Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modulating the growth of cysteine-capped cadmium sulfide quantum dots with enzymatically produced hydrogen peroxide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cysteine (CSH) readily stabilizes cadmium sulfide quantum dots (CdS QDs) that grow in aqueous buffered solutions. The oxidation of CSH by hydrogen peroxide (H2O2) at room temperature yields cystine (CSSC), which is less efficient in stabilizing CdS QDs compared to CSH. Herein, we demonstrate that such oxidation causes a decrease in the formation rate of CSH-capped CdS QDs from Cd2+ and S2− ions. For the first time, we combined the oxidation of CSH with the glucose oxidase (GO x )-assisted biocatalytic oxidation of D-glucose, which leads to a buildup of H2O2 in the reaction mixture. The enzymatically modulated in situ growth of CdS QDs was monitored using two techniques: fluorescence spectroscopy and photoelectrochemical (PEC) analysis. This system enables quantification of GO x and glucose in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz, E.; Willner, I. Integrated nanoparticle–biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem., Int. Ed. 2004, 43, 6042–6108.

    Article  Google Scholar 

  2. Liz-Marzán, L. M. Nanometals: Formation and color. Mater. Today 2004, 7, 26–31.

    Article  Google Scholar 

  3. Li, H.; Xu, D. K. Silver nanoparticles as labels for applications in bioassays. TrAC-Trends Anal. Chem. 2014, 61, 67–73.

    Article  Google Scholar 

  4. Omidfar, K.; Khorsand, F.; Darziani Azizi, M. New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens. Bioelectron. 2013, 43, 336–347.

    Article  Google Scholar 

  5. Mehrabi, M.; Wilson, R. Intercalating gold nanoparticles as universal labels for DNA detection. Small 2007, 3, 1491–1495.

    Article  Google Scholar 

  6. David, C.; Guillot, N.; Shen, H.; Toury, T.; de la Chapelle, M. L. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. Nanotechnology 2010, 21, 475501.

    Article  Google Scholar 

  7. Jia, K.; Adam, P. M.; Marks, R. S.; Ionescu, R. E. Fixed Escherichia coli bacterial templates enable the production of sensitive SERS-based gold nanostructures. Sens. Actuat. B-Chem. 2015, 211, 213–219.

    Article  Google Scholar 

  8. Marks, R. S.; Abdulhalim, I. Nanomaterials for Water Management: Signal Amplification for Biosensing from Nanostructures; Pan Stanford: Boca Ratón, 2016.

  9. Jia, K.; Bijeon, J.-L.; Adam, P.-M.; Ionescu, R. E. Large scale fabrication of gold nano-structured substrates via high temperature annealing and their direct use for the LSPR detection of atrazine. Plasmonics 2013, 8, 143–151.

    Article  Google Scholar 

  10. Mayilo, S.; Kloster, M. A.; Wunderlich, M.; Lutich, A.; Klar, T. A.; Nichtl, A.; Kürzinger, K.; Stefani, F. D.; Feldmann, J. Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett. 2009, 9, 4558–4563.

    Article  Google Scholar 

  11. Saidi, A.; Mirzaei, M.; Zeinali, S. Using antibody coated gold nanoparticles as fluorescence quenchers for simultaneous determination of aflatoxins (B1, B2) by soft modeling method. Chemom. Intell. Lab. Syst. 2013, 127, 29–34.

    Article  Google Scholar 

  12. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.

  13. Pavlov, V.; Xiao, Y.; Shlyahovsky, B.; Willner, I. Aptamerfunctionalized Au nanoparticles for the amplified optical detection of thrombin. J. Am. Chem. Soc. 2004, 126, 11768–11769.

    Article  Google Scholar 

  14. Xiao, Y.; Pavlov, V.; Shlyahovsky, B.; Willner, I. An OsII-bisbipyridine-4-picolinic acid complex mediates the biocatalytic growth of Au nanoparticles: Optical detection of glucose and acetylcholine esterase inhibition. Chem.—Eur. J. 2005, 11, 2698–2704.

    Article  Google Scholar 

  15. Fanjul-Bolado, P.; Hernández-Santos, D.; González-García, M. B.; Costa-García, A. Alkaline phosphatase-catalyzed silver deposition for electrochemical detection. Anal. Chem. 2007, 79, 5272–5277.

    Article  Google Scholar 

  16. Shlyahovsky, B.; Katz, E.; Xiao, Y.; Pavlov, V.; Willner, I. Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles. Small 2005, 1, 213–216.

    Article  Google Scholar 

  17. Pavlov, V. Enzymatic growth of metal and semiconductor nanoparticles in bioanalysis. Part. Part. Syst. Charact. 2014, 31, 36–45.

    Article  Google Scholar 

  18. Merkoçi, A. Biosensing Using Nanomaterials; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2009.

  19. Garai-Ibabe, G.; Saa, L.; Pavlov, V. Enzymatic productmediated stabilization of CdS quantum dots produced in situ: Application for detection of reduced glutathione, NADPH, and glutathione reductase activity. Anal. Chem. 2013, 85, 5542–5546.

    Article  Google Scholar 

  20. Saa, L.; Mato, J. M.; Pavlov, V. Assays for methionine ?-lyase and S-adenosyl-L-homocysteine hydrolase based on enzymatic formation of CdS quantum dots in situ. Anal. Chem. 2012, 84, 8961–8965.

    Google Scholar 

  21. Chatterjee, A.; Priyam, A.; Das, S. K.; Saha, A. Size tunable synthesis of cysteine-capped CdS nanoparticles by ?-irradiation. J. Colloid Interface Sci. 2006, 294, 334–342.

    Article  Google Scholar 

  22. Kumar, P.; Kumar, P.; Bharadwaj, L. M.; Paul, A. K.; Sharma, S. C.; Kush, P.; Deep, A. Aqueous synthesis of L-cysteine stabilized water-dispersible CdS:Mn quantum dots for biosensing applications. BioNanoScience 2013, 3, 95–101.

    Article  Google Scholar 

  23. Luo, D. Y.; Smith, S. W.; Anderson, B. D. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J. Pharm. Sci. 2005, 94, 304–316.

    Article  Google Scholar 

  24. Winterbourn, C. C.; Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biol. Med. 1999, 27, 322–328.

    Article  Google Scholar 

  25. Barton, J. P.; Packer, J. E.; Sims, R. J. Kinetics of the reaction of hydrogen peroxide with cysteine and cysteamine. J. Chem. Soc., Perkin Trans. 1973, 1547–1549.

    Google Scholar 

  26. Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose oxidase—An overview. Biotechnol. Adv. 2009, 27, 489–501.

    Article  Google Scholar 

  27. Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741.

    Article  Google Scholar 

  28. Devadoss, A.; Sudhagar, P.; Terashima, C.; Nakata, K.; Fujishima, A. Photoelectrochemical biosensors: New insights into promising photoelectrodes and signal amplification strategies. J. Photochem. Photobiol. C 2015, 24, 43–63.

    Article  Google Scholar 

  29. Yue, Z.; Lisdat, F.; Parak, W. J.; Hickey, S. G.; Tu, L. P.; Sabir, N.; Dorfs, D.; Bigall, N. C. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 2013, 5, 2800–2814.

    Article  Google Scholar 

  30. Zhou, H.; Liu, J.; Zhang, S. S. Quantum dot-based photoelectric conversion for biosensing applications. TrAC-Trends Anal. Chem. 2015, 67, 56–73.

    Article  Google Scholar 

  31. Zhao, W.-W.; Wang, J.; Zhu, Y.-C.; Xu, J.-J.; Chen, H.-Y. Quantum dots: Electrochemiluminescent and photoelectrochemical bioanalysis. Anal. Chem. 2015, 87, 9520–9531.

    Article  Google Scholar 

  32. Walcarius, A. Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. TrAC-Trends Anal. Chem. 2012, 38, 79–97.

    Article  Google Scholar 

  33. Long, Y.-T.; Kong, C.; Li, D.-W.; Li, Y.; Chowdhury, S.; Tian, H. Ultrasensitive determination of cysteine based on the photocurrent of nafion-functionalized CdS–MV quantum dots on an ITO electrode. Small 2011, 7, 1624–1628.

    Article  Google Scholar 

  34. Zhao, W.-W.; Ma, Z.-Y.; Yan, D.-Y.; Xu, J.-J.; Chen, H.-Y. In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes: A general and efficient approach for new photoelectrochemical immunoassay. Anal. Chem. 2012, 84, 10518–10521.

    Article  Google Scholar 

  35. Gao, Y.; Ding, X.; Liu, J.; Wang, L.; Lu, Z.; Li, L.; Sun, L. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J. Am. Chem. Soc. 2013, 135, 4219–4222.

    Article  Google Scholar 

  36. Iyer, R.; Pavlov, V.; Katakis, I.; Bachas, L. G. Amperometric sensing at high temperature with a “Wired” thermostable glucose-6-phosphate dehydrogenase from Aquifex aeolicus. Anal. Chem. 2003, 75, 3898–3901.

    Article  Google Scholar 

  37. Vreeke, M. S.; Yong, K. T.; Heller, A. A thermostable hydrogen peroxide sensor based on “Wiring” of soybean peroxidase. Anal. Chem. 1995, 67, 4247–4249.

    Google Scholar 

  38. McNaught, A. D.; Wilkinson, A. IUPAC compendium of chemical terminology. In Gold Book; Blackwell Science: Oxford, UK, 1997.

    Google Scholar 

  39. Saa, L.; Pavlov, V. Enzymatic growth of quantum dots: Applications to probe glucose oxidase and horseradish peroxidase and sense glucose. Small 2012, 8, 3449–3455.

    Article  Google Scholar 

  40. Grinyte, R.; Garai-Ibabe, G.; Saa, L.; Pavlov, V. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3',5,5'-tetramethylbenzidine. Anal. Chim. Acta 2015, 881, 131–138.

    Article  Google Scholar 

  41. Rodriguez, B. L.; Abbott, R. D.; Fujimoto, W.; Waitzfelder, B.; Chen, R.; Masaki, K.; Schatz, I.; Petrovitch, H.; Ross, W.; Yano, K. et al. The American Diabetes Association and World Health Organization classifications for diabetes: Their impact on diabetes prevalence and total and cardiovascular disease mortality in elderly Japanese-American men. Diabetes Care 2002, 25, 951–955.

    Article  Google Scholar 

  42. Li, W. B.; Qian, D. P.; Wang, Q. H.; Li, Y. B.; Bao, N.; Gu, H. Y.; Yu, C. M. Fully-drawn origami paper analytical device for electrochemical detection of glucose. Sens. Actuat. B-Chem. 2016, 231, 230–238.

    Article  Google Scholar 

  43. Li, L.; Liang, B.; Li, F.; Shi, J. G.; Mascini, M.; Lang, Q. L.; Liu, A. H. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose. Biosens. Bioelectron. 2013, 42, 156–162.

    Article  Google Scholar 

  44. Tanne, J.; Schäfer, D.; Khalid, W.; Parak, W. J.; Lisdat, F. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal. Chem. 2011, 83, 7778–7785.

    Article  Google Scholar 

  45. Bergmeyer, H. U. Methods of Enzymatic Analysis; Academic Press: New York, 1974.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness (grant number BIO2014-59741-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeri Pavlov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinyte, R., Barroso, J., Saa, L. et al. Modulating the growth of cysteine-capped cadmium sulfide quantum dots with enzymatically produced hydrogen peroxide. Nano Res. 10, 1932–1941 (2017). https://doi.org/10.1007/s12274-016-1378-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1378-1

Keywords

Navigation