Biosensors Based on Advanced Sulfur-Containing Nanomaterials
<p>(<b>A</b>) The fabrication processes of porous NiCo<sub>2</sub>S<sub>4</sub> nanowires and their applications in glucose biosensing [<a href="#B34-sensors-20-03488" class="html-bibr">34</a>]. Reproduced with permission Copyright 2019, Elsevier B.V. (<b>B</b>) The fabrication of biosensor based on MoS<sub>2</sub> nanocrystals for sensing glucose and lactate in sweat [<a href="#B62-sensors-20-03488" class="html-bibr">62</a>]. Reproduced with permission Copyright 2017, Elsevier B.V.</p> "> Figure 2
<p>(<b>A</b>) (a) The process to fabricate PEC biosensor based on WS<sub>2</sub> nanowire array on Ti mesh (TM) for breast cancer biomarker HER2 detection; (b) Schematic mechanism of the PEC system [<a href="#B50-sensors-20-03488" class="html-bibr">50</a>]. Reproduced with permission Copyright 2019, Elsevier B.V. (<b>B</b>) A signal-on PEC biosensor for PNK assay with the MnME@AuNPs-P2 catalytic precipitation on Bi<sub>2</sub>S<sub>3</sub> nanorod as the photoactive materials [<a href="#B78-sensors-20-03488" class="html-bibr">78</a>]. Reproduced with permission Copyright 2018, American Chemical Society. (<b>C</b>) Construction (a) and response mechanism (b) of PEC biosensor based on CuS nanocrystals [<a href="#B73-sensors-20-03488" class="html-bibr">73</a>]. Reproduced with permission Copyright 2019, Elsevier B.V.</p> "> Figure 3
<p>(<b>A</b>) Schematic diagram of the HIV gene biosensor using EuS nanocrystals as luminophore [<a href="#B70-sensors-20-03488" class="html-bibr">70</a>]. Reproduced with permission Copyright 2018, Elsevier B.V. (<b>B</b>) The fabrication of insulin biosensor based on Au-ZnCd<sub>14</sub>S [<a href="#B79-sensors-20-03488" class="html-bibr">79</a>]. Reproduced with permission Copyright 2017, Elsevier B.V. (<b>C</b>) Schematic fabrication process of ECL sensor and CE-ECL detection [<a href="#B80-sensors-20-03488" class="html-bibr">80</a>]. Reproduced with permission Copyright 2016, Elsevier B.V. (<b>D</b>) The fabrication of immunosensor based on hollow In<sub>2</sub>S<sub>3</sub> nanotubes for procalcitonin detection [<a href="#B52-sensors-20-03488" class="html-bibr">52</a>]. Reproduced with permission Copyright 2019, Elsevier B.V.</p> "> Figure 4
<p>(<b>A</b>) ECL biosensors for dopamine based on CdS QDs [<a href="#B134-sensors-20-03488" class="html-bibr">134</a>]. Reproduced with permission Copyright 2016, Elsevier B.V. (<b>B</b>) Fabrication of the ECL-RET aptasensor for thrombin based on CdS: La quantum dots film and AuNPs [<a href="#B135-sensors-20-03488" class="html-bibr">135</a>]. Reproduced with permission Copyright 2019, Elsevier B.V. (<b>C</b>) Schematic diagram to show (<b>A</b>) the ECL immunosensor fabrication process and (<b>B</b>) ECL mechanism of Ag<sub>2</sub>S: Mn QDs [<a href="#B136-sensors-20-03488" class="html-bibr">136</a>]. Reproduced with permission Copyright 2017, Elsevier B.V. (<b>D</b>) Schematic illustration of ECL biosensors bade on CdS QDs for detection of the MTase activity [<a href="#B137-sensors-20-03488" class="html-bibr">137</a>]. Reproduced with permission Copyright 2016, American Chemical Society.</p> "> Figure 5
<p>(<b>A</b>) Schematic illustration for ppGpp detection using Eu-MoS<sub>2</sub> QDs test paper [<a href="#B142-sensors-20-03488" class="html-bibr">142</a>]. Reproduced with permission Copyright 2020, Elsevier B.V. (<b>B</b>) Illustration of H<sub>2</sub>O<sub>2</sub> detection based on NIR-II fluorescence Pb-doped Ag<sub>2</sub>S quantum dots [<a href="#B69-sensors-20-03488" class="html-bibr">69</a>]. Reproduced with permission Copyright 2019, Elsevier B.V.</p> "> Scheme 1
<p>A summary of sulfur-containing nanomaterials used as biosensors.</p> ">
Abstract
:1. Introduction
2. Metallic Sulfide Nanomaterials
2.1. Generalities
2.2. Applications in Biosensors
2.2.1. Electrochemical Biosensors
2.2.2. PEC Biosensors
2.2.3. ECL Biosensors
2.2.4. PL Biosensors
3. Sulfur-Containing Quantum Dots
3.1. Generalities
3.2. Applications in Biosensors
3.2.1. Biosensors Based on Sulfur Quantum Dots
3.2.2. Biosensors Based on Sulfide Quantum Dots
Electrochemical Biosensors
PEC Biosensors
ECL Biosensors
PL Biosensors
3.2.3. Biosensors Based on Sulfur-Doped Carbon or Graphene Quantum Dots
4. Brief Comparison between Biosensors Based on Sulfur-Containing Nanomaterials and Others
5. Conclusions and Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Lim, J.; Pyun, J.; Char, K. Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials. Angew. Chem. Int. Ed. 2015, 54, 3249–3258. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.A. Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. 2016, 55, 15486–15502. [Google Scholar] [CrossRef]
- Saleh, T.A. Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends Environ. Anal. Chem. 2020, 25, e00080. [Google Scholar] [CrossRef]
- Fang, R.; Xu, J.; Wang, D.-W. Covalent fixing of sulfur in Metal-Sulfur batteries. Energy Environ. Sci. 2020, 13, 432–471. [Google Scholar] [CrossRef]
- Mann, M.; Kruger, J.E.; Andari, F.; McErlean, J.; Gascooke, J.R.; Smith, J.A.; Worthington, M.J.H.; McKinley, C.C.C.; Campbell, J.A.; Lewis, D.A.; et al. Sulfur polymer composites as Controlled-Release fertilisers. Org. Biomol. Chem. 2019, 17, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B. Recent advances in organic reactions involving elemental sulfur. Adv. Synth. Catal. 2017, 359, 1066–1130. [Google Scholar] [CrossRef]
- Argueta-Figueroa, L.; Martinez-Alvarez, O.; Santos-Cruz, J.; Garcia-Contreras, R.; Acosta-Torres, L.S.; de la Fuente-Hernandez, J.; Arenas-Arrocena, M.C. Nanomaterials made of Non-toxic metallic sulfides: A systematic review of their potential biomedical applications. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2017, 76, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zeng, S.; Zhang, B.; Swihart, M.T.; Yong, K.T.; Prasad, P.N. New generation Cadmium-Free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, N.; Sorokin, M.; Oborina, E. Carbofunctional Sulfur-Containing Organosilicon Compounds: Synthesis and Application Fields. Russ. J. Appl. Chem. 2016, 89, 1031–1042. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, Y.J.; Sun, Y.K. Nanostructured lithium sulfide materials for Lithium-Sulfur batteries. J. Power Sources 2016, 323, 174–188. [Google Scholar] [CrossRef]
- Sheng, J.; Wang, L.; Han, Y.; Chen, W.; Liu, H.; Zhang, M.; Deng, L.; Liu, Y.N. Dual roles of protein as a template and a sulfur provider: A general approach to metal sulfides for efficient photothermal therapy of cancer. Small 2018, 14. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wang, D.; Fan, T.; Xing, C.; Li, Z.; Tao, W.; Liu, L.; Bao, S.; Fan, D.; Zhang, H. Black phosphorus analogue tin sulfide nanosheets: Synthesis and application as Near-Infrared photothermal agents and drug delivery platforms for cancer therapy. J. Mater. Chem. B 2018, 6, 4747–4755. [Google Scholar] [CrossRef] [PubMed]
- Heckert, B.; Banerjee, T.; Sulthana, S.; Naz, S.; Alnasser, R.; Thompson, D.; Normand, G.; Grimm, J.; Perez, J.M.; Santra, S. Design and synthesis of new Sulfur-Containing hyperbranched polymer and theranostic nanomaterials for bimodal imaging and treatment of cancer. ACS Macro Lett. 2017, 6, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.M.; Kotsakidis, J.C.; Weber, B.; Berean, K.J.; Carey, B.J.; Field, M.R.; Khan, H.; Ou, J.Z.; Ahmed, T.; Harrison, C.J.; et al. Exfoliation of Quasi-Stratified Bi2S3 crystals into Micron-Scale ultrathin corrugated nanosheets. Chem. Mat. 2016, 28, 8942–8950. [Google Scholar] [CrossRef]
- Cao, M.; Wang, H.; Kannan, P.; Ji, S.; Wang, X.; Zhao, Q.; Linkov, V.; Wang, R. Highly efficient Non-Enzymatic glucose sensor based on CuxS hollow nanospheres. Appl. Surf. Sci. 2019, 492, 407–416. [Google Scholar] [CrossRef]
- Han, G.; Popuri, S.R.; Greer, H.F.; Zhang, R.; Ferre-Llin, L.; Bos, J.G.; Zhou, W.; Reece, M.J.; Paul, D.J.; Knox, A.R.; et al. Topotactic Anion-Exchange in thermoelectric nanostructured layered tin chalcogenides with reduced selenium content. Chem. Sci. 2018, 9, 3828–3836. [Google Scholar] [CrossRef] [Green Version]
- Jannat, A.; Haque, F.; Xu, K.; Zhou, C.; Zhang, B.Y.; Syed, N.; Mohiuddin, M.; Messalea, K.A.; Li, X.; Gras, S.L.; et al. Exciton-Driven chemical sensors based on Excitation-Dependent photoluminescent Two-Dimensional SnS. ACS Appl. Mater. Interfaces 2019, 11, 42462–42468. [Google Scholar] [CrossRef]
- Kalantar-zadeh, K.; Ou, J.Z. Biosensors based on Two-Dimensional MoS2. ACS Sens. 2015, 1, 5–16. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, Z.; Wang, J.; Zhang, J. WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuators B Chem. 2017, 240, 273–277. [Google Scholar] [CrossRef]
- Kubendhiran, S.; Sakthivel, R.; Chen, S.-M.; Mutharani, B. Functionalized-Carbon black as a conductive matrix for nickel sulfide nanospheres and its application to Non-Enzymatic glucose sensor. J. Electrochem. Soc. 2018, 165, B96–B102. [Google Scholar] [CrossRef]
- Munaro, J.; Dolcet, P.; Nappini, S.; Magnano, E.; Dengo, N.; Lucchini, G.; Speghini, A.; Gross, S. the role of the synthetic pathways on properties of Ag2S nanoparticles for photothermal applications. Appl. Surf. Sci. 2020, 514, 145856. [Google Scholar] [CrossRef]
- Labiadh, H.; Lahbib, K.; Hidouri, S.; Touil, S.; Chaabane, T.B. Insight of ZnS nanoparticles contribution in different biological uses. Asian Pac. J. Trop. Med. 2016, 9, 757–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Flower-Like CuS superstructures as an efficient 980 nm Laser-Driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23, 3542–3547. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Li, J. Recent advances in optoelectronic properties and applications of Two-Dimensional metal chalcogenides. J. Semicond. 2016, 37, 051001. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Lv, T.; Chu, P.K.; Huo, K. Two-Dimensional transition metal chalcogenides for alkali metal ions storage. ChemSusChem 2020, 13, 1114–1154. [Google Scholar] [CrossRef]
- Matthews, P.D.; McNaughter, P.D.; Lewis, D.J.; O’Brien, P. Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chem. Sci. 2017, 8, 4177–4187. [Google Scholar] [CrossRef] [Green Version]
- Baranov, N.V.; Selezneva, N.V.; Kazantsev, V.A. Magnetism and superconductivity of transition metal chalcogenides. Phys. Met. Met. 2019, 119, 1301–1304. [Google Scholar] [CrossRef]
- Li, H.-Y.; Yoon, J.-W.; Lee, C.-S.; Lim, K.; Yoon, J.-W.; Lee, J.-H. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens. Actuators B Chem. 2018, 255, 2963–2970. [Google Scholar] [CrossRef]
- Du, Y.; Yin, Z.; Zhu, J.; Huang, X.; Wu, X.J.; Zeng, Z.; Yan, Q.; Zhang, H. A general method for the Large-Scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 2012, 3, 1177. [Google Scholar] [CrossRef] [Green Version]
- Goel, S.; Chen, F.; Cai, W. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. Small 2014, 10, 631–645. [Google Scholar] [CrossRef]
- Joo, J.; Na, H.B.; Yu, T.; Yu, J.H.; Kim, Y.W.; Wu, F.; Zhang, J.Z.; Hyeon, T. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 2003, 125, 11100–11105. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, L.; Yu, X. A simple and generalized Heat-Up method for the synthesis of metal sulfide nanocrystals. New J. Chem. 2019, 43, 16007–16011. [Google Scholar] [CrossRef]
- Kuznetsov, A.N.; Stroganova, E.A.; Serov, A.A.; Kirdyankin, D.I.; Novotortsev, V.M. New Quasi-2D Nickel-Gallium mixed chalcogenides based on the Cu3Au-Type extended fragments. J. Alloys Compd. 2017, 696, 413–422. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, T.; Liu, L.; He, Y.; Liu, D.; You, T. Hierarchically porous NiCo2S4 nanowires anchored on flexible electrospun graphitic nanofiber for High-Performance glucose biosensing. J. Alloys Compd. 2020, 819, 153376. [Google Scholar] [CrossRef]
- Behera, C.; Samal, R.; Rout, C.S.; Dhaka, R.S.; Sahoo, G.; Samal, S.L. Synthesis of CuSbS2 nanoplates and CuSbS2-Cu3SbS4 nanocomposite: Effect of sulfur source on different phase formation. Inorg. Chem. 2019, 58, 15291–15302. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Gu, Y.; Hui, B.; Yang, X.; Liu, H.; Chen, S.; Cai, R.; Sun, J.; Zhang, X.; Yang, D. Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv. Energy Mater. 2020, 10, 1904147. [Google Scholar] [CrossRef]
- Stroyuk, O.; Raevskaya, A.; Gaponik, N. Solar Light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 2018, 47, 5354–5422. [Google Scholar] [CrossRef]
- Zheng, L.; Teng, F.; Ye, X.; Zheng, H.; Fang, X. Photo/Electrochemical applications of metal sulfide/TiO2 heterostructures. Adv. Energy Mater. 2019, 10, 1902355. [Google Scholar] [CrossRef]
- Zhou, B.; Song, J.; Xie, C.; Chen, C.; Qian, Q.; Han, B. Mo–Bi–Cd ternary metal chalcogenides: Highly efficient photocatalyst for CO2 reduction to formic acid under visible light. ACS Sustain. Chem. Eng. 2018, 6, 5754–5759. [Google Scholar] [CrossRef]
- Liu, Y.; Song, X.; Guo, Y.; Zhong, Y.; Li, Y.; Sun, Y.; Ji, M.; You, Z.; An, Y. Mild solvothermal syntheses and characterizations of two layered sulfides Ba2Cu2Cd2S5 and Ba3Cu4Hg4S9. J. Alloys Compd. 2020, 829, 154586. [Google Scholar] [CrossRef]
- Wang, T.; Huo, T.; Wang, H.; Wang, C. Quaternary chalcogenides: Promising thermoelectric material and recent progress. Sci. China-Mater. 2019, 63, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, K.J.; Prem Kumar, D.S.; Mallik, R.C.; Malar, P. Ball mill synthesis of bulk quaternary Cu2ZnSnSe4 and thermoelectric studies. J. Electron. Mater. 2016, 46, 30–39. [Google Scholar] [CrossRef]
- Song, Q.; Qiu, P.; Chen, H.; Zhao, K.; Ren, D.; Shi, X.; Chen, L. Improved thermoelectric performance in nonstoichiometric Cu2+δMn1−δSnSe4 quaternary diamondlike compounds. ACS Appl. Mater. Interfaces 2018, 10, 10123–10131. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Qiu, P.; Hao, F.; Zhao, K.; Zhang, T.; Ren, D.; Shi, X.; Chen, L. Quaternary pseudocubic Cu2TMSnSe4 (TM = Mn, Fe, Co) chalcopyrite thermoelectric materials. Adv. Electron. Mater. 2016, 2, 1600312. [Google Scholar] [CrossRef]
- Kempt, R.; Kuc, A.; Heine, T. Two-Dimensional Noble-Metal chalcogenides and phosphochalcogenides. Angew. Chem. Int. Ed. 2020, 59, 9242–9254. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, C.; Matta, S.K.; Jiao, Y.; Ostrikov, K.; Liao, T.; Kou, L.; Du, A. Predicting New Two-Dimensional Pd3(PS4)2 as an Efficient Photocatalyst for Water Splitting. J. Phys. Chem. C 2018, 122, 21927–21932. [Google Scholar] [CrossRef]
- Nie, L.; Zhang, Q. Recent progress in crystalline metal chalcogenides as efficient photocatalysts for organic pollutant degradation. Inorg. Chem. Front. 2017, 4, 1953–1962. [Google Scholar] [CrossRef]
- Cheng, C.; Kong, D.; Wei, C.; Du, W.; Zhao, J.; Feng, Y.; Duan, Q. Self-Template synthesis of hollow ellipsoid Ni-Mn sulfides for supercapacitors, electrocatalytic oxidation of glucose and water treatment. Dalton Trans. 2017, 46, 5406–5413. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Kim, H.-Y.; Kim, B.-S. A novel CuS microflower superstructure based sensitive and selective nonenzymatic glucose detection. Sens. Actuators B Chem. 2016, 233, 93–99. [Google Scholar] [CrossRef]
- Guo, X.; Liu, S.; Yang, M.; Du, H.; Qu, F. Dual Signal amplification photoelectrochemical biosensor for highly sensitive human epidermal growth factor Receptor-2 Detection. Biosens. Bioelectron. 2019, 139, 111312. [Google Scholar] [CrossRef]
- Babu, K.J.; Raj Kumar, T.; Yoo, D.J.; Phang, S.-M.; Gnana Kumar, G. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for Enzyme-Free glucose sensor applications. ACS Sustain. Chem. Eng. 2018, 6, 16982–16989. [Google Scholar] [CrossRef]
- Xue, J.; Yang, L.; Jia, Y.; Zhang, Y.; Wu, D.; Ma, H.; Hu, L.; Wei, Q.; Ju, H. Dual-Quenching electrochemiluminescence resonance energy transfer system from Ru-In2S3 to alpha-MoO3-Au based on protect of protein bioactivity for procalcitonin detection. Biosens. Bioelectron. 2019, 142, 111524. [Google Scholar] [CrossRef] [PubMed]
- Simeonidis, K.; Liébana-Viñas, S.; Wiedwald, U.; Ma, Z.; Li, Z.A.; Spasova, M.; Patsia, O.; Myrovali, E.; Makridis, A.; Sakellari, D.; et al. A Versatile Large-Scale and green process for synthesizing magnetic nanoparticles with tunable magnetic hyperthermia features. RSC Adv. 2016, 6, 53107–53117. [Google Scholar] [CrossRef]
- Vena, M.P.; Jobbagy, M.; Bilmes, S.A. Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials. Sci. Total. Environ. 2016, 565, 804–810. [Google Scholar] [CrossRef]
- Tan, C.; Lai, Z.; Zhang, H. Ultrathin Two-Dimensional multinary layered metal chalcogenide nanomaterials. Adv. Mater. 2017, 29, 1701392. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Li, Y.; Zhu, W.; Wei, Z.; Sun, J.; Li, T.; Wang, J. Ambient Self-Derivation of Nickel-Cobalt hydroxysulfide multistage nanoarray for High-Performance electrochemical glucose sensing. Appl. Surf. Sci. 2020, 505, 144636. [Google Scholar] [CrossRef]
- Hu, X.; Shao, W.; Hang, X.; Zhang, X.; Zhu, W.; Xie, Y. Superior electrical conductivity in hydrogenated layered ternary chalcogenide nanosheets for flexible All-Solid-State supercapacitors. Angew. Chem. Int. Ed. 2016, 55, 5733–5738. [Google Scholar] [CrossRef]
- Zhu, H.; Lai, Z.; Fang, Y.; Zhen, X.; Tan, C.; Qi, X.; Ding, D.; Chen, P.; Zhang, H.; Pu, K. Ternary chalcogenide nanosheets with ultrahigh photothermal conversion efficiency for photoacoustic theranostics. Small 2017, 13, 1604139. [Google Scholar] [CrossRef]
- Baláž, P.; Hegedüs, M.; Achimovičová, M.; Baláž, M.; Tešinský, M.; Dutková, E.; Kaňuchová, M.; Briančin, J. Semi-industrial green mechanochemical syntheses of solar cell absorbers based on quaternary sulfides. ACS Sustain. Chem. Eng. 2018, 6, 2132–2141. [Google Scholar] [CrossRef]
- Wu, K.; Yang, Z.; Pan, S. The first quaternary Diamond-Like semiconductor with 10-Membered LiS4 rings exhibiting excellent nonlinear optical performances. Chem. Commun. 2017, 53, 3010–3013. [Google Scholar] [CrossRef]
- Kubendhiran, S.; Thirumalraj, B.; Chen, S.M.; Karuppiah, C. Electrochemical Co-Preparation of cobalt sulfide/reduced graphene oxide composite for electrocatalytic activity and determination of H2O2 in biological samples. J. Colloid Interface Sci. 2018, 509, 153–162. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, S.; Gui, M.; Asif, M.; Wang, W.; Wang, F.; Liu, H. Graphene paper supported MoS2 nanocrystals monolayer with Cu Submicron-Buds: High-Performance flexible platform for sensing in sweat. Anal. Biochem. 2018, 543, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, J.; Jiang, H.; Wang, X.; Liu, J. orthogonal adsorption of carbon dots and DNA on nanoceria. Langmuir 2020, 36, 2474–2481. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Q.; Xing, Z.; Yang, X. Copper sulfide nanoplates as nanosensors for fast, sensitive and selective detection of DNA. Talanta 2018, 178, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Okoth, O.K.; Yan, K.; Liu, Y.; Zhang, J. Graphene-Doped Bi2S3 nanorods as Visible-Light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosens. Bioelectron. 2016, 86, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Foo, C.Y.; Lim, H.N.; Pandikumar, A.; Huang, N.M.; Ng, Y.H. Utilization of reduced graphene oxide/cadmium Sulfide-Modified carbon cloth for Visible-Light-Prompt Photoelectrochemical Sensor For copper (II) ions. J. Hazard. Mater. 2016, 304, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Shang, A.; Shang, M.; Ma, X.; Song, W. Water-Soluble VS2 quantum dots with unusual fluorescence for biosensing. Sens. Actuators B Chem. 2018, 255, 926–934. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, H.; Wang, X. Multiple strategies for controlled synthesis of atomically precise alloy nanoclusters. Acta Phys. Chim. Sin. 2018, 34, 740–754. [Google Scholar] [CrossRef]
- Shu, Y.; Yan, J.; Lu, Q.; Ji, Z.; Jin, D.; Xu, Q.; Hu, X. Pb Ions Enhanced Fluorescence of Ag2S QDs with Tunable Emission in the NIR-Ⅱ Window: Facile One Pot Synthesis and Their Application in NIR-Ⅱ Fluorescent Biosensing. Sens. Actuators B Chem. 2020, 307, 127593. [Google Scholar] [CrossRef]
- Babamiri, B.; Salimi, A.; Hallaj, R. A Molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using eus nanocrystals as luminophore. Biosens. Bioelectron. 2018, 117, 332–339. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, F.; Huang, Z.; Tan, J.; Zhou, Z.; Yuan, K.; Wang, H. Nitrogen doped lignocellulose/binary metal sulfide modified electrode: Preparation and application for Non-Enzymatic ascorbic acid, dopamine and nitrite sensing. J. Electroanal. Chem. 2017, 806, 150–157. [Google Scholar] [CrossRef]
- Huang, D.; Wang, L.; Zhan, Y.; Zou, L.; Ye, B. Photoelectrochemical biosensor for CEA detection based on SnS2-GR with multiple quenching effects of Au@CuS-GR. Biosens. Bioelectron. 2019, 140, 111358. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, S.; Zhang, S.; Zhao, P.; Wang, J.; Yan, M.; Ge, S.; Yu, J. Peptide Cleavage-Mediated photoelectrochemical signal on-off via CuS electronic extinguisher for PSA detection. Biosens. Bioelectron. 2020, 150, 111958. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Qi, H.; Du, C.; Huang, H.; Wu, S.; Zhang, J.; Song, W. One-Step electrodeposition of High-Quality amorphous molybdenum Sulfide/RGO photoanode for Visible-Light sensitive photoelectrochemical biosensing. Sens. Actuators B Chem. 2018, 266, 71–79. [Google Scholar] [CrossRef]
- Zhang, K.; Lv, S.; Zhou, Q.; Tang, D. CoOOH Nanosheets-Coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sens. Actuators B Chem. 2020, 307, 127631. [Google Scholar] [CrossRef]
- Wang, J.; Long, J.; Liu, Z.; Wu, W.; Hu, C. Label-Free and High-Throughput biosensing of multiple tumor markers on a single Light-Addressable photoelectrochemical sensor. Biosens. Bioelectron. 2017, 91, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cao, J.T.; Dong, Y.X.; Liu, F.R.; Fu, X.L.; Ren, S.W.; Ma, S.H.; Liu, Y.M. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays. Chem. Commun. 2018, 54, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Hu, J.; Wang, M.; Diao, X.K.; Li, C.C.; Zhang, C.Y. Mimic Peroxidase- and Bi2S3 Nanorod-Based photoelectrochemical biosensor for Signal-On detection of polynucleotide kinase. Anal. Chem. 2018, 90, 11478–11485. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, C.; Li, X.; Khan, M.S.; Sun, X.; Ma, H.; Fan, D.; Wei, Q. Zinc-Doping enhanced cadmium sulfide electrochemiluminescence behavior based on Au-Cu alloy nanocrystals quenching for insulin detection. Biosens. Bioelectron. 2017, 97, 115–121. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, H.; Sun, S.; Tang, L.; Cao, Y.; Deng, B. An Ultrasensitive electrochemiluminescence sensor based on reduced graphene Oxide-Copper sulfide composite coupled with capillary electrophoresis for determination of amlodipine besylate in Mice Plasma. Biosens. Bioelectron. 2016, 86, 714–719. [Google Scholar] [CrossRef]
- Chen, D.; Li, S.; Zheng, F. Water Soluble Sulphur Quantum Dots for Selective Ag+ Sensing based on the Ion Aggregation-Induced Photoluminescence Enhancement. Anal. Methods 2016, 8, 632–636. [Google Scholar] [CrossRef]
- Shen, L.; Wang, H.; Liu, S.; Bai, Z.; Zhang, S.; Zhang, X.; Zhang, C. Assembling of sulfur quantum dots in fission of sublimed sulfur. J. Am. Chem. Soc. 2018, 140, 7878–7884. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, D.; Zheng, F.; Zhou, H.; Jiang, S.; Wu, Y. Water-Soluble and lowly toxic sulphur quantum dots. Adv. Funct. Mater. 2014, 24, 7133–7138. [Google Scholar] [CrossRef]
- Song, Y.; Tan, J.; Wang, G.; Gao, P.; Lei, J.; Zhou, L. Oxygen accelerated scalable synthesis of highly fluorescent sulfur quantum dots. Chem. Sci. 2020, 11, 772–777. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Bao, X.; Gao, B.; Li, M. A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent “switch”. Dalton Trans. 2019, 48, 8288–8296. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Z.; Xiong, Y.; Kershaw, S.V.; Li, T.; Wang, Y.; Zhai, Y.; Rogach, A.L. Hydrogen peroxide assisted synthesis of highly luminescent sulfur quantum dots. Angew. Chem. Int. Ed. 2019, 58, 7040–7044. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Wu, Y.; Di, J. A cathodic “Signal-On” photoelectrochemical sensor for Hg2+ detection based on Ion-Exchange with ZnS quantum dots. Sens. Actuators B Chem. 2018, 254, 910–915. [Google Scholar] [CrossRef]
- Saleviter, S.; Fen, Y.W.; Omar, N.A.S.; Daniyal, W.M.E.M.M.; Abdullah, J.; Zaid, M.H.M. Structural and optical studies of cadmium sulfide quantum Dot-Graphene Oxide-Chitosan nanocomposite thin film as a novel SPR spectroscopy active layer. J. Nanomater. 2018, 2018, 4324072. [Google Scholar] [CrossRef]
- Wang, P.; Cao, L.; Wu, Y.; Di, J. A cathodic photoelectrochemical sensor for chromium(VI) based on the use of PbS quantum dot semiconductors on an ito electrode. Microchim. Acta 2018, 185, 356. [Google Scholar] [CrossRef]
- Li, Y.; Tang, L.; Li, R.; Xiang, J.; Teng, K.S.; Lau, S.P. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector. Chin. Phys. B 2019, 28, 037801. [Google Scholar] [CrossRef] [Green Version]
- Aydemir, D.; Hashemkhani, M.; Acar, H.Y.; Ulusu, N.N. In vitro interaction of glutathione S-Transferase-pi enzyme with Glutathione-Coated silver sulfide quantum dots: A novel method for biodetection of glutathione S-Transferase enzyme. Chem. Biol. Drug Des. 2019, 94, 2094–2102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Du, L.; Gu, K.; Zhang, M. Effect of Tm dopant on luminescence, photoelectric properties and electronic structure of in2s3 quantum dots. J. Lumin. 2020, 217, 116775. [Google Scholar] [CrossRef]
- Kang, D.; Bharath Kumar, M.; Son, C.; Park, H.; Park, J. Simple synthesis method and characterizations of Aggregation-Free cysteamine capped PbS quantum dot. Appl. Sci. 2019, 9, 4661. [Google Scholar] [CrossRef] [Green Version]
- Abha, K.; Nebu, J.; Anjali Devi, J.S.; Aparna, R.S.; Anjana, R.R.; Aswathy, A.O.; George, S. Photoluminescence sensing of bilirubin in human serum using L-cysteine tailored manganese doped zinc sulphide quantum dots. Sens. Actuators B Chem. 2019, 282, 300–308. [Google Scholar] [CrossRef]
- Na, W.; Liu, X.; Hu, T.; Su, X. Highly sensitive fluorescent determination of sulfide using BSA-Capped CdS quantum dots. New J. Chem. 2016, 40, 1872–1877. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, J.; Wu, X.; Lin, L.; Weng, S.; Chen, M.; Cai, X.; Lin, X. Switch-On fluorescent strategy based on N and S co-Doped graphene quantum dots (N-S/GQDs) for monitoring pyrophosphate ions in synovial fluid of arthritis patients. Sens. Actuators B Chem. 2016, 229, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhao, D.; Hu, T.; Sun, J.; Yang, X. Highly fluorescent nitrogen and sulfur co-Doped graphene quantum dots for an inner filter Effect-based cyanide sensor. Sens. Actuators B Chem. 2017, 241, 779–788. [Google Scholar] [CrossRef]
- Yao, D.; Liang, A.; Jiang, Z. A fluorometric clenbuterol immunoassay using sulfur and nitrogen doped carbon quantum dots. Microchim. Acta 2019, 186, 323. [Google Scholar] [CrossRef]
- Guo, Z.; Luo, J.; Zhu, Z.; Sun, Z.; Zhang, X.; Wu, Z.-c.; Mo, F.; Guan, A. A facile synthesis of High-Efficient N,S co-Doped carbon dots for temperature sensing application. Dyes Pigment. 2020, 173, 107952. [Google Scholar] [CrossRef]
- Sharma, V.; Kaur, N.; Tiwari, P.; Saini, A.K.; Mobin, S.M. Multifunctional fluorescent “Off-On-Off” nanosensor for Au3+ and S2− employing N-S co-Doped Carbon-Dots. Carbon 2018, 139, 393–403. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, Z.; Zheng, M.; Su, B.; Chen, X.; Chen, X. Electrochemical synthesis of phosphorus and sulfur co-Doped graphene quantum dots as efficient electrochemiluminescent immunomarkers for monitoring okadaic acid. Sens. Actuators B Chem. 2020, 304, 127383. [Google Scholar] [CrossRef]
- Bian, S.; Shen, C.; Qian, Y.; Liu, J.; Xi, F.; Dong, X. Facile synthesis of Sulfur-Doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sens. Actuators B Chem. 2017, 242, 231–237. [Google Scholar] [CrossRef]
- Fan, T.; Zhang, G.; Jian, L.; Murtaza, I.; Meng, H.; Liu, Y.; Min, Y. Facile synthesis of Defect-Rich nitrogen and Sulfur co-doped graphene quantum dots as Metal-Free electrocatalyst for the oxygen reduction reaction. J. Alloys Compd. 2019, 792, 844–850. [Google Scholar] [CrossRef]
- Xu, Q.; Pu, P.; Zhao, J.; Dong, C.; Gao, C.; Chen, Y.; Chen, J.; Liu, Y.; Zhou, H. Preparation of highly photoluminescent Sulfur-Doped carbon dots for Fe(iii) detection. J. Mater. Chem. A 2015, 3, 542–546. [Google Scholar] [CrossRef]
- Amjadi, M.; Manzoori, J.L.; Hallaj, T.; Azizi, N. Sulfur and Nitrogen co-Doped carbon quantum dots as the chemiluminescence probe for detection of Cu2+ Ions. J. Lumin. 2017, 182, 246–251. [Google Scholar] [CrossRef]
- Haque, E.; Kim, J.; Malgras, V.; Reddy, K.R.; Ward, A.C.; You, J.; Bando, Y.; Hossain, M.S.A.; Yamauchi, Y. Recent advances in graphene quantum dots: Synthesis, properties, and applications. Small Methods 2018, 2, 1800050. [Google Scholar] [CrossRef]
- Wang, W.; Xu, S.; Li, N.; Huang, Z.; Su, B.; Chen, X. Sulfur and phosphorus co-Doped graphene quantum dots for fluorescent monitoring of nitrite in pickles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 221, 117211. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, X.; Song, Y.; Lu, S.; Yang, B. Beyond Bottom-up carbon nanodots: Citric-Acid derived organic molecules. Nano Today 2016, 11, 128–132. [Google Scholar] [CrossRef]
- Ganiga, M.; Cyriac, J. An ascorbic acid sensor based on cadmium sulphide quantum dots. Anal. Bioanal. Chem. 2016, 408, 3699–3706. [Google Scholar] [CrossRef]
- Kulchat, S.; Boonta, W.; Todee, A.; Sianglam, P.; Ngeontae, W. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 7–15. [Google Scholar] [CrossRef]
- Ngamdee, K.; Kulchat, S.; Tuntulani, T.; Ngeontae, W. Fluorescence sensor based on d-Penicillamine capped cadmium sulfide quantum dots for the detection of cysteamine. J. Lumin. 2017, 187, 260–268. [Google Scholar] [CrossRef]
- Miao, X.; Yan, X.; Qu, D.; Li, D.; Tao, F.F.; Sun, Z. Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics. ACS Appl. Mater. Interfaces 2017, 9, 18549–18556. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Zaid, M.H.M.; Daniyal, W.M.E.M.M.; Mahdi, M.A. Sensitive surface plasmon resonance performance of cadmium sulfide quantum Dots-Amine functionalized graphene oxide based thin film towards dengue virus E-protein. Opt. Laser Technol. 2019, 114, 204–208. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Anas, N.A.A.; Ramdzan, N.S.M.; Mahdi, M.A. Optical and structural properties of cadmium sulphide quantum dots based thin films as potential sensing material for dengue Virus E-protein. Results Phys. 2018, 11, 734–739. [Google Scholar] [CrossRef]
- Han, X.-L.; Li, Q.; Hao, H.; Liu, C.; Li, R.; Yu, F.; Lei, J.; Jiang, Q.; Liu, Y.; Hu, J. Facile One-Step synthesis of quaternary aginzns quantum dots and their applications for causing bioeffects and detecting Cu2+. RSC Adv. 2020, 10, 9172–9181. [Google Scholar] [CrossRef]
- Haldar, D.; Dinda, D.; Saha, S.K. High selectivity in water soluble MoS2 quantum dots for sensing nitro explosives. J. Mater. Chem. C 2016, 4, 6321–6326. [Google Scholar] [CrossRef]
- Grinyte, R.; Barroso, J.; Saa, L.; Pavlov, V. Modulating the growth of Cysteine-Capped cadmium sulfide quantum dots with enzymatically produced hydrogen peroxide. Nano Res. 2017, 10, 1932–1941. [Google Scholar] [CrossRef]
- Malik, R.; Pinnaka, A.K.; Kaur, M.; Kumar, V.; Tikoo, K.; Singh, S.; Kaushik, A.; Singhal, S. Water-Soluble Glutathione-CdS QDs with exceptional antimicrobial properties synthesized via green route for fluorescence sensing of fluoroquinolones. J. Chem. Technol. Biotechnol. 2019, 94, 1082–1090. [Google Scholar] [CrossRef]
- Bhardwaj, H.; Singh, C.; Pandey, M.k.; Sumana, G. Star shaped zinc sulphide quantum dots Self-Assembled monolayers: Preparation and applications in food toxin detection. Sens. Actuators B Chem. 2016, 231, 624–633. [Google Scholar] [CrossRef]
- Ngamdee, K.; Ngeontae, W. Circular dichroism glucose biosensor based on chiral cadmium sulfide quantum dots. Sens. Actuators B Chem. 2018, 274, 402–411. [Google Scholar] [CrossRef]
- Jacob, J.M.; Rajan, R.; Tom, T.C.; Kumar, V.S.; Kurup, G.G.; Shanmuganathan, R.; Pugazhendhi, A. Biogenic design of ZnS quantum dots—insights into their In-Vitro cytotoxicity, photocatalysis and biosensing properties. Ceram. Int. 2019, 45, 24193–24201. [Google Scholar] [CrossRef]
- Nathiya, D.; Gurunathan, K.; Wilson, J. Size controllable, pH triggered reduction of bovine serum albumin and its adsorption behavior with SnO2/SnS2 quantum dots for biosensing application. Talanta 2020, 210, 120671. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Cao, X.; Zhang, C.; He, T.; Hua, N.; Xian, Y. Rare earth ions enhanced near infrared fluorescence of Ag2S quantum dots for the detection of fluoride ions in living cells. Nanoscale 2017, 9, 14031–14038. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Liu, L.; Hao, X.; Zheng, J.; Liu, W.; Gao, J.; Zhang, C.C.; Wang, Q. Signal transduction from small particles: Sulfur nanodots featuring mercury sensing, cell entry mechanism and in vitro tracking performance. Chem. Eng. J. 2020, 382, 122907. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, Z. Using Zinc Ion-Enhanced fluorescence of sulfur quantum dots to improve the detection of the Zinc(II)-Binding antifungal drug clioquinol. Microchim. Acta 2019, 187, 3. [Google Scholar] [CrossRef]
- Bansal, A.K.; Antolini, F.; Zhang, S.; Stroea, L.; Ortolani, L.; Lanzi, M.; Serra, E.; Allard, S.; Scherf, U.; Samuel, I.D.W. Highly luminescent colloidal CdS quantum dots with efficient Near-Infrared electroluminescence in Light-Emitting diodes. J. Phys. Chem. C 2016, 120, 1871–1880. [Google Scholar] [CrossRef] [Green Version]
- Elakkiya, V.; Menon, M.P.; Nataraj, D.; Biji, P.; Selvakumar, R. Optical detection of CA 15.3 breast cancer antigen using CdS quantum dot. IET Nanobiotechnol. 2017, 11, 268–276. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, F.; He, L.; Peng, D.; Yan, F.; Wang, M.; Zong, W.; Jia, C. electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchim. Acta 2016, 183, 1089–1097. [Google Scholar] [CrossRef]
- Amor-Gutierrez, O.; Iglesias-Mayor, A.; Llano-Suarez, P.; Costa-Fernandez, J.M.; Soldado, A.; Podadera, A.; Parra, F.; Costa-Garcia, A.; de la Escosura-Muniz, A. Electrochemical quantification of Ag2S quantum dots: Evaluation of different surface coating ligands for bacteria determination. Microchim. Acta 2020, 187, 169. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, S.; Zhang, L.; Yu, J.; Yan, M.; Huang, J. Visible photoelectrochemical sensing platform by in situ generated cds quantum dots decorated Branched-TiO2 nanorods equipped with prussian blue electrochromic display. Biosens. Bioelectron. 2017, 89, 859–865. [Google Scholar] [CrossRef]
- Raevskaya, A.; Rozovik, O.; Novikova, A.; Selyshchev, O.; Stroyuk, O.; Dzhagan, V.; Goryacheva, I.; Gaponik, N.; Zahn, D.R.T.; Eychmüller, A. Luminescence and photoelectrochemical properties of Size-Selected aqueous Copper-Doped Ag-In-S quantum dots. RSC Adv. 2018, 8, 7550–7557. [Google Scholar] [CrossRef] [Green Version]
- Mo, F.; Han, Q.; Song, J.; Wu, J.; Ran, P.; Fu, Y. An ultrasensitive “On-Off-On” photoelectrochemical thrombin aptasensor based on perylene tetracarboxylic acid/gold nanoparticles/cadmium sulfide quantum dots amplified matrix. J. Electrochem. Soc. 2018, 165, B679–B685. [Google Scholar] [CrossRef]
- Deng, K.; Wang, H.; Xiao, J.; Li, C.; Zhang, S.; Huang, H. Polydopamine nanospheres loaded with L-cysteine-coated cadmium sulfide quantum dots as photoelectrochemical signal amplifier for PSA detection. Anal. Chim. Acta 2019, 1090, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-X.; Ding, S.-N. Multicolor electrochemiluminescence of cadmium sulfide quantum dots to detect dopamine. J. Electroanal. Chem. 2016, 781, 395–400. [Google Scholar] [CrossRef]
- Wang, C.; Chen, M.; Wu, J.; Mo, F.; Fu, Y. Multi-functional electrochemiluminescence aptasensor based on resonance energy transfer between Au nanoparticles and lanthanum Ion-doped cadmium sulfide quantum dots. Anal. Chim. Acta 2019, 1086, 66–74. [Google Scholar] [CrossRef]
- Wu, F.-F.; Zhou, Y.; Wang, J.-X.; Zhuo, Y.; Yuan, R.; Chai, Y.-Q. A novel electrochemiluminescence immunosensor based on Mn doped Ag2S quantum dots probe for laminin detection. Sens. Actuators B Chem. 2017, 243, 1067–1074. [Google Scholar] [CrossRef]
- Zhou, H.; Han, T.; Wei, Q.; Zhang, S. Efficient enhancement of electrochemiluminescence from cadmium sulfide quantum dots by glucose oxidase mimicking gold nanoparticles for highly sensitive assay of methyltransferase activity. Anal. Chem. 2016, 88, 2976–2983. [Google Scholar] [CrossRef]
- Mishra, H.; Umrao, S.; Singh, J.; Srivastava, R.K.; Ali, R.; Misra, A.; Srivastava, A. pH dependent optical switching and fluorescence modulation of molybdenum sulfide quantum dots. Adv. Opt. Mater. 2017, 5, 1601021. [Google Scholar] [CrossRef]
- Gong, Y.; Fan, Z. Room-Temperature phosphorescence Turn-on detection of DNA based on Riboflavin-Modulated manganese doped Zinc sulfide quantum dots. J. Fluoresc. 2016, 26, 385–393. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, P.; Jiang, Q.; Wang, F.; Pang, D.-W.; Liu, X. Assembly-Enhanced fluorescence from metal nanoclusters and quantum dots for highly sensitive biosensing. Sens. Actuators B Chem. 2019, 279, 334–341. [Google Scholar] [CrossRef]
- Adegoke, O.; Seo, M.W.; Kato, T.; Kawahito, S.; Park, E.Y. Gradient band gap engineered alloyed quaternary/ternary CdZnSeS/ZnSeS quantum dots: An ultrasensitive fluorescence reporter in a conjugated molecular beacon system for the biosensing of influenza virus RNA. J. Mater. Chem. B 2016, 4, 1489–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, M.; Ye, J.; Chen, B.; Wen, Y.; Deng, X.; Liu, Z.-Q. Ratiometric fluorescence detection of stringent ppGpp using Eu-MoS2 QDs test paper. Sens. Actuators B Chem. 2020, 309, 127807. [Google Scholar] [CrossRef]
- Saa, L.; Diez-Buitrago, B.; Briz, N.; Pavlov, V. CdS quantum dots generated In-Situ for fluorometric determination of thrombin activity. Microchim. Acta 2019, 186, 657. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.D.; Takemura, K.; Khorish, I.M.; Nasrin, F.; Ngwe Tun, M.M.; Morita, K.; Park, E.Y. The detection and identification of dengue virus serotypes with quantum dot and AuNP regulated localized surface plasmon resonance. Nanoscale Adv. 2020, 2, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471. [Google Scholar] [CrossRef]
- Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, e1808283. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Jiang, H.; Wang, X. Review-Intracellular sensors based on carbonaceous nanomaterials: A review. J. Electrochem. Soc. 2020, 167, 037540. [Google Scholar] [CrossRef] [Green Version]
- Hui, B.; Zhang, K.; Xia, Y.; Zhou, C. Natural Multi-Channeled wood frameworks for electrocatalytic hydrogen evolution. Electrochim. Acta 2020, 330, 135274. [Google Scholar] [CrossRef]
- Li, C.; Zheng, Y.; Ding, H.; Jiang, H.; Wang, X. Chromium(III)-Doped carbon dots: Fluorometric detection of p-Nitrophenol via inner filter effect quenching. Microchim. Acta 2019, 186, 384. [Google Scholar] [CrossRef]
- Li, C.; Qin, Z.; Wang, M.; Liu, W.; Jiang, H.; Wang, X. Manganese oxide doped carbon dots for Temperature-Responsive biosensing and target bioimaging. Anal. Chim. Acta 2020, 1104, 125–131. [Google Scholar] [CrossRef]
- Tran, H.L.; Doong, R.-a. Sustainable fabrication of green luminescent Sulfur-Doped graphene quantum dots for rapid visual detection of hemoglobin. Anal. Methods 2019, 11, 4421–4430. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, W.; Han, Y.; Chen, X.; Zhu, L.; Tang, W.; Wang, J.; Yue, T.; Li, Z. N,S co-Doped carbon dots based fluorescent "On-Off-On" sensor for determination of ascorbic acid in common fruits. Food Chem. 2018, 258, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, Y.; Nie, Y.; Liu, Y.; Ma, Q. Wavelength-Dependent surface plasmon coupling electrochemiluminescence biosensor based on Sulfur-Doped carbon nitride quantum dots for K-RAS gene detection. Anal. Chem. 2019, 91, 13780–13786. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Bao, C.; Khan, M.S.; Wang, C.; Zhang, Y.; Liu, Q.; Zhang, X.; Wei, Q. A novel Label-Free photoelectrochemical sensor based on N,S-GQDs and CdS co-Sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I. Biosens. Bioelectron. 2018, 106, 14–20. [Google Scholar] [CrossRef]
- Feng, H.; Qian, Z.S. Functional carbon quantum dots: A versatile platform for chemosensing and biosensing. Chem. Rec. 2018, 18, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Yanez-Sedeno, P.; Pingarron, J.M. Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials 2019, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Suvarnaphaet, P.; Pechprasarn, S. Graphene-Based materials for biosensors: A review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef] [Green Version]
- Karimzadeh, A.; Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Optical bio(sensing) using nitrogen doped graphene quantum dots: Recent advances and future challenges. Trac Trends Anal. Chem. 2018, 108, 110–121. [Google Scholar] [CrossRef]
- Meng, A.L.; Sheng, L.Y.; Zhao, K.; Li, Z.J. A controllable Honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene Oxide-poly(3,4-ethylenedioxythiophene) composite through electrodeposition for Non-enzyme glucose sensing. J. Mat. Chem. B 2017, 5, 8934–8943. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, A.B.; Saha, N.; Bhadu, G.R.; Adhikary, B. Newly designed amperometric biosensor for hydrogen peroxide and glucose based on vanadium sulfide nanoparticles. ACS Appl. Nano Mater. 2018, 1, 1339–1347. [Google Scholar] [CrossRef]
- Zhang, X.R.; Liu, M.S.; Liu, H.X.; Zhang, S.S. Low-Toxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells. Biosens. Bioelectron. 2014, 56, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qu, J.H.; Li, S.F.; Qu, J.Y. Catechol biosensor based on ZnS:Ni/ZnS quantums dots and laccase modified glassy carbon electrode. J. Nanosci. Nanotechnol. 2016, 16, 8302–8307. [Google Scholar] [CrossRef]
- Yao, P.; Yu, S.H.; Shen, H.F.; Yang, J.; Min, L.F.; Yang, Z.J.; Zhu, X.S. A TiO2-SnS2 nanocomposite as a novel matrix for the development of an enzymatic electrochemical glucose biosensor. New J. Chem. 2019, 43, 16748–16752. [Google Scholar] [CrossRef]
- Liu, J.; Sun, S.H.; Shang, H.; Lai, J.H.; Zhang, L.L. Electrochemical biosensor based on bienzyme and carbon nanotubes incorporated into an os-complex thin film for continuous glucose detection in Human Saliva. Electroanalysis 2016, 28, 2016–2021. [Google Scholar] [CrossRef]
- Hou, C.; Zhao, D.Y.; Wang, Y.; Zhang, S.F.; Li, S.Y. Preparation of magnetic Fe3O4/PPy@ZIF-8 nanocomposite for glucose oxidase immobilization and used as glucose electrochemical biosensor. J. Electroanal. Chem. 2018, 822, 50–56. [Google Scholar] [CrossRef]
- Wang, L.S.; Gao, X.; Jin, L.Y.; Wu, Q.; Chen, Z.C.; Lin, X.F. amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sens. Actuators B Chem. 2013, 176, 9–14. [Google Scholar] [CrossRef]
Metallic Sulfides | Synthetic Methods | Examples | Potential Applications | References |
---|---|---|---|---|
Binary sulfide | Dip-coating method | WS2 nanoflakes | Sensing | [19] |
Chemical vapor deposition method | CdS nanoflakes | Sensing | [28] | |
Aqueous one-step wet chemistry method | Ag2S nanoparticles | Photothermal cancer treatment | [21] | |
Hydrothermal approach | CuS flower shaped nanoparticles | Photothermal ablation cancer therapy | [23] | |
Coprecipitation method | Fe3S4 nanoparticles | Glucose detection | [53] | |
Exfoliation method | ZnS quasi-spherical nanoparticles | Antibacterial and antifungal activity | [22] | |
Biosynthesis | ZnS nanoparticles | N/A * | [54] | |
Ternary sulfide | Exfoliation method | Ta2NiS5 nanosheets | N/A | [55] |
Hydrothermal approach | NiCo sulfide multistage nanowire array | Glucose detection | [56] | |
Lithium intercalation assisted exfoliation | Cu2WS4 nanosheets | Supercapacitors | [57] | |
Electrochemical Li-intercalation and exfoliation method | Ta2NiS5 nanosheets | Photoacoustic therapy | [58] | |
Quaternary sulfide | Sputtering method | Cu2BaSnS4 nanosheets | Solar energy storage | [37] |
Eco-friendly ball-milling method | Cu2FeSnS4 powder | Solar Cell Absorbers | [59] | |
Solid-state reaction | Li4HgGe2S7 diamond-like nanoparticles | Femtosecond laser systems | [60] | |
Non-metal/metal hetero-sulfide | Exfoliation method | Pd3(PS4)2 nanosheets | Photocatalyst for water splitting | [46] |
Biosensors | Analytes | Linear Range with Detection Limit (S/N = 3) | Practical Application | References |
---|---|---|---|---|
Electrochemical biosensor based on NiCo2S4 | glucose | 0.0005~3.571 mM (R2 = 0.995) with a detection limit 0.167 μM | glucose determination in human blood serum sample, recoveries 98.23~100.61% with RSDs of 3.53~5.12% | [34] |
Electrochemical biosensor based on MoS2 | glucose | 5~1775 μM (R2 = 0.998) with a detection limit of 500 nM | glucose determination in sweat, recoveries (N/A *) | [62] |
lactate | 0.01~18.4 mM (R2 = 0.996) with a detection limit of 0.1 μM | lactate determination in sweat, recoveries (N/A) | ||
Electrochemical biosensor CoS2-MoS2 | ascorbic acid (AA) | 9.9~6582 μM (R2 = 0.997) with a detection limit of 3.0 μM | AA determination in urine sample, recoveries 96.5%~102.7% with RSD within 3% | [71] |
dopamine (DA) | 0.99~261.7 μM (R2 = 0.996) with a detection limit of 0.25 μM | DA determination in urine sample, recoveries 96.5%~102.7% with RSD within 3% | ||
nitrite | 0.5~5160 μM (R2 = 0.997) with a detection limit of 0.20 μM | nitrite determination in urine sample, recoveries 96.5%~102.7% with RSD within 3% | ||
PEC biosensor based on WS2 NW | HER2 molecules | 0.5~10 ng/mL (R2 = 0.998) with a detection limit of 0.36 ng/mL | HER2 determination in serum sample, recoveries 108.2%, 98.6% and 101.3% with RSD 1.5%, 2.3% and 3.2% | [50] |
PEC biosensor based on Bi2S3 nanorods | polynucleotide kinase (PNK) | 0.0005~10 U/mL (R2 = 0.995) with a detection limit of 1.27 × 10−5 U/mL | PNK activity in HEK293T cells, intra-assay with a RSD of 6.27% and interassay with a RSD of 5.52% | [78] |
PEC biosensor based on CuS nanocrystal | prostate specific antigen (PSA) | 0.005~20 ng/mL (R2 = 0.991) with a detection limit of 0.0015 ng/mL | PSA determination in human serum sample, recoveries (N/A) | [73] |
ECL biosensor based on EuS nanocrystals | HIV-1 gene | 3.0 fM~0.3 nM (R2 = 0.996) with a low detection limit of 3.0 fM | HIV-1 gene determination in serum samples, recoveries 95.00~101.2% with RSDs of 1.78~4.2% | [70] |
ECL biosensor based on ZnCd14S | insulin | 0.1 pg/mL~30 ng/mL (R2 = 0.996) with a detection limit of 0.03 pg/mL | insulin determination in human serum samples, recoveries 98.5~103.1% with RSDs of 2.1%~3.7% | [79] |
ECL biosensor based on rGO-CuS composite | amlodipine besylate (AML) | 0.008~5.0 μg/mL (R2 = 0.998) with a detection limit of 2.8 ng/mL | AML determination in plasma samples, recoveries 95.42%~98.50% with RSDs of 3.2% to 4.5%. | [80] |
ECL biosensor based on Ru-In2S3 nanocomposite | procalcitonin | 0.0001~50 ng/mL (R2 = 0.996) with a low detection limit of 12.49 fg/mL | procalcitonin determiantion in human serum, recoveries 95.2%~96.8% with RSD under 3.6% | [52] |
Biosensors | Analytes | Linear Range with Detection Limit (S/N = 3) | Practical Application | References |
---|---|---|---|---|
Electrochemical biosensor based on ZnS quantum dots | clenbuterol antibody | 0.01~10 ng/mL (R2 = 0.991) with a detection limit of 5.5 pg/mL | clenbuterol antibody in pig urine, recoveries 96.39%~103% with RSDs of 0.09%~0.27% | [128] |
Electrochemical biosensor based on Ag2S quantum dots | bacteria | 10−1~103 bacteria/mL (R2 = 0.993) with a detection limit of 1 bacteria/mL | bacterica in human serumm, recoveries (N/A*) | [129] |
PEC biosensor based on CdS quantum dots | H2S | 1.0 nM~5 mM (R2 = 0.991) with a detection limit of 29 ng/mL | H2S released from MCF-7 cells, recoveries (N/A) | [130] |
PEC biosensor based on CdS quantum dots | prostate specific antigen (PAS) | 0.02 pg/mL~200 ng/mL (R2 = 0.997) with a detection limit of 6.8 fg/mL. | PAS in human serum samples, recoveries 96.2%~110.0% with RSDs less than 9.7% | [133] |
ECL biosensor based on CdS quantum dots | dopamine | 8 pM~20 nM (R2 = 0.998) with a detection limit of 3.6 pM | dopamine in human urine and serum samples, recoveries 95.4%~102.6% with RSDs of 0.34%~5.14% | [134] |
ECL biosensor based on lanthanum ion-doped CdS quantum dots | thrombin | 1.00 ×10−16~1.00 ×10−6 mol/L (R2 = 0.996) with limit of detection of 3.00 ×10−17 mol/L | thrombin in human serum, recoveries 98.0%~100.1% | [135] |
ECL biosensor based on Mn doped Ag2S quantum dots | laminin | 10 pg/mL~100 ng/mL (R2 = 0.993) with a low detection limit of 3.2 pg/mL | laminin in human serum, recoveries 96.08%~105.56% | [136] |
PL biosensor based on Mn doped ZnS quantum dots | DNA | 15 μg/L~40 mg/L (R2 = 0.998) with a detection limit of 15 μg/mL | DNA in urine samples, recoveries 97%~103% | [139] |
PL biosensor based on l-cysteine-capped CdS quantum dots | alkaline phosphatase (ALP) | 1~10 nM (R2 = 0.999) with a detection limit of 96 pM | ALP in human serums, recoveries 98.58%~106.60% with RSDs of 1.59%~9.50% | [140] |
PL biosensor based on VS2 quantum dots | glutathione | 0~500 μM (R2 = 0.996) with a detection limit of 0.31 μM | glutathione detection in human serum samples, recoveries 101.0%~109.0% with RSDs of 0.7%~2.7% | [67] |
PL biosensor based on CdZnSeS/ZnSeS quantum dots | influenza virus RNA | detection limit of 5.2 copies/mL | N/A | [141] |
PL biosensor based on MoS2 quantum dots | ppGpp | 25~250 μM (R2 = 0.997) with a detection limit of 23.8 μM | ppGpp in plants, recoveries 100.0%~138.0% with RSDs below 1.4% | [142] |
PL biosensor based on NIR emitting Ag2S quantum dots | F− | 5~260 μM (R2 = 0.9978) with a detection limit of 1.5 μM | F− in living cells | [123] |
PL biosensor based on the NIR-Ⅱ emitting Pb-doped Ag2S quantum dots | H2O2 | 40~800 μM with a detection limit of 5 μM | H2O2 analysis in disinfectant | [69] |
Biosensors | Linear Range | Limit of Detection (LOD) (S/N = 3) | References |
---|---|---|---|
biosensor based on morphous CoxSy nanosheets | 0.2~1380 μM | 0.079 μM | [159] |
biosensor based on VS2 nanoparticles | 0.5 μM~3.0 mM, | 0.224 μM | [160] |
biosensor based on flowerlike NiCo2S4 | 0.5 μM~6 mM | 50 nM | [51] |
biosensor based on Ag2S quantum dots | 0.1 mM~12.2 mM | 0.324 μM | [161] |
biosensor based on ZnS:Ni/ZnS Quantums Dots | 0.1~100 μM | 35 nM | [162] |
biosensor based on TiO2-SnS2 nanocomposite | 0.008~1.13 mM; 1.13~5.53 mM | 1.8 μM | [163] |
biosensor based on bienzyme and carbon nanotubes incorporated into an Os-complex thin film | 0.05~1.5 mM | 3 μM | [164] |
biosensor based on Fe3O4/PPy@ZIF-8 nanocomposite | 1 μM~2 mM | 0.333 μM | [165] |
biosensor based on silver nanowires and chitosan-glucose oxidase film | 10 μM~0.8 mM | 2.83 μM | [166] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, Y.; Jiang, H.; Wang, X. Biosensors Based on Advanced Sulfur-Containing Nanomaterials. Sensors 2020, 20, 3488. https://doi.org/10.3390/s20123488
Li C, Wang Y, Jiang H, Wang X. Biosensors Based on Advanced Sulfur-Containing Nanomaterials. Sensors. 2020; 20(12):3488. https://doi.org/10.3390/s20123488
Chicago/Turabian StyleLi, Chunmei, Yihan Wang, Hui Jiang, and Xuemei Wang. 2020. "Biosensors Based on Advanced Sulfur-Containing Nanomaterials" Sensors 20, no. 12: 3488. https://doi.org/10.3390/s20123488
APA StyleLi, C., Wang, Y., Jiang, H., & Wang, X. (2020). Biosensors Based on Advanced Sulfur-Containing Nanomaterials. Sensors, 20(12), 3488. https://doi.org/10.3390/s20123488