Development of a Cost-Efficient and Glaucoma-Specialized OD/OC Segmentation Model for Varying Clinical Scenarios
<p>Illustrations of our motivation and the promising performance of our proposed model.</p> "> Figure 2
<p>The proposed model adapts three common situations (Scenario 1: only normal images have pixel-level annotations; Scenario 2: only glaucoma images have pixel-level annotations; Scenario 3: both normal and glaucoma images have pixel-level annotations). The pixel-level annotated normal fundus images (and pixel-level annotated glaucoma fundus images, if available) are utilized to capture general features with the pixel-level supervised annotations. The glaucoma fundus images (without pixel-level annotations) are utilized to capture glaucoma-related features with the style-level and domain-level supervised annotations. The proposed model encompasses a pixel-level supervised path that aims to generate pixel-level prediction results by soft dice loss; the style-level supervised path is designed to encourage the generation of pixel-level prediction results similar to glaucoma-style features by narrowing style gaps; and the domain-level supervised path encourages the generation of pixel-level prediction results close to the glaucoma-domain at various domain levels by narrowing domain gaps. For detailed frameworks corresponding to each scenario, please refer to three separate images <a href="#app1-sensors-24-07255" class="html-app">(Figures S2–S4) in the Supplementary Materials</a>.</p> "> Figure 3
<p>Visual comparison of segmentation results from the various models on the glaucoma samples from the ORIGA dataset. The upper three examples are common samples, while the lower three examples present challenging samples. The last method, denoted as “Proposed+G”, encompasses the proposed style and domain transfer model with annotated glaucoma and normal fundus images in Scenario 2.</p> "> Figure 4
<p>Visual comparison of the segmentation results from the various models on glaucoma samples from the G1020 dataset. The upper three examples are common samples, while the lower three examples represent challenging samples.</p> "> Figure 5
<p>The distribution of the encoding (Bottom and Up1) and output features obtained from the various models, along with the corresponding ground truths of the normal and glaucoma classes. The three figures in the upper row are from the ORIGA dataset, while the lower three subfigures depict the results from the G1020 dataset.</p> "> Figure 6
<p>The plots of the style gaps between the results generated by the various models and corresponding ground truths during the training stage. The left figure illustrates the results from the ORIGA dataset, while the right figure corresponds to the G1020 Dataset. The N-pixel-level is the direct supervision with normal fundus images with pixel-level annotation; style-level is the proposed model with style module and style-level annotations; domain-level is the proposed model with the domain module and domain-level annotations; and G-pixel-level represents the glaucoma samples with pixel-level annotations.</p> ">
Abstract
:1. Introduction
- We demonstrate a concerted effort to target glaucoma-confirmed samples by proposing a glaucoma-specific model, mitigating the inherent issue of bias in most existing direct supervised models with mixed annotated glaucoma and normal fundus samples, yielding an optimal performance in OD/OC segmentation in fundus images, assisting in glaucoma progression tracking and prognosis assessment.
- Our proposed model exhibits a cost-efficient performance by exploiting annotated normal images, mitigating the high cost of employing fully supervised pixel-level annotated glaucoma samples. Moreover, our proposed model explicitly establishes the relationship between the two classes by style contrastive and domain adversarial learning, improving predictions for glaucoma by narrowing the style-level and domain-level gaps, preventing deterioration in performance due to unshared features.
- The disentangled relationship established by our proposed model facilitates its adaptability in three common scenarios, wherein normal or glaucoma samples, or both are provided with pixel-level annotations. Notably, our proposed model demonstrates cost-effectiveness by yielding an enhancement in the overall performance simply by increasing the number of normal samples.
- We conducted experiments employing two public datasets to mimic various common scenarios. The results demonstrate that our proposed model yields a superior performance over the baseline model, approaching the model with supervision by the annotated glaucoma samples. Moreover, the proposed model accurately delineates the contours of the OD and OC, facilitating the derivation of glaucoma progression-related features.
2. Related Work
2.1. OD and OC Segmentation Approaches for Fundus Images
2.2. Cost-Efficient Strategies in Medical Image
3. Methods
3.1. Overview of the Proposed Model
3.2. Style and Domain Collaborative Supervision Learning
3.3. Style Contrastive Learning
3.4. Domain Adversarial Learning
3.5. Objective Function for Our Proposed Model
3.6. Overtraining Procedure
Algorithm 1: Training Conducted by Our Proposed Model |
Input: A batch of (, ) from the annotated normal dataset, (as well as (, ) from the annotated glaucoma dataset, , if available) and from the unannotated glaucoma dataset . Output: Trained segmentation network, , and domain supervision network, , with parameters and , respectively. |
1: While not converge do |
2: (, ), ← sampled from and |
3: Step 1: Optimize the segmentation network , fixed |
4: Generate encoding features and and segmentation results and from |
5: Generate output results of domain supervision module: D() and D() |
6: Calculate segmentation loss , as in Equation (1) |
7: Calculate style loss , as in Equation (3) |
8: Calculate domain gap loss , as in Equation (6) |
9: Update ← – ( – ( + )) |
10: Step 2: Optimize the domain supervision network , fixed |
11: Generate the encoding features and segmentation results for the normal samples ( and glaucoma samples ( and ) from Step 1’s optimized |
12: Calculate discriminator loss , as in Equation (4) |
13: Update ← – () |
14: end while |
15: return Trained network and |
Note: During Scenario 2, without annotated normal samples, the proposed model is reduced to a single-style contrastive learning model, only executing Step 1 and setting to 0. |
4. Experiments
4.1. Dataset
4.1.1. Overview of Dataset
4.1.2. Preprocessing of Images
4.2. Experimental Configuration
4.3. Implementation Details and Evaluation Metrics
5. Experimental Results
5.1. Baseline Model Results
5.1.1. Pixel-Level Annotations from Normal Samples: Pixel-Supervised-N Baseline
5.1.2. Pixel-Level Annotations from Glaucoma Samples: Pixel-Supervised-G Baseline
5.1.3. Pixel-Level Annotations from Normal and Glaucoma Samples: Pixel-Supervised-G&N Baseline
5.2. The Proposed Model’s Results
5.2.1. Single Style-Level Contrastive Learning Model
5.2.2. Single-Domain-Level Adversarial Learning Model
5.2.3. Collaborative Style Contrastive and Domain Adversarial Learning Model
5.3. Results of Varying the Sizes of Pixel-Level Annotated Normal Images
5.4. The Adaptability of the Proposed Model in Other Scenarios
5.5. Results for the Adapted G1020 Fundus Image Dataset
5.6. Computational Complexity of the Models
6. Visualization
6.1. Visualization of the Results for Common and Challenging Samples
6.2. The Distribution of the Features for Different Models
6.3. The Style Gap Between the Results and Ground Truths for the Various Models
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tham, Y.-C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040 A Systematic Review and Meta-Analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, J. Cost-Efficient and Glaucoma-Specifical Model by Exploiting Normal OCT Images with Knowledge Transfer Learning. Biomed. Opt. Express 2023, 14, 6151. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal Imaging and Image Analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [Google Scholar] [CrossRef]
- Bock, R.; Meier, J.; Nyúl, L.G.; Hornegger, J.; Michelson, G. Glaucoma Risk Index: Automated Glaucoma Detection from Color Fundus Images. Med. Image Anal. 2010, 14, 471–481. [Google Scholar] [CrossRef]
- Li, T.; Bo, W.; Hu, C.; Kang, H.; Liu, H.; Wang, K.; Fu, H. Applications of Deep Learning in Fundus Images: A Review. Med. Image Anal. 2021, 69, 101971. [Google Scholar] [CrossRef]
- Nayak, J.; Acharya U., R.; Bhat, P.S.; Shetty, N.; Lim, T.-C. Automated Diagnosis of Glaucoma Using Digital Fundus Images. J. Med. Syst. 2008, 33, 337. [Google Scholar] [CrossRef]
- Aquino, A.; Gegúndez-Arias, M.E.; Marín, D. Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, Edge Detection, and Feature Extraction Techniques. IEEE Trans. Med. Imaging 2010, 29, 1860–1869. [Google Scholar] [CrossRef]
- Yazid, H.; Arof, H.; Isa, H.M. Automated Identification of Exudates and Optic Disc Based on Inverse Surface Thresholding. J. Med. Syst. 2012, 36, 1997–2004. [Google Scholar] [CrossRef]
- Sedai, S.; Roy, P.K.; Mahapatra, D.; Garnavi, R.; Sedai, S.; Roy, P.K.; Mahapatra, D.; Garnavi, R.; Sedai, S.; Roy, P.K.; et al. Segmentation of Optic Disc and Optic Cup in Retinal Fundus Images Using Shape Regression. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; Volume 2016, pp. 3260–3264. [Google Scholar] [CrossRef]
- Sudhan, G.; Aravind, R.; Gowri, K.; Rajinikanth, V. Optic Disc Segmentation Based on Otsu’s Thresholding and Level Set. In Proceedings of the 2017 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 5–7 January 2017; Volume 8150, pp. 75–82. [Google Scholar]
- Xue, X.; Wang, L.; Du, W.; Fujiwara, Y.; Peng, Y. Multiple Preprocessing Hybrid Level Set Model for Optic Disc Segmentation in Fundus Images. Sensors 2022, 22, 6899. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.K.; Liu, J.; Lim, J.H.; Jia, X.; Yin, F.; Li, H.; Wong, T.Y. Level-Set Based Automatic Cup-to-Disc Ratio Determination Using Retinal Fundus Images in ARGALI. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; Volume 2008, pp. 2266–2269. [Google Scholar] [CrossRef]
- Lalonde, M.; Beaulieu, M.; Gagnon, L. Fast and Robust Optic Disc Detection Using Pyramidal Decomposition and Hausdorff-Based Template Matching. IEEE Trans. Med. Imaging 2001, 20, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Barriga, E.S.; Agurto, C.; Echegaray, S.; Pattichis, M.S.; Bauman, W.; Soliz, P. Fast Localization and Segmentation of Optic Disk in Retinal Images Using Directional Matched Filtering and Level Sets. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Giachetti, A.; Ballerini, L.; Trucco, E.; Wilson, P.J. The Use of Radial Symmetry to Localize Retinal Landmarks. Comput. Med. Imaging Graph. 2013, 37, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Stambolian, D.; O’Brien, J.; Gee, J.C. Optic Disc and Cup Segmentation from Color Fundus Photograph Using Graph Cut with Priors; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8150, pp. 75–82. [Google Scholar]
- Bechar, M.E.A.; Settouti, N.; Barra, V.; Chikh, M.A. Semi-Supervised Superpixel Classification for Medical Images Segmentation: Application to Detection of Glaucoma Disease. Multidimens. Syst. Signal Process. 2018, 29, 979–998. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.; Xu, Y.; Yin, F.; Wong, D.W.K.; Tan, N.-M.; Tao, D.; Cheng, C.-Y.; Aung, T.; Wong, T.Y. Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening. IEEE Trans. Med. Imaging 2013, 32, 1019–1032. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Zulkifley, M.A.; Zaki, W.M.D.W.; Hussain, A. An Automated Glaucoma Screening System Using Cup-to-Disc Ratio via Simple Linear Iterative Clustering Superpixel Approach. Biomed. Signal Process. Control 2019, 53, 101454. [Google Scholar] [CrossRef]
- Fu, H.; Li, F.; Xu, Y.; Liao, J.; Xiong, J.; Shen, J.; Liu, J.; Zhang, X.; iChallenge-GON study group. A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs. Transl. Vis. Sci. Technol. 2020, 9, 33. [Google Scholar] [CrossRef]
- Maiti, S.; Maji, D.; Dhara, A.K.; Sarkar, G. Automatic Detection and Segmentation of Optic Disc Using a Modified Convolution Network. Biomed. Signal Process. Control 2022, 76, 103633. [Google Scholar] [CrossRef]
- Tan, J.H.; Acharya, U.R.; Bhandary, S.V.; Chua, K.C.; Sivaprasad, S. Segmentation of Optic Disc, Fovea and Retinal Vasculature Using a Single Convolutional Neural Network. J. Comput. Sci. 2017, 20, 70–79. [Google Scholar] [CrossRef]
- Sevastopolsky, A. Optic Disc and Cup Segmentation Methods for Glaucoma Detection with Modification of U-Net Convolutional Neural Network. Pattern Recognit. Image Anal. 2017, 27, 618–624. [Google Scholar] [CrossRef]
- Apostolopoulos, S.; Zanet, S.D.; Ciller, C.; Wolf, S.; Sznitman, R. Pathological OCT Retinal Layer Segmentation Using Branch Residual U-Shape Networks. Medical Image Computing and Computer Assisted Intervention. In Proceedings of the MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017; pp. 294–301. [Google Scholar]
- Siddique, N.; Sidike, P.; Elkin, C.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A review of theory and applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, J.; Xu, Y.; Wong, D.W.K.; Liu, J.; Cao, X. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. IEEE Trans. Med. Imaging 2018, 37, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; pp. 3–11. [Google Scholar]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Lin, Q.; Tu, Z.; Hu, X.; Che, S. Joint Optic Disc and Cup Segmentation Using Feature Fusion and Attention. Comput. Biol. Med. 2022, 150, 106094. [Google Scholar] [CrossRef]
- Zhou, W.; Ji, J.; Jiang, Y.; Wang, J.; Qi, Q.; Yi, Y. EARDS: EfficientNet and Attention-Based Residual Depth-Wise Separable Convolution for Joint OD and OC Segmentation. Front. Neurosci. 2023, 17, 1139181. [Google Scholar] [CrossRef]
- Gómez-Valverde, J.J.; Antón, A.; Fatti, G.; Liefers, B.; Herranz, A.; Santos, A.; Sánchez, C.I.; Ledesma-Carbayo, M.J. Automatic Glaucoma Classification Using Color Fundus Images Based on Convolutional Neural Networks and Transfer Learning. Biomed. Opt. Express 2019, 10, 892. [Google Scholar] [CrossRef]
- Fumero, F.; Alayon, S.; Sanchez, J.L.; Sigut, J.; Gonzalez-Hernandez, M. RIM-ONE: An Open Retinal Image Database for Optic Nerve Evaluation. In Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, 27–30 June 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef]
- Zoph, B.; Ghiasi, G.; Lin, T.-Y.; Cui, Y.; Liu, H.; Cubuk, E.D.; Le, Q.V. Rethinking Pre-Training and Self-Training. arXiv 2020. [Google Scholar] [CrossRef]
- Hemelings, R.; Elen, B.; Barbosa-Breda, J.; Lemmens, S.; Meire, M.; Pourjavan, S.; Vandewalle, E.; Veire, S.V.d.; Blaschko, M.B.; Boever, P.D.; et al. Accurate Prediction of Glaucoma from Colour Fundus Images with a Convolutional Neural Network That Relies on Active and Transfer Learning. Acta Ophthalmol. 2020, 98, e94–e100. [Google Scholar] [CrossRef]
- Quellec, G.; Lamard, M.; Conze, P.-H.; Massin, P.; Cochener, B. Automatic Detection of Rare Pathologies in Fundus Photographs Using Few-Shot Learning. Med. Image Anal. 2020, 61, 101660. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, C.; Jain, S.; Sood, M. Transfer Learning Based Robust Automatic Detection System for Diabetic Retinopathy Grading. Neural Comput. Appl. 2021, 33, 13999–14019. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Christopher, M.; Belghith, A.; Bowd, C.; Proudfoot, J.A.; Goldbaum, M.H.; Weinreb, R.N.; Girkin, C.A.; Liebmann, J.M.; Zangwill, L.M. Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs. Sci. Rep. 2018, 8, 16685. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding Transfer Learning for Medical Imaging. In Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; pp. 3342–3352. [Google Scholar]
- Zhang, C.; Lei, T.; Chen, P. Diabetic Retinopathy Grading by a Source-Free Transfer Learning Approach. Biomed. Signal Process. Control 2022, 73, 103423. [Google Scholar] [CrossRef]
- Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef]
- Zhao, S.; Yue, X.; Zhang, S.; Li, B.; Zhao, H.; Wu, B.; Krishna, R.; Gonzalez, J.; Sangiovanni-Vincentelli, A.; Seshia, S.; et al. A Review of Single-Source Deep Unsupervised Visual Domain Adaptation. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 473–493. [Google Scholar] [CrossRef]
- Lei, H.; Liu, W.; Xie, H.; Zhao, B.; Yue, G.; Lei, B. Unsupervised Domain Adaptation Based Image Synthesis and Feature Alignment for Joint Optic Disc and Cup Segmentation. IEEE J. Biomed. Health 2021, 26, 90–102. [Google Scholar] [CrossRef]
- Keaton, M.R.; Zaveri, R.J.; Doretto, G. CellTranspose: Few-Shot Domain Adaptation for Cellular Instance Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 455–466. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Z.; Xu, X.; Wang, Y.; Fu, H.; Li, S.; Zhen, L.; Lei, X.; Cui, Y.; Ting, J.S.Z.; et al. Contrastive Domain Adaptation with Consistency Match for Automated Pneumonia Diagnosis. Med. Image Anal. 2023, 83, 102664. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, F.S.; Liu, J.; Wong, W.K.; Tan, N.M.; Lee, B.H.; Cheng, J.; Wong, T.Y. ORIGA-light: An Online Retinal Fundus Image Database for Glaucoma Analysis and Research. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; Volume 2010, pp. 3065–3068. [Google Scholar] [CrossRef]
- Bajwa, M.N.; Singh, G.A.P.; Neumeier, W.; Malik, M.I.; Dengel, A.; Ahmed, S. G1020: A Benchmark Retinal Fundus Image Dataset for Computer-Aided Glaucoma Detection. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Reza, A.M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024. [Google Scholar]
Feature Size | Pixel-level Path | Class-level Part | ||||
3 × 256 × 256 | Input | Domain Supervision Path | ||||
64 × 128 × 128 | Down1 | Double-Conv-Maxpool | 256 × 256 × 256 | Input | 3 × 256 × 256 | |
128 × 64 × 64 | Down2 | Double-Conv-Maxpool | 3 × 128 × 128 | D-Conv1 | Conv(4 × 4)-Leak-ReLU | 3 × 128 × 128 |
256 × 32 × 32 | Down3 | Double-Conv-Maxpool | 6 × 64 × 64 | D-Conv2 | Conv(4 × 4)-Leak-ReLU | 6 × 64 × 64 |
512 × 16 × 16 | Down4 | Double-Conv-Maxpool | 12 × 32 × 32 | D-Conv3 | Conv(4 × 4)-Leak-ReLU | 12 × 32 × 32 |
512 × 16 × 16 | Bottom | Double-Conv | 24 × 32 × 32 | D-Conv4 | Conv(3 × 3)-Leak-ReLU | 24 × 32 × 32 |
256 × 32 × 32 | Up1 | Upsample-Double-Conv | 1 × 32 × 32 | Output | ) | 1 × 32 × 32 |
128 × 64 × 64 | Up2 | Upsample-Double-Conv | Style Supervision Path | |||
64 × 128 × 128 | Up3 | Upsample-Double-Conv | 2 × (3 × 256 × 256) | Input | ||
32 × 256 × 256 | Up4 | Upsample-Double-Conv | 2 × (3 × 3) | Transform | Gram matrix | |
3 × 256 × 256 | Output | 3) | 1 × 1 | Output | MSE |
Dataset | ORIGA | G1020 | |
---|---|---|---|
Category | Fundus image | Fundus image | |
Normal | 482 | 724 | |
Glaucoma | 168 | 296 | |
Eye | |||
Right | 314 | 490 | |
Left | 336 | 530 | |
Image Size | 2000 × 3000 × 3 | 2400 × 3000 × 3 | |
Annotation | OD & OC | 650 | 790 |
Baseline Models | Dice | G-Score | ||||
---|---|---|---|---|---|---|
OD | OC | Rim | Mean | |||
Scenario 1: Pixel-Supervised-N | 0.9368 | 0.9158 | 0.8111 | 0.8879 | 0.0097 | 46.97 |
Scenario 2: Pixel-Supervised-G | 0.9516 | 0.9308 | 0.8497 | 0.9107 | 0.0028 | 53.09 |
Scenario 3: Pixel-Supervised-N&G | 0.9518 | 0.9329 | 0.8534 | 0.9127 | 0.0022 | 54.10 |
Transfer Learning | Dice | G-Score | ||||||
---|---|---|---|---|---|---|---|---|
Contrastive | Adversarial | OD | OC | Rim | Mean | |||
Style | Output | Encoding | ||||||
✔ | 0.9394 | 0.9223 | 0.8281 | 0.8966 | 0.0090 | 49.85 | ||
✔ | 0.9416 | 0.9176 | 0.8244 | 0.8945 | 0.0081 | 50.83 | ||
✔ | 0.9429 | 0.9107 | 0.8233 | 0.8923 | 0.0070 | 49.67 | ||
✔ | ✔ | 0.9413 | 0.9228 | 0.8284 | 0.8975 | 0.0080 | 50.86 | |
✔ | ✔ | ✔ | 0.9341 | 0.9397 | 0.8315 | 0.8999 | 0.0043 | 51.23 |
Size (A–N) | Model | Dice | G-Score | ||||
---|---|---|---|---|---|---|---|
OD | OC | Rim | Mean | ||||
100 | Pixel-Supervised-N | 0.9368 | 0.9158 | 0.8111 | 0.8879 | 0.0097 | 46.97 |
Proposed Model | 0.9341 | 0.9397 | 0.8315 | 0.8999 | 0.0043 | 51.24 | |
300 | Pixel-Supervised-N | 0.9471 | 0.9219 | 0.8313 | 0.9001 | 0.0056 | 49.42 |
Proposed Model | 0.9487 | 0.9234 | 0.8393 | 0.9038 | 0.0050 | 51.91 | |
482 | Pixel-Supervised-N | 0.9550 | 0.9219 | 0.8469 | 0.9080 | 0.0053 | 52.35 |
Proposed Model | 0.9527 | 0.9331 | 0.8546 | 0.9134 | 0.0029 | 53.32 |
Scenario | Model | Dice | G-Score | ||||
---|---|---|---|---|---|---|---|
OD | OC | Rim | Mean | ||||
Scenario 2 | Pixel-Supervise-G | 0.9516 | 0.9308 | 0.8497 | 0.9107 | 0.0028 | 53.09 |
The proposed model | 0.9539 | 0.9397 | 0.8499 | 0.9145 | 0.0021 | 54.50 | |
Scenario 3 | Pixel-Supervised-G&N | 0.9518 | 0.9329 | 0.8534 | 0.9127 | 0.0022 | 54.10 |
The proposed model | 0.9541 | 0.9374 | 0.8580 | 0.9165 | 0.0022 | 54.25 |
Scenario | Model | Dice | G-Score | ||||
---|---|---|---|---|---|---|---|
OD | OC | Rim | Mean | ||||
Scenario 1 | Pixel-Supervised-N | 0.9559 | 0.8617 | 0.7731 | 0.8636 | 0.0175 | 38.81 |
The proposed model | 0.9583 | 0.8912 | 0.8074 | 0.8860 | 0.0068 | 45.07 | |
Scenario 2 | Pixel-Supervised-G | 0.9544 | 0.8889 | 0.7974 | 0.8802 | 0.0094 | 43.61 |
The proposed model | 0.9547 | 0.8866 | 0.8048 | 0.8820 | 0.0085 | 43.30 | |
Scenario 3 | Pixel-Supervised-G&N | 0.9651 | 0.8993 | 0.8081 | 0.8960 | 0.0061 | 45.45 |
The proposed model | 0.9656 | 0.9071 | 0.8315 | 0.9014 | 0.0047 | 46.19 |
Method | Parameters (M) | FLOPs (G) | Train Time (Min) | Infer Time (s) | Saved Model (M) |
---|---|---|---|---|---|
Baseline models | 31.04 | 40.93 | 9.48 | 0.22 | 130 |
Our proposed model | 31.08 | 41.76 | 34.10 | 0.22 | 130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Zhang, J. Development of a Cost-Efficient and Glaucoma-Specialized OD/OC Segmentation Model for Varying Clinical Scenarios. Sensors 2024, 24, 7255. https://doi.org/10.3390/s24227255
Liu K, Zhang J. Development of a Cost-Efficient and Glaucoma-Specialized OD/OC Segmentation Model for Varying Clinical Scenarios. Sensors. 2024; 24(22):7255. https://doi.org/10.3390/s24227255
Chicago/Turabian StyleLiu, Kai, and Jicong Zhang. 2024. "Development of a Cost-Efficient and Glaucoma-Specialized OD/OC Segmentation Model for Varying Clinical Scenarios" Sensors 24, no. 22: 7255. https://doi.org/10.3390/s24227255