Abstract
Cysteine (CSH) readily stabilizes cadmium sulfide quantum dots (CdS QDs) that grow in aqueous buffered solutions. The oxidation of CSH by hydrogen peroxide (H2O2) at room temperature yields cystine (CSSC), which is less efficient in stabilizing CdS QDs compared to CSH. Herein, we demonstrate that such oxidation causes a decrease in the formation rate of CSH-capped CdS QDs from Cd2+ and S2− ions. For the first time, we combined the oxidation of CSH with the glucose oxidase (GO x )-assisted biocatalytic oxidation of D-glucose, which leads to a buildup of H2O2 in the reaction mixture. The enzymatically modulated in situ growth of CdS QDs was monitored using two techniques: fluorescence spectroscopy and photoelectrochemical (PEC) analysis. This system enables quantification of GO x and glucose in human serum.
Similar content being viewed by others
References
Katz, E.; Willner, I. Integrated nanoparticle–biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem., Int. Ed. 2004, 43, 6042–6108.
Liz-Marzán, L. M. Nanometals: Formation and color. Mater. Today 2004, 7, 26–31.
Li, H.; Xu, D. K. Silver nanoparticles as labels for applications in bioassays. TrAC-Trends Anal. Chem. 2014, 61, 67–73.
Omidfar, K.; Khorsand, F.; Darziani Azizi, M. New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens. Bioelectron. 2013, 43, 336–347.
Mehrabi, M.; Wilson, R. Intercalating gold nanoparticles as universal labels for DNA detection. Small 2007, 3, 1491–1495.
David, C.; Guillot, N.; Shen, H.; Toury, T.; de la Chapelle, M. L. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. Nanotechnology 2010, 21, 475501.
Jia, K.; Adam, P. M.; Marks, R. S.; Ionescu, R. E. Fixed Escherichia coli bacterial templates enable the production of sensitive SERS-based gold nanostructures. Sens. Actuat. B-Chem. 2015, 211, 213–219.
Marks, R. S.; Abdulhalim, I. Nanomaterials for Water Management: Signal Amplification for Biosensing from Nanostructures; Pan Stanford: Boca Ratón, 2016.
Jia, K.; Bijeon, J.-L.; Adam, P.-M.; Ionescu, R. E. Large scale fabrication of gold nano-structured substrates via high temperature annealing and their direct use for the LSPR detection of atrazine. Plasmonics 2013, 8, 143–151.
Mayilo, S.; Kloster, M. A.; Wunderlich, M.; Lutich, A.; Klar, T. A.; Nichtl, A.; Kürzinger, K.; Stefani, F. D.; Feldmann, J. Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett. 2009, 9, 4558–4563.
Saidi, A.; Mirzaei, M.; Zeinali, S. Using antibody coated gold nanoparticles as fluorescence quenchers for simultaneous determination of aflatoxins (B1, B2) by soft modeling method. Chemom. Intell. Lab. Syst. 2013, 127, 29–34.
Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.
Pavlov, V.; Xiao, Y.; Shlyahovsky, B.; Willner, I. Aptamerfunctionalized Au nanoparticles for the amplified optical detection of thrombin. J. Am. Chem. Soc. 2004, 126, 11768–11769.
Xiao, Y.; Pavlov, V.; Shlyahovsky, B.; Willner, I. An OsII-bisbipyridine-4-picolinic acid complex mediates the biocatalytic growth of Au nanoparticles: Optical detection of glucose and acetylcholine esterase inhibition. Chem.—Eur. J. 2005, 11, 2698–2704.
Fanjul-Bolado, P.; Hernández-Santos, D.; González-García, M. B.; Costa-García, A. Alkaline phosphatase-catalyzed silver deposition for electrochemical detection. Anal. Chem. 2007, 79, 5272–5277.
Shlyahovsky, B.; Katz, E.; Xiao, Y.; Pavlov, V.; Willner, I. Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles. Small 2005, 1, 213–216.
Pavlov, V. Enzymatic growth of metal and semiconductor nanoparticles in bioanalysis. Part. Part. Syst. Charact. 2014, 31, 36–45.
Merkoçi, A. Biosensing Using Nanomaterials; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2009.
Garai-Ibabe, G.; Saa, L.; Pavlov, V. Enzymatic productmediated stabilization of CdS quantum dots produced in situ: Application for detection of reduced glutathione, NADPH, and glutathione reductase activity. Anal. Chem. 2013, 85, 5542–5546.
Saa, L.; Mato, J. M.; Pavlov, V. Assays for methionine ?-lyase and S-adenosyl-L-homocysteine hydrolase based on enzymatic formation of CdS quantum dots in situ. Anal. Chem. 2012, 84, 8961–8965.
Chatterjee, A.; Priyam, A.; Das, S. K.; Saha, A. Size tunable synthesis of cysteine-capped CdS nanoparticles by ?-irradiation. J. Colloid Interface Sci. 2006, 294, 334–342.
Kumar, P.; Kumar, P.; Bharadwaj, L. M.; Paul, A. K.; Sharma, S. C.; Kush, P.; Deep, A. Aqueous synthesis of L-cysteine stabilized water-dispersible CdS:Mn quantum dots for biosensing applications. BioNanoScience 2013, 3, 95–101.
Luo, D. Y.; Smith, S. W.; Anderson, B. D. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J. Pharm. Sci. 2005, 94, 304–316.
Winterbourn, C. C.; Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biol. Med. 1999, 27, 322–328.
Barton, J. P.; Packer, J. E.; Sims, R. J. Kinetics of the reaction of hydrogen peroxide with cysteine and cysteamine. J. Chem. Soc., Perkin Trans. 1973, 1547–1549.
Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose oxidase—An overview. Biotechnol. Adv. 2009, 27, 489–501.
Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741.
Devadoss, A.; Sudhagar, P.; Terashima, C.; Nakata, K.; Fujishima, A. Photoelectrochemical biosensors: New insights into promising photoelectrodes and signal amplification strategies. J. Photochem. Photobiol. C 2015, 24, 43–63.
Yue, Z.; Lisdat, F.; Parak, W. J.; Hickey, S. G.; Tu, L. P.; Sabir, N.; Dorfs, D.; Bigall, N. C. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 2013, 5, 2800–2814.
Zhou, H.; Liu, J.; Zhang, S. S. Quantum dot-based photoelectric conversion for biosensing applications. TrAC-Trends Anal. Chem. 2015, 67, 56–73.
Zhao, W.-W.; Wang, J.; Zhu, Y.-C.; Xu, J.-J.; Chen, H.-Y. Quantum dots: Electrochemiluminescent and photoelectrochemical bioanalysis. Anal. Chem. 2015, 87, 9520–9531.
Walcarius, A. Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. TrAC-Trends Anal. Chem. 2012, 38, 79–97.
Long, Y.-T.; Kong, C.; Li, D.-W.; Li, Y.; Chowdhury, S.; Tian, H. Ultrasensitive determination of cysteine based on the photocurrent of nafion-functionalized CdS–MV quantum dots on an ITO electrode. Small 2011, 7, 1624–1628.
Zhao, W.-W.; Ma, Z.-Y.; Yan, D.-Y.; Xu, J.-J.; Chen, H.-Y. In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes: A general and efficient approach for new photoelectrochemical immunoassay. Anal. Chem. 2012, 84, 10518–10521.
Gao, Y.; Ding, X.; Liu, J.; Wang, L.; Lu, Z.; Li, L.; Sun, L. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J. Am. Chem. Soc. 2013, 135, 4219–4222.
Iyer, R.; Pavlov, V.; Katakis, I.; Bachas, L. G. Amperometric sensing at high temperature with a “Wired” thermostable glucose-6-phosphate dehydrogenase from Aquifex aeolicus. Anal. Chem. 2003, 75, 3898–3901.
Vreeke, M. S.; Yong, K. T.; Heller, A. A thermostable hydrogen peroxide sensor based on “Wiring” of soybean peroxidase. Anal. Chem. 1995, 67, 4247–4249.
McNaught, A. D.; Wilkinson, A. IUPAC compendium of chemical terminology. In Gold Book; Blackwell Science: Oxford, UK, 1997.
Saa, L.; Pavlov, V. Enzymatic growth of quantum dots: Applications to probe glucose oxidase and horseradish peroxidase and sense glucose. Small 2012, 8, 3449–3455.
Grinyte, R.; Garai-Ibabe, G.; Saa, L.; Pavlov, V. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3',5,5'-tetramethylbenzidine. Anal. Chim. Acta 2015, 881, 131–138.
Rodriguez, B. L.; Abbott, R. D.; Fujimoto, W.; Waitzfelder, B.; Chen, R.; Masaki, K.; Schatz, I.; Petrovitch, H.; Ross, W.; Yano, K. et al. The American Diabetes Association and World Health Organization classifications for diabetes: Their impact on diabetes prevalence and total and cardiovascular disease mortality in elderly Japanese-American men. Diabetes Care 2002, 25, 951–955.
Li, W. B.; Qian, D. P.; Wang, Q. H.; Li, Y. B.; Bao, N.; Gu, H. Y.; Yu, C. M. Fully-drawn origami paper analytical device for electrochemical detection of glucose. Sens. Actuat. B-Chem. 2016, 231, 230–238.
Li, L.; Liang, B.; Li, F.; Shi, J. G.; Mascini, M.; Lang, Q. L.; Liu, A. H. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose. Biosens. Bioelectron. 2013, 42, 156–162.
Tanne, J.; Schäfer, D.; Khalid, W.; Parak, W. J.; Lisdat, F. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal. Chem. 2011, 83, 7778–7785.
Bergmeyer, H. U. Methods of Enzymatic Analysis; Academic Press: New York, 1974.
Acknowledgements
This work was supported by the Spanish Ministry of Economy and Competitiveness (grant number BIO2014-59741-R).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Grinyte, R., Barroso, J., Saa, L. et al. Modulating the growth of cysteine-capped cadmium sulfide quantum dots with enzymatically produced hydrogen peroxide. Nano Res. 10, 1932–1941 (2017). https://doi.org/10.1007/s12274-016-1378-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-016-1378-1