A Deep Learning Framework for Vibration-Based Assessment of Delamination in Smart Composite Laminates
<p>Schematic of smart composite laminate with various inner and edge delaminations (<b>left</b>) Top and front views (<b>right</b>) exaggerated view of the thickness direction.</p> "> Figure 2
<p>Frequency spectrum of the transient response for: (<b>a</b>) a single case (<span class="html-italic">AL1</span>) to 5 random loadings; (<b>b</b>) Healthy and different delaminated cases to a single random load.</p> "> Figure 3
<p>Schematic of the deep learning-based methodology for structural vibration-based delamination assessment of smart composite laminates.</p> "> Figure 4
<p>Preparation of vibration-based spectrograms for deep learning using the spectrogram function of Matlab.</p> "> Figure 5
<p>Size conversion and normalization of spectral images.</p> "> Figure 6
<p>Architecture of the convolutional neural network for the delamination assessment in smart composite laminates.</p> "> Figure 7
<p>Confusion matrix of the pre-trained convolutional neural network (CNN) on unseen test data.</p> "> Figure 8
<p>Average predictive performance of the pre-trained CNN with respect to: (<b>a</b>) in-plane location of delamination; (<b>b</b>) through-the-thickness interface of delamination.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
3. Numerical Example
4. Proposed Methodology
5. Results and Discussion
- The classifier has distinguished the healthy case from the delaminated cases with 100% accuracy.
- The more severe cases of delaminations (the one that occurs at the mid-plane interface) have been identified with 95%~100% accuracy.
- The pre-trained network can distinguish the inner delamination (AM, BM, and CM) from the edge delaminations (AL, AU, BL, BU, CL, and CU) with 90%~100% accuracy.
- The major loss of accuracy is due confusion between the least severe cases of delaminations (i.e., inner and edge delaminations that occur near the free surface and whose position is furthest from the sensors). More specifically, the smallest accuracy has been observed for CL7 (66%) and CM7 (68%). In case of CL7, the misclassification results are 2% as CL4 (same in-plane location, different interface of delamination), 12% as CM7 (same interface, different in-plane location), 5% as CM4 (different in-plane location, different interface), 2% as CU7 (same interface, different in-plane location), 12% as BL7 (same interface, different in-plane location), and 1% as BM4 (different in-plane location, different interface). Herein, major misclassification is due to confusion between delaminations at the less severe interface along the thickness i.e., D7. Same is the case for misclassifications of CM7.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Elmarakbi, A. Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Chung, D.D. Composite Materials: Science and Applications; Springer-Verlag: London, UK, 2010. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Structural Health Monitoring of Aerospace Composites; Academic Press: London, UK, 2015. [Google Scholar]
- Irving, P.E.; Soutis, C. Polymer Composites in the Aerospace Industry; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar]
- Mei, H.; Giurgiutiu, V. Guided wave excitation and propagation in damped composite plates. Struct. Health Monit. 2019, 18, 690–714. [Google Scholar] [CrossRef]
- Talreja, R. Manufacturing defects in composites and their effects on performance. In Polymer Composites in the Aerospace Industry; Irving, P., Ed.; Woodhead Publishing: Cambridge, UK, 2020; pp. 83–97. [Google Scholar]
- Shi, Y.; Swait, T.; Soutis, C. Modelling damage evolution in composite laminates subjected to low velocity impact. Composite Struct. 2012, 94, 2902–2913. [Google Scholar] [CrossRef]
- Khan, A.; Kim, H.S.; Youn, B.D. Modeling and assessment of partially debonded piezoelectric sensor in smart composite laminates. Int. J. Mech. Sci. 2017, 131–132, 26–36. [Google Scholar] [CrossRef]
- Trendafilova, I.; Palazzetti, R.; Zucchelli, A. Delamination assessment in structures made of composites based on general signal correlation. Int. J. Struct. Stab. Dyn. 2014, 14, 1440022. [Google Scholar] [CrossRef]
- Kashtalyan, M.; Soutis, C. The effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 107–119. [Google Scholar] [CrossRef]
- Wilk, J. Assessing the hazard of delamination propagation in composites using numerical analysis. Compos. Theory Pract. 2015, 15, 34–38. [Google Scholar]
- Haselbach, P.U.; Bitsche, R.D.; Branner, K. The effect of delaminations on local buckling in wind turbine blades. Renew. Energy 2016, 85, 295–305. [Google Scholar] [CrossRef]
- Duchene, P.; Chaki, S.; Ayadi, A.; Krawczak, P. A review of non-destructive techniques used for mechanical damage assessment in polymer composites. J. Mater. Sci. 2018, 53, 7915–7938. [Google Scholar] [CrossRef]
- Balakrishnan, V.S.; Seidlitz, H. Potential repair techniques for automotive composites: A review. Compos. Part B Eng. 2018, 145, 28–38. [Google Scholar] [CrossRef]
- Khan, A.; Kim, H.S. Assessment of sensor debonding failure in system identification of smart composite laminates. NDT E Int. 2018, 93, 24–33. [Google Scholar] [CrossRef]
- Khan, A.; Lee, H.S.; Kim, H.S. Analysis of sensor-debonding failure in active vibration control of smart composite plate. J. Intell. Mater. Syst. Struct. 2017, 28, 2603–2616. [Google Scholar] [CrossRef]
- Soman, R.N.; Majewska, K.; Mieloszyk, M.; Ostachowicz, W. Damage assessment in composite beam using infrared thermography, optical sensors, and terahertz technique. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2018, 1, 031001. [Google Scholar] [CrossRef]
- Cheng, L.; Tian, G.Y. Comparison of nondestructive testing methods on detection of delaminations in composites. J. Sens. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Katunin, A.; Dragan, K.; Dziendzikowski, M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Compos. Struct. 2015, 127, 1–9. [Google Scholar] [CrossRef]
- Jasinien, E.; Raiutis, R.; Voleiis, A.; Vladiauskas, A.; Mitchard, D.; Amos, M. NDT of wind turbine blades using adapted ultrasonic and radiographic techniques. Insight-Non-Destr. Test. Cond. Monit. 2009, 51, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Trendafilova, I. Triboelectric sensor as a dual system for impact monitoring and prediction of the damage in composite structures. Nano Energy 2019, 60, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Wang, B.; Hao, W.; Luo, Y.; Chen, H. Localization and characterization of delamination in laminates using the local wavenumber method. Compos. Struct. 2020, 238, 111972. [Google Scholar] [CrossRef]
- Grassia, L.; Iannone, M.; Califano, A.; D’Amore, A. Strain based method for monitoring the health state of composite structures. Compos. Part B Eng. 2019, 176, 107253. [Google Scholar] [CrossRef]
- Yang, C.; Oyadiji, S.O. Detection of delamination in composite beams using frequency deviations due to concentrated mass loading. Compos. Struct. 2016, 146, 1–13. [Google Scholar] [CrossRef]
- Mei, H.; Migot, A.; Haider, M.F.; Joseph, R.; Bhuiyan, M.Y.; Giurgiutiu, V. Vibration-Based In-Situ Detection and Quantification of Delamination in Composite Plates. Sensors 2019, 19, 1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikdar, S.; Fiborek, P.; Kudela, P.; Banerjee, S.; Ostachowicz, W. Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditions. Smart Mater. Struct. 2018, 28, 015021. [Google Scholar] [CrossRef]
- Kundu, A.; Sikdar, S.; Eaton, M.; Navaratne, R. A Generic Framework for Application of Machine Learning in Acoustic Emission-Based Damage Identification. In Proceedings of the 13th International Conference on Damage Assessment of Structures, Porto, Portugal, 9–10 July 2019; pp. 244–262. [Google Scholar] [CrossRef]
- Khan, A.; Kim, H.S. Assessment of delaminated smart composite laminates via system identification and supervised learning. Compos. Struct. 2018, 206, 354–362. [Google Scholar] [CrossRef]
- Chen, D.-M.; Xu, Y.F.; Zhu, W.D. A Comprehensive Study on Detection of Hidden Delamination Damage in a Composite Plate Using Curvatures of Operating Deflection Shapes. J. Nondestruct. Eval. 2019, 38, 54. [Google Scholar] [CrossRef]
- Yelve, N.P.; Mitra, M.; Mujumdar, P.M. Detection of delamination in composite laminates using Lamb wave based nonlinear method. Compos. Struct. 2017, 159, 257–266. [Google Scholar] [CrossRef]
- Feng, B.; Ribeiro, A.L.; Ramos, H.G. Using guided ultrasonic wave inspection to quantify the length of delaminations in composite laminates. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018. [Google Scholar]
- Dafydd, I.; Sharif Khodaei, Z. Analysis of barely visible impact damage severity with ultrasonic guided Lamb waves. Struct. Health Monit. 2019. [Google Scholar] [CrossRef]
- Li, G.; Neerukatti, R.K.; Chattopadhyay, A. Ultrasonic guided wave propagation in composites including damage using high-fidelity local interaction simulation. J. Intell. Mater. Syst. Struct. 2018, 29, 969–985. [Google Scholar] [CrossRef]
- Huang, B.; Koh, B.-H.; Kim, H.S. PCA-based damage classification of delaminated smart composite structures using improved layerwise theory. Comput. Struct. 2014, 141, 26–35. [Google Scholar] [CrossRef]
- Minak, G.; Palazzetti, R.; Trendafilova, I.; Zucchelli, A. Localization of a delamination and estimation of its length in a composite laminate beam by the VSHM and pattern recognition methods. Mech. Compos. Mater. 2010, 46, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Montalvao, D. A Review of Vibration-based Structural Health Monitoring with Special Emphasis on Composite Materials. Shock Vib. Dig. 2006, 38, 295–324. [Google Scholar] [CrossRef]
- Yang, B.; Xuan, F.-Z.; Chen, S.; Zhou, S.; Gao, Y.; Xiao, B. Damage localization and identification in WGF/epoxy composite laminates by using Lamb waves: Experiment and simulation. Compos. Struct. 2017, 165, 138–147. [Google Scholar] [CrossRef]
- Prasad, S.M.; Balasubramaniam, K.; Krishnamurthy, C.V. Structural health monitoring of composite structures using Lamb wave tomography. Smart Mater. Struct. 2004, 13, N73. [Google Scholar] [CrossRef]
- Kessler, S.S.; Spearing, S.M.; Atalla, M.J. In-situ damage detection of composites structures using Lamb wave methods. In Proceedings of the First European Workshop on Structural Health Monitoring, Paris, France, 10–12 July 2002; pp. 374–381. [Google Scholar]
- Abbas, M.; Shafiee, M. Structural health monitoring (SHM) and determination of surface defects in large metallic structures using ultrasonic guided waves. Sensors 2018, 18, 3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Bogue, R. Smart materials: A review of capabilities and applications. Assem. Autom. 2014, 34, 16–22. [Google Scholar] [CrossRef]
- Leckey, C.A.; Wheeler, K.R.; Hafiychuk, V.N.; Hafiychuk, H.; Timuçin, D.A. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment. Ultrasonics 2018, 84, 187–200. [Google Scholar] [CrossRef]
- Memmolo, V.; Monaco, E.; Boffa, N.D.; Maio, L.; Ricci, F. Guided wave propagation and scattering for structural health monitoring of stiffened composites. Compos. Struct. 2018, 184, 568–580. [Google Scholar] [CrossRef]
- Sha, G.; Radzienski, M.; Soman, R.; Cao, M.; Ostachowicz, W.; Xu, W. Multiple damage detection in laminated composite beams by data fusion of Teager energy operator-wavelet transform mode shapes. Compos. Struct. 2020, 235, 111798. [Google Scholar] [CrossRef]
- Raut, N.P.; Kolekar, A.B.; Gombi, S.L. Methods of damage detection on composites under low velocity impact. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Tiachacht, S.; Slimani, M.; Khatir, S.; Behtani, A.; Mansouri, L.; Bouazzouni, A.; Wahab, M.A. Damage Assessment of Laminated Composite Plates Using a Modified Cornwell Indicator. In Proceedings of the 13th International Conference on Damage Assessment of Structures, Porto, Portugal, 9–10 July 2019; pp. 853–862. [Google Scholar] [CrossRef]
- Dong, S.; Yuan, M.; Wang, Q.; Liang, Z. A Modified Empirical Wavelet Transform for Acoustic Emission Signal Decomposition in Structural Health Monitoring. Sensors 2018, 18, 1645. [Google Scholar] [CrossRef] [Green Version]
- Godin, N.; Reynaud, P.; Fantozzi, G. Challenges and Limitations in the Identification of Acoustic Emission Signature of Damage Mechanisms in Composites Materials. Appl. Sci. 2018, 8, 1267. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Chattopadhyay, A.; Ghoshal, A. Dynamic Analysis of Composite Laminates with Multiple Delamination Using Improved Layerwise Theory. AIAA J. 2003, 41, 1771–1779. [Google Scholar] [CrossRef]
- Kim, H.S.; Ghoshal, A.; Chattopadhyay, A.; Prosser, W.H. Development of Embedded Sensor Models in Composite Laminates for Structural Health Monitoring. J. Reinf. Plast. Compos. 2004, 23, 1207–1240. [Google Scholar] [CrossRef]
- Huang, B.; Kim, H.S.; Yoon, G.H. Modeling of a partially debonded piezoelectric actuator in smart composite laminates. Smart Mater. Struct. 2015, 24, 075013. [Google Scholar] [CrossRef]
- Shaheen, F.; Verma, B.; Asafuddoula, M. Impact of Automatic Feature Extraction in Deep Learning Architecture. In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Queensland, Australia, 30 November–2 December 2016; pp. 1–8. [Google Scholar]
- Cerna, M.; Harvey, A.F. The Fundamentals of FFT-Based Signal Analysis and Measurement; Application Note 041, National Instruments. 2000. Available online: http://www.ni.com/white-paper/4278/en/ (accessed on 18 April 2020).
- Zhang, X.; Zou, Y.; Shi, W. Dilated convolution neural network with LeakyReLU for environmental sound classification. In Proceedings of the 2017 22nd International Conference on Digital Signal Processing (DSP), London, UK, 23–25 August 2017; pp. 1–5. [Google Scholar]
- Wang, S.-H.; Phillips, P.; Sui, Y.; Liu, B.; Yang, M.; Cheng, H. Classification of Alzheimer’s Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling. J. Med. Syst. 2018, 42, 85. [Google Scholar] [CrossRef]
- Habibi Aghdam, H.; Jahani Heravi, E. (Eds.) Convolutional Neural Networks. In Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification; Springer International Publishing: Cham, Switzerland, 2017; pp. 85–130. ISBN 978-3-319-57550-6. [Google Scholar]
- Aggarwal, C.C. Convolutional Neural Networks. In Neural Networks and Deep Learning: A Textbook; Springer International Publishing: Cham, Switzerland, 2018; pp. 315–371. ISBN 978-3-319-94463-0. [Google Scholar]
- Sultan, R.; Guirguis, S.; Younes, M.; El-Soaly, E. Effect of the Thickness-wise Location Delamination on Natural Frequency for Laminate Composite. Int. J. Appl. Eng. Res. 2013, 8, 157–170. [Google Scholar]
- Kim, H.S.; Kim, J.; Choi, S.-B.; Ghoshal, A.; Chattopadhyay, A. Modal-Strain-Based Damage Index of Laminated Composite Structures Using Smooth Transition of Displacements. AIAA J. 2007, 45, 2972–2978. [Google Scholar] [CrossRef]
- Wang, K.; Liu, M.; Cao, W.; Yang, W.; Su, Z.; Cui, F. Detection and sizing of disbond in multilayer bonded structure using modally selective guided wave. Struct. Health Monit. 2019. [Google Scholar] [CrossRef]
- Mei, H.; James, R.; Haider, M.F.; Giurgiutiu, V. Multimode Guided Wave Detection for Various Composite Damage Types. Appl. Sci. 2020, 10, 484. [Google Scholar] [CrossRef] [Green Version]
- Barman, S.K.; Jebieshia, T.R.; Tiwari, P.; Maiti, D.K.; Maity, D. Two-Stage Inverse Method to Detect Delamination in Composite Beam Using Vibration Responses. AIAA J. 2019, 57, 1312–1322. [Google Scholar] [CrossRef]
- Gómez Muñoz, C.Q.; García Marquez, F.P.; Hernandez Crespo, B.; Makaya, K. Structural health monitoring for delamination detection and location in wind turbine blades employing guided waves. Wind Energy 2019, 22, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Kim, N.; Shin, J.K.; Kim, H.S.; Youn, B.D. Damage assessment of smart composite structures via machine learning: A review. JMST Adv. 2019, 1, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Della, C.N.; Shu, D. Vibration of Delaminated Composite Laminates: A Review. Appl. Mech. Rev. 2007, 60, 1–20. [Google Scholar] [CrossRef]
- Dahak, M.; Touat, N.; Kharoubi, M. Damage detection in beam through change in measured frequency and undamaged curvature mode shape. Inverse Probl. Sci. Eng. 2019, 27, 89–114. [Google Scholar] [CrossRef]
- Ullah, I.; Sinha, J.K.; Pinkerton, A. Vibration-Based Delamination Detection in a Composite Plate. Mech. Adv. Mater. Struct. 2013, 20, 536–551. [Google Scholar] [CrossRef]
- Huang, B.; Kim, H.S. Frequency response analysis of a delaminated smart composite plate. J. Intell. Mater. Syst. Struct. 2015, 26, 1091–1102. [Google Scholar] [CrossRef]
E1 | E2, E3 | G12, G13 | G23 | ν12, ν13 | ν23 | |
---|---|---|---|---|---|---|
372 GPa | 4.12 GPa | 3.99 GPa | 3.6 GPa | 1788.5 kg/m3 | 0.275 | 0.42 |
E | ν | d31, d32 | d24, d15 | d36 | |
---|---|---|---|---|---|
69 GPa | 0.31 | 7700 kg/m3 | 179 × 10−12 C/N | −741 × 10−12 C/N | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Shin, J.K.; Lim, W.C.; Kim, N.Y.; Kim, H.S. A Deep Learning Framework for Vibration-Based Assessment of Delamination in Smart Composite Laminates. Sensors 2020, 20, 2335. https://doi.org/10.3390/s20082335
Khan A, Shin JK, Lim WC, Kim NY, Kim HS. A Deep Learning Framework for Vibration-Based Assessment of Delamination in Smart Composite Laminates. Sensors. 2020; 20(8):2335. https://doi.org/10.3390/s20082335
Chicago/Turabian StyleKhan, Asif, Jae Kyoung Shin, Woo Cheol Lim, Na Yeon Kim, and Heung Soo Kim. 2020. "A Deep Learning Framework for Vibration-Based Assessment of Delamination in Smart Composite Laminates" Sensors 20, no. 8: 2335. https://doi.org/10.3390/s20082335
APA StyleKhan, A., Shin, J. K., Lim, W. C., Kim, N. Y., & Kim, H. S. (2020). A Deep Learning Framework for Vibration-Based Assessment of Delamination in Smart Composite Laminates. Sensors, 20(8), 2335. https://doi.org/10.3390/s20082335