |
Inertial with camera | 0.50 m | Sensitive to light conditions |
Wi-Fi with inertial | 1.35–4.00 m | Sensitive to the presence of metallic materials, people, and blocking signals by the infrastructure |
Wi-Fi 6 with camera | 0.20 m | Sensitive to light conditions |
Infrared with camera | 0.70 m | Sunlight, sensitive to light conditions |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, W.C.S.S.; Machado, G.S.; Sales, A.M.A.; de Lucena, M.M.; Jazdi, N.; de Lucena, V.F., Jr. A Review of Technologies and Techniques for Indoor Navigation Systems for the Visually Impaired. Sensors 2020, 20, 3935. https://doi.org/10.3390/s20143935
Simões WCSS, Machado GS, Sales AMA, de Lucena MM, Jazdi N, de Lucena VF Jr. A Review of Technologies and Techniques for Indoor Navigation Systems for the Visually Impaired. Sensors. 2020; 20(14):3935. https://doi.org/10.3390/s20143935
Chicago/Turabian StyleSimões, Walter C. S. S., Guido S. Machado, André M. A. Sales, Mateus M. de Lucena, Nasser Jazdi, and Vicente F. de Lucena, Jr. 2020. "A Review of Technologies and Techniques for Indoor Navigation Systems for the Visually Impaired" Sensors 20, no. 14: 3935. https://doi.org/10.3390/s20143935
APA StyleSimões, W. C. S. S., Machado, G. S., Sales, A. M. A., de Lucena, M. M., Jazdi, N., & de Lucena, V. F., Jr. (2020). A Review of Technologies and Techniques for Indoor Navigation Systems for the Visually Impaired. Sensors, 20(14), 3935. https://doi.org/10.3390/s20143935