Detection of Organophosphorous Chemical Agents with CuO-Nanorod-Modified Microcantilevers
<p>Scheme of the detection system.</p> "> Figure 2
<p>SEM images of CuO nanostructures grown on the surface of AFM cantilever. (<b>a</b>) Overview of the sensor. (<b>b</b>) Cantilever border (Insert: high magnification on the nanostructures present on the border).</p> "> Figure 3
<p>Schematic representation of the protocol developed to overcome the border effect observed during the nanorods synthesis on the cantilever surface.</p> "> Figure 4
<p>SEM (<b>a</b>) top view and (<b>b</b>,<b>c</b>) titled view of cantilevers deposited in the resin. The resin was spin coated at different rotation speeds: (a) 1000 rpm, (b) 2000 rpm and (c) 2250 rpm.</p> "> Figure 5
<p>SEM tilted views of cantilevers in the resin after the deposition of the titanium/copper layers by (<b>a</b>) sputtering and (<b>b</b>) evaporation under vacuum.</p> "> Figure 6
<p>(<b>a</b>) Optical microscope image and (<b>b</b>) SEM top view of Cu(OH)<sub>2</sub> nanorods grown on the cantilever just after the synthesis. (<b>c</b>) Optical microscope image of the sample after scratching around the cantilever surface with a needle fixed on a micromanipulator. (<b>d</b>–<b>f</b>) SEM top views of the cantilever. (<b>d</b>) Cantilever side which used for the laser reflection (which was in the resin). (<b>e</b>,<b>f</b>) Cantilever side covered with the nanorods. (<b>g</b>,<b>h</b>) SEM side view of the nanostructured cantilever. (<b>i</b>) SEM top view of the cantilever side with the nanorods after the annealing at 200 °C for 1 h.</p> "> Figure 7
<p>Resonance frequency shift of a raw cantilever (black), one covered with a CuO layer (red) and one nanostructured with CuO nanorods (blue). The cantilevers were exposed three times for 10 min to 115.9 ppm of DMMP. After each DMMP exposure, pure air is injected in the chamber containing the cantilever.</p> "> Figure 8
<p>Evolution of the resonance frequency shift of the CuO nanostructured cantilever exposed to several DMMP concentrations. The tested concentrations are: 115.9 ppm, 84.3 ppm, 55.9 ppm, 31.5 ppm, and 16.4 ppm.</p> ">
Abstract
:1. Introduction
2. Materials and Method
2.1. Growth of CuO Nanorods on Cantilevers with Optical Readout
2.2. Dimethyl Methylphosphonate Detection
3. Results and Discussion
3.1. Growth of CuO Nanorods on the Surface of a Cantilever with Optical Readout
3.2. Detections Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Black, R. Development, Historical Use and Properties of Chemical Warfare Agents. In Chemical Warfare Toxicology: Volume 1: Fundamental Aspects, 1st ed.; Worek, F., Jenner, J., Thiermann, H., Eds.; Royal Society of Chemistry: Burlington House, London, UK, 2016; Volume 1, pp. 1–28. [Google Scholar]
- Terzic, O.; Swahn, I.; Cretu, G.; Palit, M.; Mallard, G. Gas chromatography-full scan mass spectrometry determination of traces of chemicals warfare agents and their impurities in air samples by inlet based thermal desorption of sorbent tubes. J. Chromatogr. A 2012, 1225, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liang, M.; Li, Z.; Shun, J.; Yang, B.; Xu, C.; Zou, Y. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry. Talanta 2016, 156–157, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, M.A.; Anttalainen, O.A.; Sillanpää, M.E.T. Ion Mobility Spectrometry and Its Applications in Detection of Chemical Warfare Agents. Anal. Chem. 2010, 82, 9594–9600. [Google Scholar] [CrossRef] [PubMed]
- Vishnuvardhan, V.; Prathish, K.P.; Naidu, G.R.K.; Prasada Rao, T. Fabrication and Topographical Analysis of Non-Covalently Imprinted Polymer Inclusion Membranes for the Selective Sensing of Pincolyl Methylphosphonate —A Simulant of Soman. Electrochim. Acta 2007, 52, 6922–6928. [Google Scholar] [CrossRef]
- Matatagui, D.; Fernández, M.J.; Fontechaa, J.; Santos, J.P.; Gràcia, I.; Cané, C.; Horrillo, M.C. Love-wave sensor array to detect, discriminate and classify chemical warfare agent simulants. Sens. Actuators B-Chem. 2012, 175, 173–178. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, P.; Yu, H.; ZuO, G.; Cheng, Z.; Lee, D.-W.; Li, X. Hyper-branched sensing polymer directly constructed on a resonant micro-cantilever for the detection of trace chemical vapor. J. Mater. Chem. 2012, 22, 18004–18009. [Google Scholar] [CrossRef]
- Li, P.; Li, X. A single-sided micromachined piezoresistive SiO2 cantilever sensor for ultra-sensitive detection of gaseous chemicals. J. Micromech. Microeng. 2006, 16, 2539–2546. [Google Scholar] [CrossRef]
- Barnes, J.R.; Stephenson, R.J.; Welland, M.E.; Gerber, C.; Gimzewski, J.K. Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature 1994, 372, 79–81. [Google Scholar] [CrossRef]
- Chen, G.Y.; Thundat, T.; Wachter, E.A.; Warmack, R.J. Adsorption induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 1995, 77, 3618–3622. [Google Scholar] [CrossRef]
- Thundat, T.; Chen, G.Y.; Warmack, R.J.; Allison, D.P.; Wachter, E.A. Vapor detection using resonating microcantilevers. Anal. Chem. 1995, 67, 519–521. [Google Scholar] [CrossRef]
- Pinnaduwage, L.A.; Tian, D.Yi. F.; Thundat, T.; Lareau, R.T. Adsorption of trinitrotoluene on uncoated silicon microcantilever surfaces. Langmuir 2004, 20, 2690–2694. [Google Scholar] [CrossRef] [PubMed]
- Cottineau, T.; Pronkin, S.N.; Acosta, M.; Mény, C.; Spitzer, D.; Keller, V. Synthesis of vertically aligned titanium dioxide nanotubes on microcantilevers for new nanostructured micromechanical sensors for explosive detection. Sens. Actuators B-Chem. 2013, 182, 489–497. [Google Scholar] [CrossRef]
- Maute, M.; Raible, S.; Prins, F.E.; Kern, D.P.; Ulmer, H.; Weimar, U.; Göpel, W. Detection of volatile organic compounds (VOCs) with polymer-coated cantilevers. Sens. Actuators B-Chem. 1999, 58, 505–511. [Google Scholar] [CrossRef]
- Urbiztondo, M.A.; Peralta, A.; Pellejero, I.; Sesé, J.; Pina, M.P.; Dufour, I.; Santamaria, J. Detection of organic vapours with Si cantilevers coated with inorganic (zeolites) or organic (polymer) layers. Sens. Actuators B-Chem. 2012, 171–172, 822–831. [Google Scholar] [CrossRef]
- Schlur, L.; Hofer, M.; Ahmad, A.; Bonnot, K.; Holz, M.; Spitzer, D. Cu(OH)2 and CuO Nanorod Synthesis on Piezoresistive Cantilevers for the Selective Detection of Nitrogen Dioxide. Sensors 2018, 18, 1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitzer, D.; Cottineau, T.; Piazzon, N.; Josset, S.; Schnell, F.; Pronkin, S.N.; Savinova, E.R.; Keller, V. Bio-inspired nanostructured sensor for the detection of ultralow concentrations of explosives. Angew. Chem. Int. Ed. 2012, 51, 5334–5338. [Google Scholar] [CrossRef] [PubMed]
- Biapo, U.; Ghisolfi, A.; Gerer, G.; Spitzer, D.; Keller, V.; Cottineau, T. Functionalized TiO2 Nanorods on a Microcantilever for the Detection of Organophosphorus Chemical Agents in Air. Appl. Mater. Interfaces. 2019, 11, 35122–35131. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, N.; Cakmak, O.; Kosemen, A.; Ermek, E.; Ozturk, S.; Yerli, Y.; Ozturk, Z.Z.; Urey, H. Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens. Actuators B-Chem. 2014, 202, 357–364. [Google Scholar] [CrossRef]
- Xu, J.; Bertke, M.; Gad, A.; Yu, F.; Hamdana, G.; Bakin, A.; Peiner, E. Fabrication of ZnO nanorods on MEMS piezoresistive silicon microcantilevers for environmental monitoring. Proceedings 2017, 1, 290. [Google Scholar] [CrossRef] [Green Version]
- Schlur, L.; Ramos Calado, J.; Spitzer, D. Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever. R. Soc. Open sci. 2018, 5, 180510. [Google Scholar] [CrossRef] [Green Version]
- Ruan, W.; Li, Y.; Tan, Z.; Liu, L.; Jiang, K.; Wang, Z. In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens. Actuators B-Chem. 2013, 176, 141–148. [Google Scholar] [CrossRef]
- Xu, P.; Li, X.; Yu, H.; Liu, M.; Li, J. Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors. J. Micromech. Microeng. 2010, 20, 115003–115009. [Google Scholar] [CrossRef]
- Xu, P.; Yu, H.; Li, X. Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors. Anal. Chem. 2011, 83, 3448–3454. [Google Scholar] [CrossRef]
- Lee, D.; Zandieh, O.; Kim, S.; Jeon, S.; Thundat, T. Sensitive and selective detection of hydrocarbon/water vapor mixtures with a nanoporous silicon microcantilever. Sens. Actuators B-Chem. 2015, 206, 84–89. [Google Scholar] [CrossRef]
- Zha, C.; Wu, D.; Zhang, T.; Wu, J.; Chen, H. A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. Energy Storage Mater. 2019, 17, 118–125. [Google Scholar] [CrossRef]
- Zha, C.; Zhu, X.; Deng, J.; Zhou, Y.; Li, Y.; Chen, J.; Ding, P.; Hu, Y.; Li, Y.; Chen, H. Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium–sulfur batteries. Energy Storage Mater. 2020, 26, 40–45. [Google Scholar] [CrossRef]
- Tomchenko, A.A.; Harmer, G.P.; Marquis, B.T. Detection of chemical warfare agents using nanostructured metal oxide sensors. Sens. Actuators B-Chem. 2005, 108, 41–45. [Google Scholar] [CrossRef]
- Kim, K.-M.; Jeong, H.-M.; Kim, H.-R.; Choi, K.-I.; Kim, H.-J.; Lee, J.-H. Selective detection of NO2 using Cr-doped nanorods. Sensors 2012, 12, 8013–8025. [Google Scholar] [CrossRef]
- Park, W.J.; Kim, M.H.; Koo, B.H.; Choi, W.J.; Lee, J.-L.; Baik, J.M. Alternatively driven dual nanowire arrays by ZnO and CuO for selective sensing of gases. Sens. Actuators B-Chem. 2013, 185, 10–16. [Google Scholar] [CrossRef]
- Chen, J.; Wang, K.; Hartman, L.; Zhou, W. H2S detection by vertically aligned CuO nanowire array sensors. J. Phys. Chem. C 2008, 112, 16017–16021. [Google Scholar] [CrossRef]
- Yi, D.; Senesac, L.; Thundat, T. Speciation of energetic materials on a microcantilever using surface reduction. Scanning 2008, 30, 108–212. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Herricks, T.; Xia, Y. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002, 2, 1333–1338. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, Y.; Zhuo, Y.; Li, M.; Li, L.; Dong, L. Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils. Cryst. Growth Des. 2007, 7, 467–470. [Google Scholar] [CrossRef]
- Umar, A.A.; Oyama, M. A seed-mediated growth method for vertical array of single-crystalline CuO nanowires on surface. Cryst. Growth Des. 2007, 7, 2404–2409. [Google Scholar] [CrossRef]
- Schlur, L.; Bonnot, K.; Spitzer, D. Synthesis of Cu(OH)2 and CuO nanotubes arrays on a silicon wafer. RSC Adv. 2015, 5, 6061–6070. [Google Scholar] [CrossRef]
- Kozlova, E.A.; Smirniotis, P.G.; Vorontsov, A.V. Comparative study on photocatalytic oxidation of four organophosphorus simulants of chemical warfare agents in aqueous suspension of titanium dioxide. J. Photochem. Photobiol. A 2004, 162, 503–511. [Google Scholar] [CrossRef]
- García, R.; San Paulo, A. Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys. Rev. B 1999, 60, 4961–4967. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlur, L.; Agostini, P.; Thomas, G.; Gerer, G.; Grau, J.; Spitzer, D. Detection of Organophosphorous Chemical Agents with CuO-Nanorod-Modified Microcantilevers. Sensors 2020, 20, 1061. https://doi.org/10.3390/s20041061
Schlur L, Agostini P, Thomas G, Gerer G, Grau J, Spitzer D. Detection of Organophosphorous Chemical Agents with CuO-Nanorod-Modified Microcantilevers. Sensors. 2020; 20(4):1061. https://doi.org/10.3390/s20041061
Chicago/Turabian StyleSchlur, Laurent, Pierre Agostini, Guillaume Thomas, Geoffrey Gerer, Jacques Grau, and Denis Spitzer. 2020. "Detection of Organophosphorous Chemical Agents with CuO-Nanorod-Modified Microcantilevers" Sensors 20, no. 4: 1061. https://doi.org/10.3390/s20041061
APA StyleSchlur, L., Agostini, P., Thomas, G., Gerer, G., Grau, J., & Spitzer, D. (2020). Detection of Organophosphorous Chemical Agents with CuO-Nanorod-Modified Microcantilevers. Sensors, 20(4), 1061. https://doi.org/10.3390/s20041061