Challenges and Limitations in the Identification of Acoustic Emission Signature of Damage Mechanisms in Composites Materials
<p>Schematic diagram of an instrumented specimen with four sensors, (<b>a</b>) on ceramic matrix composites (CMC) samples without a waveguide (<b>b</b>) on CMC samples with a waveguide.</p> "> Figure 2
<p>Calibration curve with the reciprocity method. Sensibility in reception for a sensor μ80 on steel material for the Rayleigh waves.</p> "> Figure 3
<p>(<b>a</b>) Amplitude and frequency recorded by a μ80 sensor for signals of different frequencies and same energy generated by an acousto-ultrasonic card. (× Weighted Frequency, * Peak Frequency, + Central Frequency and ◊ Average Frequency) (<b>b</b>) PPi versus input frequency. (The input signal is generated with a specific frequency equal to 150 kHz up to 950 kHz, amplitude 5 volts and rise time 20 μs. (Propagation distance of 100 mm, composite material propagation medium with undamaged SiC<sub>f</sub>/SiC, actuator μ80 sensor).</p> "> Figure 3 Cont.
<p>(<b>a</b>) Amplitude and frequency recorded by a μ80 sensor for signals of different frequencies and same energy generated by an acousto-ultrasonic card. (× Weighted Frequency, * Peak Frequency, + Central Frequency and ◊ Average Frequency) (<b>b</b>) PPi versus input frequency. (The input signal is generated with a specific frequency equal to 150 kHz up to 950 kHz, amplitude 5 volts and rise time 20 μs. (Propagation distance of 100 mm, composite material propagation medium with undamaged SiC<sub>f</sub>/SiC, actuator μ80 sensor).</p> "> Figure 4
<p>Evolution of the recorded acoustic energy, the frequency centroid and the relative modulus versus strain for a tensile test on CMC at room temperature. (The input signal is generated with a frequency in the range of 150 kHz and 950 kHz, amplitude 5 volts and rise time 20 μs, actuator μ80 sensor).</p> "> Figure 5
<p>Stress-strain curve and the cumulated recorded energy during a tensile test on glass fibres/vinylester matrix monitored with two types of sensors (μ80 and pico HF) located at the same place on the gauge length on each face.</p> "> Figure 6
<p>Frequency centroid versus amplitude for the signals recorded during a tensile test with two types of sensors μ80 and pico HF located on the gauge length at the same place (<b>a</b>) Glass fibres/polyamide 6.6 matrix and (<b>b</b>) glass fibres/vinylester matrix.</p> "> Figure 7
<p>Results of the classification in the plane Frequency Centroid/Amplitude for the data recorded during tensile tests of glass fibre/Vinylester composites (<b>a</b>) data recorded with the pico HF sensors and (<b>b</b>) with the μ80 sensors. (For the classification, the selected descriptors are Rise time, Duration, amplitude, energy, FP (frequency peak) and FC (frequency centroid)).</p> "> Figure 8
<p>Radar chart for the four classes obtained with the two kinds of sensors for the data recorded during tensile tests of glass fibre/Vinylester composites (<b>a</b>) μ80 sensor and (<b>b</b>) picoHF sensor (class blue: highest rise time, Black class: Highest energy, green class: second class in energy term, red class: the last one class) (E energy, RT rise time, D duration, A amplitude, RA rise angle, AF average frequency and FC frequency centroid).</p> "> Figure 9
<p>(<b>a</b>) Frequency centroid versus amplitude for the data collected during a tensile test on CMC composite with four similar sensors applied on the surface of the specimen (<b>b</b>) Peak Frequency versus amplitude for the signals located along the gauge length during a tensile test on CMC composite, data recorded with and without waveguides.</p> "> Figure 9 Cont.
<p>(<b>a</b>) Frequency centroid versus amplitude for the data collected during a tensile test on CMC composite with four similar sensors applied on the surface of the specimen (<b>b</b>) Peak Frequency versus amplitude for the signals located along the gauge length during a tensile test on CMC composite, data recorded with and without waveguides.</p> "> Figure 10
<p>(<b>a</b>) Initial dataset with four artificial classes (<b>b</b>) results of the segmentation, accordingly to the DB (Davies and Bouldin) and SI (Silhouette) indices, with the 18 descriptors selected.</p> "> Figure 11
<p>Energy cumulative distribution functions for a fatigue tests at 450 °C on CMC composite (±5 mm interval around the middle of the gauge length for strain lower than 0.1%).</p> ">
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Material and Mechanical Tests
2.2. Acoustic Emission Recording
2.3. Sensor Calibration
2.4. Acousto-Ultrasonic Card
2.5. AE Analysis: From the Descriptor to the Classification
2.6. Sensor Coupling
3. Results and Discussion
3.1. Response of the Sensor with AU Method
3.2. Influence of the Choice of Sensor
3.3. Influence of the Sensor Position
3.4. Influence of the Descriptors Selection
3.5. Influence of the Sensors Coupling
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sause, M. Situ Monitoring of Fiber-Reinforced Composites: Theory, Basic Concepts, Methods, and Applications; Springer Series in Materials Science; Springer: Berlin, Germany, 2016; Volume 242. [Google Scholar]
- Godin, N.; Reynaud, P.; Fantozzi, G. Acoustic Emission and Durability of Composites Materials; ISTE-Wiley: London, UK, 2018; ISBN 9781786300195. [Google Scholar]
- Romhany, G.; Czigany, T.; Karger-Kocsis, J. Failure assessment and evaluation of damage development and crack growth in polymer composites via localization and acoustic emission events: A review Polymer Reviews. Polym. Rev. 2017, 57, 397–439. [Google Scholar] [CrossRef]
- Morscher, G.N.; Godin, N. Use of Acoustic Emission for Ceramic Matrix Composites; John Wiley&Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 569–590. [Google Scholar]
- Anastassopoulos, A.; Philippidis, T. Clustering methodology for the evaluation of acoustic emission from composites. J. Acoust. Emiss. 1995, 13, 11–12. [Google Scholar]
- Huguet, S.; Godin, N.; Gaertner, R.; Salmon, L.; Villard, D. Use of acoustic emission to identify damages modes in glass fibre reinforced polyester. Compos. Sci. Technol. 2002, 62, 1433–1444. [Google Scholar] [CrossRef]
- Kostopoulos, V.; Loutas, T.; Kontsos, A.; Sotiriadis, G.; Pappas, Y. On the identification of the failure machanisms in oxide/oxide composites using acoustic emission. NDT E Int. 2003, 36, 571–580. [Google Scholar] [CrossRef]
- Maillet, E.; Godin, N.; R’Mili, M.; Reynaud, P.; Lamon, J.; Fantozzi, G. Analysis of Acoustic Emission energy release during static fatigue tests at intermediate temperatures on Ceramic Matrix Composites: Towards rutpure time prediction. Compos. Sci. Technol. 2012, 72, 1001–1007. [Google Scholar] [CrossRef]
- Ramasso, E.; Placet, V.; Boubakar, L. Unsupervised Consensus Clustering of Acoustic Emission Time-Series for Robust Damage Sequence Estimation in Composites. IEEE Trans. Instrum. Meas. 2015, 64, 3297–3307. [Google Scholar] [CrossRef]
- Marec, A.; Thomas, J.-H.; El Guerjouma, R. Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 2008, 22, 1441–1464. [Google Scholar] [CrossRef]
- Li, L.; Lomov, S.V.; Yan, X. Correlation of acoustic emission with optically observed damage in a glass/epoxy woven laminate under tensile loading. Compos. Struct. 2015, 123, 45–53. [Google Scholar] [CrossRef]
- Malpot, A.; Touchard, F.; Bergamo, S. An investigation of the influence of moisture on fatigue damage mechanisms in a woven glass-fibre-reinforced PA66 composite using acoustic emission and infrared thermography. Compos. Part B Eng. 2017, 130, 11–20. [Google Scholar] [CrossRef]
- Sibil, A.; Godin, N.; R’Mili, M.; Maillet, E.; Fantozzi, G. Optimization of acoustic emission data clustering by a genetic algorithm method. J. Nondestruct. Eval. 2012, 31, 169–180. [Google Scholar] [CrossRef]
- Godin, N.; Reynaud, P.; R’Mili, M.; Fantozzi, G. Identification of Damage Mechanisms with Acoustic Emission Monitoring: Interests and Limitations; Giovanni Pappalettera, G., Barile, C., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2017. [Google Scholar]
- Sause, M.; Gribov, A.; Unwin, A.R.; Horn, S. Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recognit. Lett. 2012, 33, 17–23. [Google Scholar] [CrossRef]
- Sause, M.; Horn, S. Simulation of acoustic emission in planar carbon fiber reinforced plastic specimens. J. Nondestr. Eval. 2010, 29, 123–142. [Google Scholar] [CrossRef]
- Sause, M.; Hamstad, M.; Horn, S. Finite element modelling of lamb wave propagation in anisotropic hybrid materials. Compos. Part B 2013, 53, 249–257. [Google Scholar] [CrossRef]
- Ben Khalifa, W.; Jezzine, K.; Hello, G.; Grondel, S. Analytical modelling of acoustic emission from buried or surface-breaking cracks under stress. J. Phys. Conf. Ser. 2012, 353, 012016. [Google Scholar] [CrossRef] [Green Version]
- Le Gall, T.; Godin, N.; Monnier, T.; Fusco, C.; Hamam, Z. Acoustic Emission modeling from the source to the detected signal: Model validation and identification of relevant descriptors. J. Acoust. Emiss. 2016, 34, S59–S64. [Google Scholar]
- Loutas, T.; Eleftheroglou, N.; Zarouchas, D. A data-driven probabilistic framework towards the in-situ prognostics of fatigue life of composites based on acoustic emission data. Compos. Struct. 2017, 161, 522–529. [Google Scholar] [CrossRef]
- Suresh Kumar, C.; Arumugam, V.; Sengottuvelusamy, R.; Srinivasan, S.; Dhakal, H.N. Failure strength prediction of glass/epoxy composite laminates from acoustic emission parameters using artificial neural network. Appl. Acoust. 2017, 115, 32–41. [Google Scholar] [CrossRef]
- Eleftheroglou, N.; Loutas, T. Fatigue damage diagnostics and prognostics of composites utilizing structural health monitoring data and stochastic processes. Struct. Health Monit. 2016, 15, 473–488. [Google Scholar] [CrossRef]
- Arumugam, V.; Shankar, R.; Naren Sridhar, B.T.N.; Joseph Stanley, A. Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data. J. Mater. Sci. Technol. 2010, 26, 725–729. [Google Scholar] [CrossRef]
- Sasikumar, T.; Rajendraboopathy, S.; Usha, K.M.; Vasudev, E.S. Failure strength prediction of unidirectional tensile coupons using acoustic emission peak amplitude and energy parameter with artificial neural networks. Compos. Sci. Technol. 2009, 69, 1151–1155. [Google Scholar] [CrossRef]
- Momon, S.; Moevus, M.; Godin, N.; R’Mili, M.; Reynaud, P.; Fantozzi, G.; Fayolle, G. Acoustic emission and lifetime prediction during static fatigue tests on ceramic matrix composite at high temperature under air. Compos. Part A 2010, 41, 913–918. [Google Scholar] [CrossRef]
- Racle, E.; Godin, N.; Reynaud, P.; Fantozzi, G. Fatigue Lifetime of Ceramic Matrix Composites at Intermediate Temperature by Acoustic Emission. Materials 2017, 10, 658. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.R. Plate wave acoustic emission. J. Acoust. Soc. Am. 1991, 90, 358–364. [Google Scholar] [CrossRef]
- Gorman, M.R.; Ziola, S. Plate waves produced by transfert matrix cracking. Ultrasonics 1991, 29, 245–251. [Google Scholar] [CrossRef]
- Gorman, M.R. Some corrections between AE testing of large structures and small samples. Nondestruct. Test. Eval. 1998, 14, 89–104. [Google Scholar] [CrossRef]
- Aggelis, D.G.; Shiotani, T.; Papacharalampopoulos, A.; Polyzos, D. The Influence of propagation path on elastic waves as measured by acoustic emission parameters. Struct. Health Monit. 2011, 11, 359–366. [Google Scholar] [CrossRef]
- Aggelis, D.G.; Matikas, T. Effect of plate wave dispersion on the acoustic emission parameters in metals. Comput. Struct. 2012, 98, 17–22. [Google Scholar] [CrossRef]
- Hamstad, M.A.; Downs, K.S. On characterization and location of acoustic emission sources in real size composite structures—A waveform study. J. Acoust. Emiss. 1995, 13, 31–41. [Google Scholar]
- Hamstad, M.A.; O’Gallagher, A.; Gary, J.A. wavelet transform applied to acoustic emission signals: Part 1: Source identification. J. Acoust. Emiss. 2002, 20, 39–61. [Google Scholar]
- Kharrat, M.; Placet, V.; Ramasso, E.; Boubakar, L. Influence of damage accumulation under fatigue loading on the AE-based health assessment of composite material: Wave distortion and AE-features evolution as a function of damage level. Compos. Part A Appl. Sci. Manuf. 2018, 109, 615–627. [Google Scholar] [CrossRef]
- Carpinteri, A.; Lacidogna, G.; Accornero, F.; Mpalaskas, A.C.; Matikas, T.E.; Aggelis, D.G. Influence of damage in the acoustic emission parameters. Cem. Concr. Compos. 2013, 44, 9–16. [Google Scholar] [CrossRef]
- Maillet, E.; Baker, C.; Morscher, G.N.; Pujar Vijay, V.; Lemanski, J.R. Feasibility and limitations of damage identification in composite materials using acoustic emission. Compos. Part A 2015, 75, 77–83. [Google Scholar] [CrossRef]
- Maillet, E.; Godin, N.; R’Mili, M.; Reynaud, P.; Fantozzi, G.; Lamon, J. Damage monitoring and identification in SiC/SiC minicomposites using combined acousto-ultrasonics and acoustic emission. Compos. Part A 2014, 57, 8–15. [Google Scholar] [CrossRef]
- Hatano, H.; Mori, E. Acoustic-emission transducer and its absolute calibration. J. Acoust. Soc. Am. 1976, 59, 344–349. [Google Scholar] [CrossRef]
- Dia, S.; Monnier, T.; Godin, N.; Zhang, F. Primary Calibration of Acoustic Emission Sensors by the Method of Reciprocity, Theoretical and Experimental Considerations. J. Acoust. Emiss. 2012, 30, 152–166. [Google Scholar]
- Goujon, L.; Baboux, J.C. Behaviour of acoustic emission sensors using broadband calibration techniques. Meas. Sci. Technol. 2003, 14, 903–908. [Google Scholar] [CrossRef]
- McLaskey, G.C.; Glaser, S.D. Acoustic Emission Sensor Calibration for Absolute Source Measurements. J. Nondestruct. Eval. 2012, 31, 157–168. [Google Scholar] [CrossRef]
- Moevus, M.; Godin, N.; R’Mili, M.; Rouby, D.; Reynaud, P.; Fantozzi, G.; Fayolle, G. Analyse of damage mechanisms and associated acoustic emission in two SiC/[Si-B-C] composites exhibiting different tensile curves. Part II: Unsupervised acoustic emission data clustering. Compos. Sci. Technol. 2008, 68, 1258–1265. [Google Scholar] [CrossRef]
- Maillet, E.; Godin, N.; R'Mili, M.; Reynaud, P.; Fantozzi, G.; Lamon, J. Real-time evaluation of energy attenuation: A novel approach to acoustic emission analysis for damage monitoring of ceramic matrix composites. J. Eur. Ceram. Soc. 2014, 34, 1673–1679. [Google Scholar] [CrossRef]
- Theobald, P.; Zeqiri, B.; Avison, J. Couplants and their influence on AE sensor sensitivity. J. Acoust. Emiss. 2008, 26, 91–97. [Google Scholar]
- Ono, K. Through-Transmission Characteristics of AE Sensor Couplants. J. Acoust. Emiss. 2017, 34, 1–11. [Google Scholar]
Descriptor | Symbol | Unit |
---|---|---|
Rise time | RT | µs |
Counts | C | - |
Duration | D | µs |
Amplitude | A | dB |
Average Frequency | AF | kHz |
Counts to peak | CP | - |
Decay frequency | DF | kHz |
Rise frequency | RF | kHz |
Absolute energy | E | attoJ |
Frequency central | FC | kHz |
Peak Frequency | FP | kHz |
Rise time/duration | RT/D | - |
Duration/Amplitude | D/A | µs/dB |
Decay time | D-RT | µs |
Rise angle | RA = A/RT | dB/µs |
Decay angle | A/(D-RT) | dB/µs |
Rise time/Decay time | RT/(D-RT) | - |
Relative energy | E/A | attoJ/dB |
Counts to peak/Counts | CP/C | - |
Amplitude/Frequency | A/AF | dB/kHz |
Weighted Frequency | WF | kHz |
Partial Power 1 [100–200 kHz] | PP1 | % |
Partial Power 2 [200–400 kHz] | PP2 | % |
Partial Power 3 [400–600 kHz] | PP3 | % |
Partial Power 4 [600–1000 kHz] | PP4 | % |
Descriptor | Tensile Test on Composite Glass Fibres and Vinylester Matrix with Two Kind of Sensors (micro80 and picoHF) | Tensile Test on CMC Composite with μ80 Sensors Located at P1 and P3 on the Surface of the Specimen | ||||
---|---|---|---|---|---|---|
Rise Time (μs) | Sensor | Micro80 | PicoHF | Sensor | Micro80 P1 | Micro80 P3 |
Q1 | 7 | 6 | Q1 | 21 | 6 | |
Median value | 12 | 11 | Median value | 33 | 15 | |
Q2 | 18 | 15 | Q2 | 50 | 35 | |
Amplitude (dB) | Sensor | Micro80 | PicoHF | Sensor | Micro80 P1 | Micro80 P3 |
Q1 | 70 | 70 | Q1 | 50 | 57 | |
Median value | 77 | 78 | Median value | 57 | 63 | |
Q2 | 83 | 82 | Q2 | 63 | 72 | |
Energy (Attojoule) | Sensor | Micro80 | PicoHF | Sensor | Micro80 P1 | Micro80 P3 |
Q1 | 8352 | 6629 | Q1 | 150 | 550 | |
Median value | 25,482 | 18,293 | Median value | 591 | 2857 | |
Q2 | 77,260 | 40,380 | Q2 | 3424 | 13,962 | |
Amplitude/average Frequency | Sensor | Micro80 | PicoHF | Sensor | Micro80 P1 | Micro80 P3 |
Q1 | 0.44 | 0.32 | Q1 | 0.24 | 0.27 | |
Median value | 0.56 | 0.39 | Median value | 0.27 | 0.30 | |
Q2 | 0.68 | 0.47 | Q2 | 0.30 | 0.33 | |
Rise angle (dB/μs) | Sensor | Micro80 | PicoHF | Sensor | Micro80 P1 | Micro80 P3 |
Q1 | 4.26 | 5.18 | Q1 | 0.96 | 1.9 | |
Median value | 6.82 | 7.22 | Median value | 1.48 | 4.22 | |
Q2 | 11 | 12 | Q2 | 2.20 | 7.78 | |
FC (kHz) | Sensor | Micro80 | PicoHF | Sensor | Micro80 P1 | Micro80 P3 |
Q1 | 279 | 401 | Q1 | 230 | 316 | |
Median value | 306 | 464 | Median value | 243 | 324 | |
Q2 | 334 | 487 | Q2 | 254 | 358 | |
PF (kHz) | Sensor | Micro80 | PicoHF | Sensor | Micro80 P1 | Micro80 P3 |
Q1 | 232 | 541 | Q1 | 150 | 318 | |
Median value | 244 | 578 | Median value | 156 | 324 | |
Q2 | 326 | 593 | Q2 | 205 | 336 | |
Weighted frequency (kHz) | Sensor | Micro80 | PicoHF | Sensor | Micro80 P1 | Micro80 P3 |
Q1 | 232 | 541 | Q1 | 190 | 318 | |
Median value | 286 | 516 | Median value | 201 | 323 | |
Q2 | 313 | 536 | Q2 | 249 | 328 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godin, N.; Reynaud, P.; Fantozzi, G. Challenges and Limitations in the Identification of Acoustic Emission Signature of Damage Mechanisms in Composites Materials. Appl. Sci. 2018, 8, 1267. https://doi.org/10.3390/app8081267
Godin N, Reynaud P, Fantozzi G. Challenges and Limitations in the Identification of Acoustic Emission Signature of Damage Mechanisms in Composites Materials. Applied Sciences. 2018; 8(8):1267. https://doi.org/10.3390/app8081267
Chicago/Turabian StyleGodin, Nathalie, Pascal Reynaud, and Gilbert Fantozzi. 2018. "Challenges and Limitations in the Identification of Acoustic Emission Signature of Damage Mechanisms in Composites Materials" Applied Sciences 8, no. 8: 1267. https://doi.org/10.3390/app8081267
APA StyleGodin, N., Reynaud, P., & Fantozzi, G. (2018). Challenges and Limitations in the Identification of Acoustic Emission Signature of Damage Mechanisms in Composites Materials. Applied Sciences, 8(8), 1267. https://doi.org/10.3390/app8081267