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Abstract: Most existing optic disc (OD) and cup (OC) segmentation models are biased to the dominant
size and easy class (normal class), resulting in suboptimal performances on glaucoma-confirmed
samples. Thus, these models are not optimal choices for assisting in tracking glaucoma progression
and prognosis. Moreover, fully supervised models employing annotated glaucoma samples can
achieve superior performances, although restricted by the high cost of collecting and annotating the
glaucoma samples. Therefore, in this paper, we are dedicated to developing a glaucoma-specialized
model by exploiting low-cost annotated normal fundus images, simultaneously adapting various
common scenarios in clinical practice. We employ a contrastive learning and domain adaptation-
based model by exploiting shared knowledge from normal samples. To capture glaucoma-related
features, we utilize a Gram matrix to encode style information and the domain adaptation strategy
to encode domain information, followed by narrowing the style and domain gaps between normal
and glaucoma samples by contrastive and adversarial learning, respectively. To validate the efficacy
of our proposed model, we conducted experiments utilizing two public datasets to mimic various
common scenarios. The results demonstrate the superior performance of our proposed model across
multi-scenarios, showcasing its proficiency in both the segmentation- and glaucoma-related metrics.
In summary, our study illustrates a concerted effort to target confirmed glaucoma samples, mitigating
the inherent bias issue in most existing models. Moreover, we propose an annotation-efficient strategy
that exploits low-cost, normal-labeled fundus samples, mitigating the economic- and labor-related
burdens by employing a fully supervised strategy. Simultaneously, our approach demonstrates
its adaptability across various scenarios, highlighting its potential utility in both assisting in the
monitoring of glaucoma progression and assessing glaucoma prognosis.

Keywords: color fundus image; glaucoma-specialized model; progression tracking; OD/OC segmentation;
adapted multi-scenarios

1. Introduction

Glaucoma is a prominent contributor to blindness, as it causes pathological damage
to retinal cells that results in visual impairment or even permanent blindness [1]. Regular
glaucoma screening facilitates timely therapeutic interventions, while precise monitor-
ing of the progression and assessment of the prognosis of glaucoma are also crucial for
mitigating further vision loss [2]. Nonetheless, a significant obstacle arises in acquiring
progression-related features, such as the cup-to-disc ratio, as this process heavily relies on
the segmentation results of glaucoma-confirmed fundus images. Regrettably, few models
have been dedicated to addressing this task.

Currently, multiple imaging methods are available to obtain markers of glaucoma
progression and prognosis. Optical coherence tomography offers deep and detailed insight
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into retinal layers by a non-invasive method. Therefore, to assist in evaluating glaucoma
progression, in our previous study [3], we leveraged OCT image to obtain OCT image-
based biomarkers by accurate segmentation of retinal layers. However, OCT imaging is
primarily only accessible in developed regions because of the high cost [4]. Moreover,
evaluating the development of glaucoma necessitates the consideration of various clinical
indicators, such as visual field measurements, thickness of the retinal nerve fiber layer, and
optic cup-to-disc diameter ratio, among others. However, retina-layer-based biomarkers
derived from OCT images contribute only to parts of the related biomarkers. Meanwhile,
color fundus imaging has proven its ability in monitoring fundus conditions, offering a cost-
effective advantage [5]. Although the segmentation of OD and OC can be used to derive
biomarkers, such as the cup-to-disc diameter ratio, which plays a key role in assessing
glaucoma progression, manual delineations of the contours of the optic disc (OD) and optic
cup (OC), however, continue to be time-intensive and rely on clinical expertise, particularly
for glaucoma samples [6]. Therefore, the development of an automatic segmentation tool
holds importance in aiding the medical community, especially in regions with a shortage
of ophthalmologists.

As illustrated in Figure 1, it is evident that most fundus image segmentation models,
employing a directly supervised strategy, are not optimal for assisting in tracking glaucoma
progression and prognosis assessment. These models are primarily tailored to screening or
detection scenarios characterized by a large proportion of normal fundus samples, with a
relatively minor portion of glaucoma fundus samples [7]. Therefore, the limited capacity
of the models yields suboptimal performances on glaucoma samples. In the scenario of
assessing glaucoma progression, the models are presented with the samples that have
been confirmed to exhibit glaucoma. Therefore, if models exhibit poor performances
on glaucoma samples, they are not the optimal choice for assisting in the assessment of
glaucoma progression. Additionally, establishing these models requires both glaucoma
and normal samples with pixel-level annotations. Moreover, as widely acknowledged,
fully supervised models exhibit remarkable performances when benefiting from sufficient
annotations, but they are constrained by the high costs associated with collecting and
annotating glaucoma samples. Therefore, developing a cost-efficient model with low-cost
annotations is appealing.
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Currently, there is sufficient availability of normal fundus images with pixel-level
annotations that are accessible at low cost. Notably, compared with other retinal diseases
(e.g., age-related macular degeneration), glaucoma samples do not exhibit novel or distinct
lesions that might disrupt layouts and patterns. The differences between the normal
and glaucoma classes primarily reside in the sizes and morphologies of the OD and
OC. This key characteristic ensures the foundational performance of transfer learning [8].
Therefore, it is beneficial to exploit shared knowledge from normal samples based on
the similarities between the two classes. However, if the proposed model struggles to
disentangle the relationship, the model will inevitably capture both shared and unshared
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features simultaneously, resulting in poor performance. Therefore, adapting inherent
similarities and dissimilarities between the two classes can potentially avoid this limitation.
We argue that the relationship between the two classes can be established by the utilization
of low-cost annotations at both the style-level and domain-level.

The models, assisting in glaucoma progression tracking and prognosis assessment,
should yield optimal performances on glaucoma-confirmed samples, while the prediction
distributions of most existing models employing a directly supervised strategy with mixed
glaucoma and normal fundus images tend to bias a normal distribution. Additionally,
establishing a fully supervised model is restricted by the high cost of collecting and anno-
tating glaucoma fundus images. To alleviate the issue, we exploit shared knowledge from
low-cost pixel-level annotated normal fundus images, capturing general and glaucoma-
related features by the acquisition of insights into the relationship between the two classes,
accomplished by the utilization of low-cost style-level and domain-level annotations. The
right-hand illustrations exhibit two test examples from two datasets. The baseline model
was directly supervised by normal samples without the proposed modules. Moreover, in
clinical practice, it is common to encounter various scenarios. Specifically, we may only
have access to a limited number of annotated glaucoma samples, alongside an extensive
collection of unannotated glaucoma samples. Effectively leveraging these resources is
critically important in clinical practice. Therefore, developing a model that can effectively
adapt to diverse clinical scenarios is equally important. Note that the term “pixel-level
annotations” refers to annotations of the individual pixels within each image, including the
background, optic disc, and optic cup. “Domain-level annotations” denote the classification
of each image into a specific domain, such as the glaucoma or normal domain. In contrast,
“style-level annotations” describe the stylistic characteristics of each image, distinguishing
between glaucoma-style and normal-style presentations.

To summarize, the motivations for this study include the following three aspects:
(1) existing OD/OC segmentation models are not optimal for assisting in the assessment
of glaucoma progression; (2) developing a fully supervised, glaucoma-specific OD/OC
segmentation model from scratch has a high cost; (3) achieving adaption to various sce-
narios encountered in clinical practice. We hereby clarify the similarities and differences
between this study and our previous study [3]. Both studies are related to assisting in
the assessment of glaucoma progression. Our previous study primarily addressed retinal
layer segmentation on of OCT images, which incurs high acquisition costs. In contrast, this
study concentrated on color fundus images, obtaining OD- and OC-based glaucoma-related
biomarkers, a low-cost imaging method that is particularly suitable for resource-limited
regions. Moreover, regarding the framework, while both studies employ adversarial learn-
ing, this study introduces an additional component, style-based contrast learning, which
focuses on the combination of style-based contrast learning and domain adversarial learn-
ing, rather than exploiting multi-level features from various encoding and output spaces,
which was extensively explored in the previous study. Therefore, with the collaboration
between contrast and adversarial learning, the model presented in this study adapts to
three clinical scenarios, enhancing its clinical significance. In contrast, the model proposed
in our previous study [3] was limited to a single scenario.

Therefore, we propose a novel annotation-efficient model by exploiting low-cost
annotations, including pixel-level annotations for normal samples, as well as style-level
and domain-level annotations for normal and glaucoma samples. The proposed model can
capture general features from low-cost annotated normal fundus images, simultaneously
capturing glaucoma-related features from style-level and domain-level annotations. We
employ a Gram matrix to encode the style information of the feature maps to capture style
gaps. In addition, domain-level supervised modules in the feature space and output space
are employed to bridge domain-level gaps between the two classes. The architecture of
our proposed model consists of the following two components: The first part, shared by
normal and glaucoma images, is dedicated to being supervised with pixel-level annotated
normal images (and annotated glaucoma images, if available). The role of the second
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part involves evaluators, explicitly assessing style and domain gaps between the normal
and glaucoma classes dedicated to being supervised with style-level and domain-level
annotations. Therefore, the annotation-efficient strategy encourages the proposed model
to generate results closely aligned with the glaucoma class by explicitly narrowing the
domain and style gaps to the glaucoma class.

Therefore, in this study, the low-cost annotations come from two aspects: (1) the
relative abundance of normal eye data in the population, making them more accessible
than glaucoma samples; (2) compared to the significant alterations in the OD and OC in
glaucoma cases since the introduction of lesions and the varying severities of glaucoma,
the minimal changes in normal eyes facilitate the clear delineation of the OD and OC
boundaries in the normal samples. Considering the few publicly available specialized
datasets for this task, we adapted two public fundus-image-based datasets to simulate
the various scenarios. We employed annotated normal images as the resource dataset,
while glaucoma images were the target dataset used to validate our model. Our proposed
model offers distinct advantages in three common scenarios: pixel-level annotated normal
or glaucoma samples, and both annotated normal and glaucoma samples with pixel-
level annotations.

The contributions of this work are summarized as follows:

1. We demonstrate a concerted effort to target glaucoma-confirmed samples by propos-
ing a glaucoma-specific model, mitigating the inherent issue of bias in most existing
direct supervised models with mixed annotated glaucoma and normal fundus sam-
ples, yielding an optimal performance in OD/OC segmentation in fundus images,
assisting in glaucoma progression tracking and prognosis assessment.

2. Our proposed model exhibits a cost-efficient performance by exploiting annotated
normal images, mitigating the high cost of employing fully supervised pixel-level
annotated glaucoma samples. Moreover, our proposed model explicitly establishes
the relationship between the two classes by style contrastive and domain adversar-
ial learning, improving predictions for glaucoma by narrowing the style-level and
domain-level gaps, preventing deterioration in performance due to unshared features.

3. The disentangled relationship established by our proposed model facilitates its adapt-
ability in three common scenarios, wherein normal or glaucoma samples, or both are
provided with pixel-level annotations. Notably, our proposed model demonstrates
cost-effectiveness by yielding an enhancement in the overall performance simply by
increasing the number of normal samples.

4. We conducted experiments employing two public datasets to mimic various common
scenarios. The results demonstrate that our proposed model yields a superior per-
formance over the baseline model, approaching the model with supervision by the
annotated glaucoma samples. Moreover, the proposed model accurately delineates
the contours of the OD and OC, facilitating the derivation of glaucoma progression-
related features.

2. Related Work

In this section, we briefly summarize OD and OC segmentation approaches and
cost-efficient strategies for medical images.

2.1. OD and OC Segmentation Approaches for Fundus Images

Numerous classical approaches have been proposed for OD and OC segmentation
in fundus images. These approaches attempt to utilize discriminate features to classify
the OD and OC. Several methods have been explored, including edge or morphology
detection [9–11], level set [12–14], template matching [15–17], and graph cut [18], as well as
super-pixel classification [19–21]. The advantage of these approaches lies in their ability
to detect well-interpretable features, which are critical for clinical applications. However,
these hand-crafted features rely heavily on prior expert knowledge [7]. In addition, the
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generalization ability of classical methods is limited, as they struggle to adapt to variations
in appearance, anatomy, and domain shifts.

Recently, deep learning-based methods have shown considerable potential in medical
image tasks, and several notable frameworks have been proposed for the task of segment-
ing ODs and OCs [22]. Notably, convolutional neural networks have been extensively
employed, owing to their capability in automatically capturing discriminator features from
raw fundus images [23,24]. Subsequently, U-Net [25] has been adapted for OD and OC
segmentation tasks, employing an encoder–decoder architecture to effectively capture con-
textual information and preserve spatial details. Moreover, the incorporation of advanced
modules, such as residual blocks, dense connections, and dilated convolution, has resulted
in notable enhancements in segmentation accuracy [26,27]. Additionally, U-Net varia-
tions, including M-Net [28], U-Net++ [29], and CE-Net [30], yield further improvements
in performance. Attention-based models with spatial- and channel-wise attentions have
demonstrated efficacy in distinguishing OD and OC boundaries [31,32].

However, most developed models are not optimal for assisting in the tracking of
progression and the assessment of prognosis for glaucoma. These models primarily focus
on early detection, establishing models with mixed samples that mimic common screening
scenarios by combining a larger number of normal samples with a smaller number of
glaucoma samples, such as the ESPERANZA dataset (113 glaucoma vs. 1333 normal) [33]
and the RIM-ONE-R1 dataset (40 glaucoma vs. 118 normal) [34]. The biased datasets result
in suboptimal performances on glaucoma-confirmed samples.

2.2. Cost-Efficient Strategies in Medical Image

To mitigate the resource-intensive burden of annotating and collecting samples, es-
pecially for medical image analysis tasks, various cost-efficient strategies have been pro-
posed [35,36] demonstrating promising economic efficacy [37–39]. The pretrained model,
a common cost-efficient method, trains a model with low-cost datasets, followed by fine-
tuning the initialized, optimized model on a limited target dataset [40]. Christopher et al.
proposed a high-performance model with a rapid training speed, employing a pretrained
model strategy to detect glaucomatous optic neuropathy using a public nature-based image
dataset, thus mitigating expenses by annotating fundus images [41]. However, capturing
shared features from nature images is not the optimal choice for medical image tasks be-
cause of the significant disparities between nature- and medical-based images. Gomez et al.
proposed a cost-efficient model that exploits valuable resources from a separate medical
image dataset for the targeted task of OD segmentation in fundus images [33]. Therefore,
pretrained models can serve as an annotation-efficient method by exploiting resources in
low-cost datasets.

However, a limitation of pretrained models is that the source dataset does not par-
ticipate in the training stage of the downstream task, resulting in the model capturing
shared and noisy features simultaneously [42,43]. Therefore, Zhang et al. proposed a
source-free model for diabetic retinopathy detection by incorporating source samples
during the training stage, encouraging the model to generate target-style features from
unannotated datasets [44]. Commonly, large domain gaps between the source and target
datasets deteriorate performance; thus, domain adaptation models are introduced in med-
ical image tasks to narrow the domain gaps between the source dataset and the target
dataset [45,46]. Lei et al. proposed an unsupervised domain adaption model to effectively
narrow domain gaps, encouraging the model to capture the target-domain knowledge
from the source dataset, yielding a superior performance in the segmentation of ODs and
OCs [47]. Moreover, Keaton et al. combined domain adaptation with few-shot learning to
segment cellular instances by a new contrastive loss, exhibiting a promising performance
on a minimal number of new annotated samples [48]. Similarly, Feng et al. proposed a
domain adaptation module with consistency match, exploiting knowledge from low-cost
relevant datasets to the task of pneumonia diagnosis [49].
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With the benefits of sufficient annotated datasets, the fully supervised method has
demonstrated the achievement of promising performances, but its extension to a glaucoma-
specialized model is restricted by the limited availability of annotated glaucoma samples.
Therefore, it is beneficial to exploit resources from low-cost annotations.

3. Methods

In this section, we first provide an overview of our proposed model, followed by
details on the style and domain collaborative supervision learning scheme. Finally, we
provide in-depth insight into the overall training procedure.

3.1. Overview of the Proposed Model

Our proposed model, as illustrated in Figure 2, incorporates shared feature extraction
with three distinct output pathways. One pathway is dedicated to capturing pixel-level
features, while the remaining two pathways are designed to capture class-level features,
including style and domain features. The optimization process is as follows: The shared
model produces encoding features and pixel-level predictions, as supervised by pixel-level
annotations of normal or glaucoma images (or both, i.e., two-class images). Subsequently, a
refinement stage collaboratively encourages the pixel-level predictions toward the glau-
coma class by updating the shared model with style-level and domain-level supervised
annotations, narrowing the style and domain gaps between the two classes.
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both normal and glaucoma images have pixel-level annotations). The pixel-level annotated normal
fundus images (and pixel-level annotated glaucoma fundus images, if available) are utilized to
capture general features with the pixel-level supervised annotations. The glaucoma fundus images
(without pixel-level annotations) are utilized to capture glaucoma-related features with the style-level
and domain-level supervised annotations. The proposed model encompasses a pixel-level supervised
path that aims to generate pixel-level prediction results by soft dice loss; the style-level supervised
path is designed to encourage the generation of pixel-level prediction results similar to glaucoma-style
features by narrowing style gaps; and the domain-level supervised path encourages the generation of
pixel-level prediction results close to the glaucoma-domain at various domain levels by narrowing
domain gaps. For detailed frameworks corresponding to each scenario, please refer to three separate
images (Figures S2–S4) in the Supplementary Materials.

3.2. Style and Domain Collaborative Supervision Learning

We began by establishing the initialized, optimized segmentation model (S*) with
pixel-level annotated images. The initialized model served as the base model to generate
pixel-level prediction results for the next steps. We forwarded normal fundus images (In)
(and annotated glaucoma images, if available) to the segmentation module and optimized
it with the corresponding pixel-level labels (Yn) by soft dice loss (Lseg), which is defined
as follows:

Lseg(In, Yn) = 1− 2 ∗ (S(In) ∗Yn)

S(In)
2 + Yn

2
. (1)

Subsequently, we forwarded Ig and In images to the initialized, optimized module,
obtaining pixel-level prediction results for the normal images, S(In), and glaucoma images,
S
(

Ig
)
. These results serve as inputs for the latter. The architecture of the segmentation

modules is described in detail in Section 3.5, on our proposed framework. In the following
steps, we focus on shifting the distribution of the results toward the glaucoma class by
utilizing style and domain annotations.

3.3. Style Contrastive Learning

Inspired by prior knowledge, the difference between the color fundus images of
normal and glaucoma eyes can be regarded as imaging style variations, as glaucoma
mainly causes morphological alterations like optic cup collapse. However, the challenge
lies in quantifying these stylistic differences between the two images. In this study, we
adopted a contrast learning-based strategy. Unlike adversarial learning, which relies
on a style discriminator, contrast learning directly assesses style gaps with a similarity
assessment function. Therefore, this strategy is easy to implement in practice. Moreover,
it is suitable when only one class is present, especially in Scenario 2, with only glaucoma
samples, for which the training of adversarial learning discriminators becomes unfeasible,
as it requires normal and glaucoma samples.

To effectively capture the stylistic features of an image, we drew inspiration from
the style loss of style transfer learning, for which the stylistic information of an image is
encoded through a style matrix, notably a Gram matrix. This matrix can be interpreted as
covariance representation for features within an image. This is achieved by computing the
inner product between a given feature and the remaining features within an image. This
matrix captures the correlations among different features, specifically their co-occurrence
patterns. Since images of varying styles exhibit different feature co-occurrences, the matrix
effectively delineates the stylistic attributes associated with each image.

The style supervision module, denoted as G, serves as a style gap evaluator responsible
for narrowing the style gap by supervising style-level annotations. The channel-wise Gram
matrix is employed to encode the style information of feature maps. We first obtained Gram
matrices of the prediction results, S(In) and S

(
Ig
)
, as per the following steps: initially, we

transformed a raw feature map with dimensions of H ×W× C (height ×width× channel)
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reshaped into a new feature map with dimensions of HW × C. Subsequently, we transpose
the reshaped feature map (C × HW) and perform matrix multiplication with the reshaped
feature map (HW × C) to obtain a channel-wise Gram matrix (C × C). The Gram matrix is
defined as follows:

Gram(Ix) = R(S(Ix))
T × R(S(Ix)), (2)

where the Gram matrix of feature maps Ix is denoted as Gram(Ix); R(S(Ix)) represents the
reshaped S(Ix); and x is the normal or glaucoma images. The difference between the Gram
matrices of the normal and glaucoma prediction results across all positions can be treated
as the style gap loss (Lstyle) between the two classes. The style loss is defined as follows:

Lstyle = ∑
{Ig∈Sg ,In∈Sn}

∑{r∈C,c∈C}

(
Gram(In)

r,c − Gram
(

Ig
)r,c

)2

C ∗ C
, (3)

where r and c denote the row and column of the Gram matrix. The detailed style supervision
steps are as follows: Firstly, the results derived from the initialized, optimized segmentation
module, S*, are conveyed to the corresponding channel-wise Gram matrix according
to Equation (3). Subsequently, the mean squared error between the Gram matrices of
the normal prediction result and the target style glaucoma prediction result is assessed
according to Equation (4), followed by normalization with the total number of elements in
the style map. Next, the obtained style loss is propagated backward to the segmentation
module, encouraging S* to produce results that approximate the glaucoma style.

3.4. Domain Adversarial Learning

Only narrowing the style gap is insufficient for dense pixel prediction tasks [3]. There-
fore, we further establish the relationship with domain-level annotations. Employing a
fully supervised learning strategy and training an OD/OC segmentation model using only
pixel-level labeled normal color fundus images, the generated results are inevitably biased
toward the normal domain and away from the glaucoma domain. This bias leads to poor
performance in our target task: OD/OC segmentation in glaucoma-confirmed samples.
Therefore, if the generated results align closely with the glaucoma domain, it is more likely
to achieve improved segmentation results on glaucoma-confirmed samples. Inspired by
previous work indicating that generator adversarial learning can effectively narrow the
generated distribution to align with the target distribution [50], we introduced domain
adversarial learning to refine the generated results, encouraging them to more closely
match the glaucoma distribution.

Commonly, generator adversarial learning consists of a generative part and a dis-
criminator part. In this study, we used the segmentation module (denoted as S(•)) as a
generator, generating segmentation results that closely approximated the target glaucoma
domain. The discriminator, in its original role, evaluates the gap between the generated
fake results and the real results, thus guiding the generator to produce more realistic results.
In this study, we employed a domain discriminator to assess the domain gap between
the generated segmentation results and the target glaucoma domain to promote the gen-
eration of results by the segmentation module to be as close as possible to the glaucoma
domain. The domain discriminator module, denoted as D(•), serves as a domain assessor
responsible for reducing domain gaps between the two classes, which is established using
a fully convolutional neural network consisting of four convolution layers (refer to Table 1
for details on the framework). The primary objective of the modules is to classify the
input domains using the domain discriminator loss (LD), as in Equation (4), and binary
cross-entropy loss, which can be written as follows:

LD = − ∑
{i∈e,o}

∑
{Ig∈Tg ,In∈Tn}

(1− Z) log(D(S(In))i) + Z log
(

D
(
S
(

Ig
))

i

)
, (4)
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where Tg and Tn correspond to the sample sets of glaucoma and normal fundus images,
respectively; Di is the domain discriminator module in the encoding space or output
space; and Z is assigned as 0 or 1 depending on the domain label of the segmentation
soft-max map.

Table 1. Detailed architecture of the proposed model.

Feature Size Pixel-level Path Class-level Part

3 × 256 × 256 Input Domain Supervision Path

64 × 128 × 128 Down1 Double-Conv-Maxpool 256 × 256 × 256 Input 3 × 256 × 256
128 × 64 × 64 Down2 Double-Conv-Maxpool 3 × 128 × 128 D-Conv1 Conv(4 × 4)-Leak-ReLU 3 × 128 × 128
256 × 32 × 32 Down3 Double-Conv-Maxpool 6 × 64 × 64 D-Conv2 Conv(4 × 4)-Leak-ReLU 6 × 64 × 64
512 × 16 × 16 Down4 Double-Conv-Maxpool 12 × 32 × 32 D-Conv3 Conv(4 × 4)-Leak-ReLU 12 × 32 × 32
512 × 16 × 16 Bottom Double-Conv 24 × 32 × 32 D-Conv4 Conv(3 × 3)-Leak-ReLU 24 × 32 × 32
256 × 32 × 32 Up1 Upsample-Double-Conv 1 × 32 × 32 Output Conv(3× 3 ) 1 × 32 × 32

128 × 64 × 64 Up2 Upsample-Double-Conv Style Supervision Path

64 × 128 × 128 Up3 Upsample-Double-Conv 2 × (3 × 256 × 256) Input

32 × 256 × 256 Up4 Upsample-Double-Conv 2 × (3 × 3) Transform Gram
matrix

3 × 256 × 256 Output Conv(3 × 3) 1 × 1 Output MSE

Double-Conv: Conv2D (3 × 3)→ BatchNorm→ ReLU→ Conv2D (3 × 3)→ BatchNorm→ ReLU.

High-dimensional encoding spaces contain visual features of a global size, while the
low-dimensional output space contains features that are directly related to the segmentation
features, including layout and textures. Although due to constraints related to compu-
tational resources, we solely employed two domain discriminators to capture two-level
domain gap losses, one from the encoding feature space (Up1 encoding space, as shown in
Table 1, with dimensions of 256× 32× 32. Prior to being input into the domain discrimina-
tor, it is upsampled to 256× 256× 256) and another from the output space (dimensions of
the output feature are 3× 256× 256), for capturing different glaucoma-domain features
from two different aspects.

Based on the initialized optimized segmentation module supervised by pixel-level
annotated normal samples, we obtain the prediction results and encoding features of the
normal images, S(In), and glaucoma images, S

(
Ig
)
, by inputting the glaucoma samples, Ig,

and normal samples, In. Then, we forward the prediction results and encoding features
from the segmentation module to the corresponding domain modules to obtain the domain
discriminator losses according to Equation (4) and to optimize the corresponding domain
modules to improve the ability of the discriminator.

To evaluate the domain gap loss from the normal domain to the glaucoma domain,
we treated the glaucoma domain as the target domain-level label for the normal images.
To obtain the two-level domain gap loss (Li

domain), we forwarded the segmentation results,
(S(In)o), and encoding feature maps, (S(In)e), of the normal images, (In), generated by the
segmentation module, (S(•)), to the corresponding domain discriminator module, (D(•)i).
The domain gap loss is defined as follows:

Li
domain = ∑h,w log

(
D(S(In)i)i

)
, i ∈ (e, o), (5)

Ldomain = − ∑
In∈Sn

[we ∗ Le
domain + wo ∗ Lo

domain], (6)

where Li
domain denotes the domain gaps from the i space; Le

domain and Lo
domain denote the

domain gaps from the encoding space and output space, respectively; we and wo are the
corresponding weight coefficients to balance the impact of the two losses. In this study, we
and wo were 0.2 and 0.8, respectively.

In detail, the steps of the domain supervision learning are as follows: We first obtained
the domain gap losses according to Equation (6). Subsequently, we updated the initialized
optimized segmentation module using the domain gap losses. As gradients stemming
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from the D module are back-propagated to the segmentation module, transferring the
segmentation results close to the glaucoma class at the domain level, and encouraging
S* to capture glaucoma-related features. Moreover, we should progress in improving the
capacity of the domain supervision modules to match the capacity of the segmentation
module in training.

3.5. Objective Function for Our Proposed Model

The goal of our proposed model was to generate pixel-level results as close as possible
to the glaucoma class while simultaneously capturing as many general features as possible.
Therefore, we formulated a task with an objective function with three distinct losses: a
segmentation dice loss for capturing the pixel-level features, and style and domain gap
losses for capturing the style- and domain-level features simultaneously. Therefore, the
overall object function can be written as follows:

L(IN , IG) = wsegLseg(IN) + wstyleLstyle(IG, IN) + wdomainLdomain(IG, IN), (7)

where Lseg denotes the segmentation dice loss supervised by the pixel-level ground truth of
the normal images (and annotated glaucoma images, if available); Lstyle and Ldomain are the
style and domain gap losses between the normal and glaucoma classes, respectively; wseg,
wstyle, and wdomain are the corresponding weights to adjust the impacts of the different losses;
and IN and IG denote fundus images from the normal and glaucoma classes, respectively.
During the first learning stage, we set the weight of the segmentation and style contrastive
learning losses to 1.0 and 0.05, respectively, while the weight of the adversarial learning
loss was fixed at 0.0. In the second learning phase, the weight of adversarial learning loss
was increased to 1.0, while the remaining two weights were both set to 0.0.

3.6. Overtraining Procedure

To achieve the objective of our proposed model, we aimed to minimize the segmenta-
tion loss and style loss for the source normal images in the segmentation module, while
concurrently maximizing the probability of predictions being classified as target glaucoma
domains. Inspired by generative adversarial networks [50,51], the min–max training strat-
egy was employed to facilitate the optimization of our proposed model, which is defined
as follows:

max
D

min
Seg+Sty

L
(

Ig, In
)
. (8)

To encourage the proposed model to simultaneously capture general and glaucoma-
related features, we minimized the segmentation error and style gaps using the soft dice
loss and style gap loss within the segmentation module (Seg) and the style supervision
module (Sty), maximizing the probability of the segmentation results being considered as
in the glaucoma domain within the domain supervision modules (D).

The detailed training procedure, as depicted in the following flowchart for Algorithm 1,
mainly includes a dual-step iterative process. Step one: We fix the parameters of the domain
modules and update the parameters of the segmentation module. The normal images,
In, are forwarded to the segmentation module, optimizing it by supervision with pixel-
level annotations, Yi, according to the soft dice loss. We further update the segmentation
module by backpropagating gradients from the style and domain transfer modules with
the style and domain gaps. Step two: We fix the parameters of the segmentation module
while updating the parameters of the domain modules by supervising with domain-level
annotations to improve the capability of the domain modules. The iteration process between
the segmentation module and transfer modules will not stop until achieving relatively low
and stable gap losses in the style and domain.
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Algorithm 1: Training Conducted by Our Proposed Model

Input: A batch of (In, Yn) from the annotated normal dataset, DAN (as well as (Ig, Yg) from the
annotated glaucoma dataset, DAG, if available) and Ig from the unannotated glaucoma
dataset DUG.
Output: Trained segmentation network, NS, and domain supervision network, ND, with
parameters θS and θD, respectively.

1: While not converge do
2: (In, Yn), Ig ← sampled from DAN and DUG
3: Step 1: Optimize the segmentation network NS, fixed ND
4: Generate encoding features F(In)e and F(Ig)e and segmentation results S(In)o

and S(Ig)o from NS
5: Generate output results of domain supervision module: D(F(In)e) and D(S(In)o)
6: Calculate segmentation loss Lseg, as in Equation (1)
7: Calculate style loss Lstyle, as in Equation (3)
8: Calculate domain gap loss Ldomain, as in Equation (6)
9: Update θS ← – (wseg ∗ Lseg – (wstyle ∗ Lstyle + wdomain ∗ Ldomain))
10: Step 2: Optimize the domain supervision network ND, fixed NS
11: Generate the encoding features and segmentation results for the normal samples
(F(In)∗e

and S(In)∗o and glaucoma samples (F(Ig)∗e and S(Ig)∗o) from Step 1’s optimized N∗s
12: Calculate discriminator loss LD, as in Equation (4)
13: Update θD ← – (LD)
14: end while
15: return Trained network N∗∗s and N∗∗d
Note: During Scenario 2, without annotated normal samples, the proposed model is reduced to a
single-style contrastive learning model, only executing Step 1 and setting wdomain to 0.

4. Experiments
4.1. Dataset
4.1.1. Overview of Dataset

We adopted two glaucoma detection datasets to mimic various situations to validate
our proposed model, including two fundus image datasets. The first dataset (ORIGA [52]),
widely used in related research, contains 650 images (482 normal and 168 glaucoma)
and was released by the Singapore Eye Research Institute. All images have pixel-level
annotations for the OD and OC, annotated by an ophthalmologist. The second dataset
(G1020 [53]), similar to real clinical conditions without the specific imaging constraints,
contains 1020 images (296 glaucoma and 724 normal) and was released by Technische
Universitat Kaiserslautern German Research Center for Artificial Intelligence GmbH. While
only 790 images have both OD and OC pixel-level annotations, performed by a single
ophthalmologist. In this study, we exclusively utilized samples that included pixel-level
annotations of the optic disc and optic cup as glaucoma-related biomarkers, specifically
CDR and G-score, which require two annotations for an accurate implementation. We
utilized the normal images as the source dataset to exploit resources and glaucoma fundus
images as the target dataset to validate our proposed model. A summary of the datasets is
provided in Table 2.

4.1.2. Preprocessing of Images

All preprocessing steps used for our images are shown in Figure S5, including
two distinct preprocessing steps. To focus on the region of interest regions (ROIs), we
performed direct cropping of the OD and OC regions in the fundus images, excluding the
remaining parts. We utilized the location labels of the OD region and extracted a region
200 pixels away from the boundary of the OD region. Furthermore, the contrast degrees
of the raw images exhibit variation and tend to be relatively low for some images, posing
a challenge in determining the boundaries of ODs and OCs. We employed the adaptive
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histogram equalization algorithm [54], achieving a suitable performance that effectively
mitigated indistinct contours of ODs and OCs.

Table 2. Summary of the two adapted datasets.

Dataset ORIGA G1020

Category
Fundus image Fundus image

Normal 482 724
Glaucoma 168 296

Eye Right 314 490
Left 336 530

Image Size 2000 × 3000 × 3 2400 × 3000 × 3

Annotation OD & OC 650 790
OD & OC: the samples have pixel-level annotations for the OD and OC regions. The sizes of the images in the
two datasets are not fixed but only vary slightly; therefore, we provide an approximate value.

4.2. Experimental Configuration

To ensure a fair comparison of all models and all three scenarios, we split the dataset
based on the following method: For the adapted ORIGA dataset, we utilized 482 normal
samples as the training source dataset and 100 glaucoma samples as the training target
dataset. Additionally, the remaining 68 glaucoma samples were reserved as the validation
dataset. For the adapted G1020 dataset, 554 normal and 136 glaucoma samples were
utilized as the training source dataset and target dataset, respectively, while 100 glaucoma
samples were allocated as the validation dataset.

A detailed framework is provided in Section 3.5 on the proposed network. The
proposed model’s input image size is 256× 256× 3 (height×width× channel) with a batch
size of 2. The AdaBoost optimizer is employed to optimize the segmentation, initialized
with a learning rate of 1 × 10−4, momentum of 0.9, and betas of 0.9 and 0.99. StepLR with a
gamma of 0.95 is employed to decay the learning rate. The soft-max results (256 × 256 × 3)
from the segmentation serve as inputs of the style transfer module. The encoding feature
maps (32 × 32 × 256) and outputs from the soft-max results (256 × 256 × 3) from the
segmentation part serve as inputs of domain transfer modules. The AdaBoost optimizer
with an initial learning rate of 1 × 10−2 and betas of 0.9 and 0.99 is utilized to optimize the
domain transfer module.

4.3. Implementation Details and Evaluation Metrics

All experiments were implemented with PyTorch (pytorch-gpu version 1.8) [55] and
trained using NVIDIA Tesla 4080 GPUs with 16 G memory (Gigabyte Graphics Card
Company, Ningbo, China). The backbone framework of the segmentation was a customized
U-Net, which is easily replaced by other advanced segmentation networks. Additionally,
to effectively capture glaucoma-related features at both the style and domain levels, we
incorporated weighted coefficients to balance the impact of the style and domain gap losses
within the corresponding supervision paths.

In this study, we employed three evaluation metrics (Dice, cup-to-disc ratio (CDR),
and G-score) based on the following considerations: the Dice coefficient, which reflects the
original segmentation performance; cup-to-disc ratio (CDR), which serves as a biomarker
associated with assisting in glaucoma development, derived from the original segmentation
results; and G-score, which concurrently integrates the above two sides to provide a
comprehensive assessment of the model’s performance.

To conduct a direct assessment of the segmentation performance of our proposed
model, we employed the Dice coefficient, commonly used in medical image segmenta-
tion tasks. Moreover, it is more suitable for medical imaging than the intersection ratio
commonly used in natural imaging, as it exhibits greater sensitivity to class imbalances
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(more sensitive to positive class). This sensitivity is particularly advantageous in medical
imaging, where lesions (positive class) are often smaller than the background. It serves
as a quantitative metric for assessing the similarity between prediction results and their
corresponding ground truth by considering the metrics of true positive (TP), true negative
(TN), and false negative (FN) in the segmentation results. A higher value of the Dice
coefficient corresponds to a better segmentation performance. The formulation is defined
as follows:

Dice =
2 ∗ TP

TP + FP + TP + FN
. (9)

To quantitatively evaluate the performance of our proposed model in monitoring
glaucoma samples, we employed the cup-to-disc ratio metric, a common glaucoma-related
feature that encompasses both vertical and horizontal directions. We computed the mean
squared difference of the CDR between the prediction results and ground truth in two
directions, which is defined in Equation (10), where the CDRs of the ground truth and
prediction segmentation results are denoted as CDRG and CDRP, respectively; and n
represents the overall number of samples. A lower value of CDRMSE indicates a superior
prediction performance.

CDRMSE(G, P) =
∑{i∈g}

(
CDRH

P − CDRH
G
)2

+ ∑{j∈g}
(
CDRV

P − CDRV
G
)2

n
. (10)

However, both the Dice and CDR assess the model’s performance from a singular
perspective. To further evaluate the performance of our proposed model in assisting in
monitoring glaucoma samples, we employed the G-score metric, as described in [52]. This
metric offers a comprehensive evaluation by considering both the absolute difference in the
CDR and the area of overlap between the prediction results and ground truth. A higher
G-score value indicates an increase in the performance of the model, where Gscore denotes
the G-score metric; Ipred and Igt correspond to the prediction results and ground truth,
respectively. The formulation is defined as follows:

Gscore = (((Ipred ∩ Igt)/(Ipred ∪ Igt))× 100)/ 2−
((∣∣∣CDRpred − CDRgt

∣∣∣/CDRgt

)
× 100

)
. (11)

5. Experimental Results
5.1. Baseline Model Results

To comprehensively evaluate our proposed model, we established three pixel-level
supervision baseline models (supervised by pixel-level annotations from normal, glaucoma,
and both (i.e., two classes)) that corresponded to the three scenarios. The baseline models
adopted the same framework as the segmentation part of our proposed model, but without
the proposed modules. Additionally, the experimental settings were consistent, ensuring a
fair comparison across all of the experiments.

5.1.1. Pixel-Level Annotations from Normal Samples: Pixel-Supervised-N Baseline

To establish a base benchmark, we initially trained a model using only the pixel-
level annotated normal fundus images (100). We considered this approach as the pixel-
supervised-N baseline due to the exclusion of pixel-level annotated glaucoma images
during the training stage. The experimental results, as shown in Table 3, demonstrate that
the performance of the pixel-supervised-N baseline was not significantly poor, achieving
a mean Dice (M-Dice) of 0.8879 for the OD, OC, and Rim segmentation results; mean
square error of the CDR (CDRMSE) of 0.0097; and G-score of 46.97. These modest results
can be attributed to the inherent stylistic and domain similarities shared by normal and
glaucoma fundus images. Nevertheless, the existing unshared and noised features prevent
the pixel-supervised-N model from achieving an optimal performance.
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Table 3. Results of the pixel-level supervision baseline models.

Baseline Models
Dice

CDRMSE G-Score
OD OC Rim Mean

Scenario 1:
Pixel-Supervised-N 0.9368 0.9158 0.8111 0.8879 0.0097 46.97

Scenario 2:
Pixel-Supervised-G 0.9516 0.9308 0.8497 0.9107 0.0028 53.09

Scenario 3: Pixel-
Supervised-N&G 0.9518 0.9329 0.8534 0.9127 0.0022 54.10

Pixel-supervised-N: the model is supervised by all pixel-level annotated normal fundus images. Pixel-supervised-
G: the model is supervised by all pixel-level annotated glaucoma fundus images. Pixel-supervised-N&G: the
model is supervised by mixed pixel-level annotated glaucoma and normal fundus image.

5.1.2. Pixel-Level Annotations from Glaucoma Samples: Pixel-Supervised-G Baseline

To establish a top-performance reference, we established a direct supervised model us-
ing the pixel-level annotated glaucoma fundus images (100), serving as the pixel-supervised-
G baseline. The experimental results are shown in Table 3, which demonstrate that the
pixel-supervised-G approach yielded a better performance than the pixel-supervised-N
baseline across all three metrics, as follows: M-Dice (0.9107), CDRMSE (0.0028), and G-score
(53.09). In addition, concerning the separated segmentation results for the OD, OC, and
Rim, the pixel-supervised-G baseline also achieved a promising Dice score across all seg-
mented regions. These promising results can be attributed to the same class of training
dataset as the test dataset for the pixel-supervised-G method. However, the primary limi-
tation of the pixel-supervised-G baseline lies in the high cost associated with annotating
glaucoma images.

5.1.3. Pixel-Level Annotations from Normal and Glaucoma Samples:
Pixel-Supervised-G&N Baseline

To mimic datasets commonly utilized in glaucoma-screening or detection models,
we established the pixel-supervised-G&N baseline by combining pixel-level annotated
100 glaucoma and 100 normal fundus images. The results are shown in Table 3. Leveraging
pixel-level annotations from glaucoma samples, the mixed baseline showed a satisfactory
performance (M-Dice: 0.9127), exhibiting a large improvement compared to the pixel-
supervised-N baseline (M-Dice: 0.8879). However, it only achieved a small improvement
compared to the pixel-supervised-G baseline (M-Dice: 0.9107). The direct reason is that the
mixed pixel-supervised-G&N model displays a robust performance on both the normal
and glaucoma samples simultaneously, decentralizing the model’s capacity. The more
in-depth reason is that the straightforward supervised strategy fails to adequately capture
the similarity and dissimilarity between the two classes. In summary, the high cost but
marginal performance gains demonstrate that glaucoma-screening or detection models
aren’t the optimal choice for assisting in monitoring the progression and assessing prognosis
of glaucoma samples.

5.2. The Proposed Model’s Results

To explore the effect of our proposed model, we started with the single-level models
with style- or domain-level annotations. Subsequently, we integrated the style and domain
annotations to evaluate the effect of the collaborative supervision model. The experimental
settings were kept the same as the baseline models.

5.2.1. Single Style-Level Contrastive Learning Model

To demonstrate the superiority of our proposed model over the pixel-supervised-N
baseline, we first conducted extensive experiments with the single-style level of supervision
model with contrastive learning. The results, shown in Table 4, demonstrate that the
style-level supervision model achieved superior performance. Specifically, the style-level



Sensors 2024, 24, 7255 15 of 26

supervision model achieved an M-Dice score of 0.8966, yielding an enhancement of 0.98%
compared to the pixel-supervised-N baseline. The proposed model achieved both superior
OC and Rim segmentation results. These promising results highlight the significant benefits
of the style-level supervision module and the value of low-cost, style-level annotations,
thereby narrowing segmentation error and style gaps with contrastive learning enables the
model to capture general and glaucoma-style features simultaneously.

Table 4. Results of different levels of the supervision models.

Transfer Learning Dice

CDRMSE G-ScoreContrastive Adversarial
OD OC Rim Mean

Style Output Encoding

✔ 0.9394 0.9223 0.8281 0.8966 0.0090 49.85
✔ 0.9416 0.9176 0.8244 0.8945 0.0081 50.83

✔ 0.9429 0.9107 0.8233 0.8923 0.0070 49.67
✔ ✔ 0.9413 0.9228 0.8284 0.8975 0.0080 50.86

✔ ✔ ✔ 0.9341 0.9397 0.8315 0.8999 0.0043 51.23

Output or encoding is domain-level supervision in encoding or output spaces by adversarial learning, respectively.
Style is style-level supervision by contrastive learning. A checkmark indicates that the corresponding learning
is adopted.

5.2.2. Single-Domain-Level Adversarial Learning Model

In addition, we extensively experimented with the domain-level supervision model in
the encoding space and output space by adversarial learning, since they contain different
features. Furthermore, we used a patch size as the output dimension of the domain-
level supervision module, since assessing the domain gaps at a suitable size prevents
the model from losing important details and being affected by noise. All experimental
settings were the same as the style of the supervision model. The experimental results, as
shown in Table 4, prove the effect of the domain supervision model, exhibiting superior
performance, with an M-Dice of 0.8975, and surpassing the pixel-supervised-N baseline.
Furthermore, when only considering the encoding or output space domain information,
the domain supervision learning model still outperformed the pixel-supervised-N baseline,
with M-Dice values of 0.8923 and 0.8945, respectively. These results prove that exploiting
knowledge from the domain information in the output and encoding spaces enables the
model to capture domain-related features in different spaces.

5.2.3. Collaborative Style Contrastive and Domain Adversarial Learning Model

To further improve the performance of the proposed model, we employed a collabo-
rative contrastive and adversarial learning strategy that simultaneously leveraged style
and domain annotations. We conducted extensive experiments with the proposed model.
The experimental settings were the same as the single-level supervision models. The il-
lustration of the architecture of the model can be observed in Figure 2, while the details
can be found in the methodology in Section 3. The experimental results, as shown in
Table 4, demonstrate the superior performance of our proposed model compared with
other methods. The performance of the proposed model (M-Dice: 0.8999) improved by
0.37% and 0.27% compared to the single-style supervision model (M-Dice: 0.8966) and do-
mains supervision model (M-Dice: 0.8975), respectively. Additionally, the model yielded a
large improvement of 1.35% compared to the pixel-supervised-N baseline (M-Dice: 0.8879).
Regarding the CDRMSE and G-score, our proposed model (0.0043 and 51.23) still yielded
significant improvements compared to the pixel-supervised-N baseline (0.0097 and 46.97).
Compared to the pixel-supervised-G baseline, our proposed model achieved a comparable
performance with a slight decrease of 1.19% and 3.50% for M-Dice and G-score, respectively.
The divergence in terms of the CDRMSE was also modest. These results prove that our
proposed model can narrow the performance gap to the pixel-supervised-G baseline. In
addition, compared to the common baseline-G&N (M-Dice: 0.9127), the results of our
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proposed model are comparable, even if they utilize high-cost pixel-level annotations from
both glaucoma and normal images. Therefore, using low-cost annotated normal images but
achieving a promising performance on glaucoma samples proves that the proposed model
is suitable for assisting in tracking of the progression and assessment of the prognosis of
glaucoma-confirmed samples.

5.3. Results of Varying the Sizes of Pixel-Level Annotated Normal Images

To explore the correlation between pixel-level annotated normal images and our pro-
posed model, we increased the size of the pixel-level annotated normal images in the
training dataset (100, 300, and 486). All other experimental settings were the same as
the proposed model. The results, as shown in Table 5, demonstrate a notable improve-
ment with an increase in the size of the pixel-level annotated normal images. Specifically,
300 annotated normal samples achieved an increase of approximately 0.43% compared
with 100 annotated normal samples. This enhancement can be attributed to benefits from a
higher baseline of 300 annotated normal images (M-Dice of pixel-supervised-N baseline:
0.9001), providing more resources to exploit and enable the model to effectively capture
essential features. Therefore, the proposed model with 482 annotated images yields an M-
Dice of 0.9134, even better than the pixel-baseline-G (M-Dice: 0.9107), which demonstrates
the effectiveness of our proposed model.

Table 5. Results of differently sized pixel-level annotated normal images.

Size (A–N) Model
Dice

CDRMSE G-Score
OD OC Rim Mean

100
Pixel-Supervised-N 0.9368 0.9158 0.8111 0.8879 0.0097 46.97

Proposed Model 0.9341 0.9397 0.8315 0.8999 0.0043 51.24

300
Pixel-Supervised-N 0.9471 0.9219 0.8313 0.9001 0.0056 49.42

Proposed Model 0.9487 0.9234 0.8393 0.9038 0.0050 51.91

482
Pixel-Supervised-N 0.9550 0.9219 0.8469 0.9080 0.0053 52.35

Proposed Model 0.9527 0.9331 0.8546 0.9134 0.0029 53.32

Note that A–N means pixel-level annotated normal fundus images in Scenario 1, wherein only normal fundus
images have pixel-level annotations.

5.4. The Adaptability of the Proposed Model in Other Scenarios

To explore the adaptability of our proposed model in different scenarios, we inves-
tigated the performance of our proposed model in the other two common scenarios. An
illustration of the proposed model can be observed in Figure 2. All experimental settings
were the same as the scenario in which there were only normal images with pixel-level
annotations, except using annotated glaucoma images or using both annotated glaucoma
and normal images as the source training dataset for Scenario 2 and Scenario 3, respectively.

When only the glaucoma samples had pixel-level annotations, we utilized the same
training dataset as for the pixel-baseline-G model (100 glaucoma with pixel-level annota-
tions), along with 68 unannotated glaucoma samples. Our proposed model demonstrates
its adaptability to address this scenario by only using the style-supervision module. The
results, as shown in Table 6, demonstrate the superior performance of our proposed model
compared to the baseline pixel-supervised-N model, specifically in terms of OD and Rim.
Notably, an increasing trend was also observed in the glaucoma-related metrics. These
results highlight the value of the unannotated glaucoma samples, which can serve as a
resource for extracting valuable features, simultaneously proving the capability of our
proposed model to capture glaucoma-related features.
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Table 6. Results of the proposed model with annotated glaucoma and normal images.

Scenario Model
Dice

CDRMSE G-Score
OD OC Rim Mean

Scenario 2
Pixel-Supervise-G 0.9516 0.9308 0.8497 0.9107 0.0028 53.09

The proposed model 0.9539 0.9397 0.8499 0.9145 0.0021 54.50

Scenario 3
Pixel-Supervised-G&N 0.9518 0.9329 0.8534 0.9127 0.0022 54.10

The proposed model 0.9541 0.9374 0.8580 0.9165 0.0022 54.25

Scenario 2: only glaucoma fundus images have pixel-level annotations. Pixel-supervised-G&N: a directly
supervised strategy was employed using all pixel-level annotated glaucoma and normal samples. Scenario 3:
both normal and glaucoma fundus images have pixel-level annotations. Pixel-supervised-G: a directly supervised
strategy was employed using all pixel-level annotated glaucoma samples.

Moreover, in the scenario with both glaucoma and normal images with pixel-level
annotations, we utilized the dataset as the same training dataset used in the pixel-baseline-
G&N model (100 glaucoma and 100 normal with pixel-level annotations). The results, as
shown in Table 6, demonstrate a notable improvement of 1.84% compared to the perfor-
mance of the model using only pixel-level annotated normal images. This enhancement can
be attributed to the benefits of additional pixel-level annotations for the glaucoma images,
resulting in the model capturing more general and glaucoma-related features. Furthermore,
compared to the pixel-baseline-G&N, the model achieved an increase of 0.42% for M-Dice.
Therefore, even with the same annotations, our relationship-driven model demonstrated a
superior capacity to disentangle the relationship between normal and glaucoma classes
than the direct mixed pixel-supervised-G&N method, enabling the model to concentrate
on the target glaucoma class.

5.5. Results for the Adapted G1020 Fundus Image Dataset

To evaluate the generalization ability of our proposed model, we conducted experi-
ments with the challenging fundus dataset (G1020) in different situations. The experimental
settings were consistent with the model for the adapted ORIGA dataset. The experimental
results are shown in Table 7, demonstrating the superiority of the proposed model in
both OC and rim segmentation results of 0.8912 and 0.8074, respectively. This represents
significant improvements of 3.42% and 4.44% over the pixel-supervised-N baseline (OC:
0.8617; Rim: 0.7731). However, it is worth noting that our proposed model did not achieve
an evident improvement in OD segmentation compared with the other baseline models.
The variations in the OD, OC, and rim segmentation results may be attributed to charac-
teristics of glaucoma, which primarily affect the OC and rim regions. Notably, regarding
glaucoma-related features, our proposed model also achieved the best results of all methods.
Compared to the ground truth, the CDRMSE results for our proposed model were the lowest
of all methods, at only 0.0068, compared to 0.0175 for the pixel-supervised-N baseline.
Regarding the G-score, our proposed model continued to outperform the other methods,
achieving a superior performance (45.07) to the pixel-supervised-N baseline (38.81).

5.6. Computational Complexity of the Models

To assess the computational complexity of the different models, a critical consideration
in clinical practice, we employed the following five assessment metrics: parameters of the
model, floating-point operations (FLOPs), training time required per epoch for a model,
inference time needed for a single sample for an optimized model, and size of the saved
optimized models. We only compared two kinds of methods, since all baseline models
shared the same framework, which can be replaced by other advanced segmentation
models in our proposed model. The results, as shown in Table 8, reveal that our proposed
model had a slightly higher cost in terms of parameters and FLOPs over the baseline
models due to the inclusion of three additional modules. As a result, the training time
required for our proposed markedly surpassed that of the baseline models. Moreover, it
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is noteworthy that despite the high cost of the training time for our model, the inference
time for both models remained consistent at 0.22 s. This consistency is attributed that the
proposed model only relying on the segmentation component during the inference stage, so
the size of the saved optimized model to the inference samples for both models remained
the same.

Table 7. Results of the proposed model on the G1020 dataset.

Scenario Model
Dice

CDRMSE G-Score
OD OC Rim Mean

Scenario 1
Pixel-Supervised-N 0.9559 0.8617 0.7731 0.8636 0.0175 38.81

The proposed model 0.9583 0.8912 0.8074 0.8860 0.0068 45.07

Scenario 2
Pixel-Supervised-G 0.9544 0.8889 0.7974 0.8802 0.0094 43.61

The proposed model 0.9547 0.8866 0.8048 0.8820 0.0085 43.30

Scenario 3
Pixel-Supervised-G&N 0.9651 0.8993 0.8081 0.8960 0.0061 45.45

The proposed model 0.9656 0.9071 0.8315 0.9014 0.0047 46.19

Scenario 1: only normal fundus images have pixel-level annotations. Scenario 2: only glaucoma fundus images
have pixel-level annotations. Scenario 3: both normal and glaucoma fundus images have pixel-level annotations.
Baseline models: Pixel-supervised-N and pixel-supervised-G were trained with pixel-level annotated normal
and glaucoma fundus images, respectively. While the pixel-supervised-G&N model was directly supervised by
pixel-level annotated normal and glaucoma fundus images. The proposed model: the model with style- and
domain-level supervision modules.

Table 8. The computational complexity of the proposed model.

Method Parameters (M) FLOPs (G) Train Time (Min) Infer Time (s) Saved Model (M)

Baseline models 31.04 40.93 9.48 0.22 130
Our proposed model 31.08 41.76 34.10 0.22 130

6. Visualization
6.1. Visualization of the Results for Common and Challenging Samples

To facilitate the comprehensibility of the experimental results, we employed direct
visualization of the segmental results obtained from different models, encompassing sce-
narios with and without annotations of the glaucoma samples. The visualized results for
the tested glaucoma samples from ORIGA and G1020 are shown in Figures 3 and 4, respec-
tively. These results explicitly show the effectiveness of our style and domain supervision
model in approximating ground truth, outperforming the pixel-supervised-N baseline.
Furthermore, in both adapted datasets, our proposed model shows superior precision
in the OC segmentation results, particularly in the rim segmentation results compared
to the other methods. Moreover, in the situation with the annotated glaucoma samples,
our proposed model showed a heightened level of accuracy in delineating the contours
of OC and OD, consequently leading to an improvement in the overall accuracy of the
segmentation results.

In addition, we present a visual comparison of the challenging samples to show the
ability of our proposed model to address complex samples (i.e., severe glaucoma). Six
challenging samples in the datasets, as depicted in the bottom rows of Figures 3 and 4, effec-
tively demonstrate that our proposed model achieves superior performance on challenging
samples in comparison to the other methods. The pixel-supervised-N baseline showed
a poor performance on these samples, failing to achieve an acceptable level with intact
and accurate contours of the OD and OC, mainly due to significant dissimilarities between
normal and severe glaucoma samples. However, notable enhancements were observed in
our proposed model in both situations, showing its capacity to capture glaucoma-style and
glaucoma-domain features.
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Figure 3. Visual comparison of segmentation results from the various models on the glaucoma
samples from the ORIGA dataset. The upper three examples are common samples, while the
lower three examples present challenging samples. The last method, denoted as “Proposed+G”,
encompasses the proposed style and domain transfer model with annotated glaucoma and normal
fundus images in Scenario 2.
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samples from the G1020 dataset. The upper three examples are common samples, while the lower
three examples represent challenging samples.

6.2. The Distribution of the Features for Different Models

To facilitate a comparative analysis of efficacy differentials across various models
on a global scale, we employed a direct and insightful visualization approach to provide
insight into the distribution of the prediction features. To achieve this, we delineated
the distribution of the prediction features, including the features from the two encoding
and the output spaces generated by the pixel-level supervision baseline models and the
proposed model, using the same glaucoma samples. The obtained distributions, as shown
in Figure 5, reveal a significant gap between the distribution of the prediction features
from the pixel-supervised-N model and the actual glaucoma ground truth. Remarkably,
the former distribution closely aligns with that of the normal ground truth. In contrast,
the distribution of prediction results generated by the proposed model approaches the
distribution of the glaucoma ground truth, exhibiting a significant departure from the
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normal distribution observed in the pixel-supervised-N baseline model. These results
indicate that, in the absence of the proposed modules, only supervision by the pixel-level
annotations of the normal samples proved insufficient to promote the active capture of
glaucoma-related features by the pixel-supervised-N baseline model, while our proposed
model exhibited a capacity to effectively capture glaucoma features in different spaces.
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Figure 5. The distribution of the encoding (Bottom and Up1) and output features obtained from the
various models, along with the corresponding ground truths of the normal and glaucoma classes.
The three figures in the upper row are from the ORIGA dataset, while the lower three subfigures
depict the results from the G1020 dataset.

6.3. The Style Gap Between the Results and Ground Truths for the Various Models

To conduct a comprehensive evaluation of the efficacy in capturing glaucoma-style
features across various models, we plotted the style gap between the results generated
by these models and the corresponding ground truths. The results, as shown in Figure 6,
demonstrate that the proposed model, integrating both style and domain modules, ex-
hibited the minimal style gap between the prediction results and ground truths over the
directly supervised model with the same pixel-level annotated normal samples. Notably,
the style gap of the pixel-supervised-N baseline model also decreased progressively during
training, which can be attributed to the overlap or similarity between the normal and
glaucoma classes. Moreover, the results reveal that the proposed model, incorporating
both style and domain modules, yielded a more consistent and stable trend than the model
with only the style module, showcasing that cooperatively supervised learning from the
two perspectives of style-level and domain-level annotations can improve the stability of
the proposed model. Significantly, we argue that there exist some differences in the curves
of the performances between the two datasets, which can be attributed to the distinct
characteristics inherent in each dataset, while both datasets exhibited a similar trend in
their corresponding curves.
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Figure 6. The plots of the style gaps between the results generated by the various models and
corresponding ground truths during the training stage. The left figure illustrates the results from
the ORIGA dataset, while the right figure corresponds to the G1020 Dataset. The N-pixel-level is the
direct supervision with normal fundus images with pixel-level annotation; style-level is the proposed
model with style module and style-level annotations; domain-level is the proposed model with the
domain module and domain-level annotations; and G-pixel-level represents the glaucoma samples
with pixel-level annotations.

7. Discussion

In our previous study [3], we leveraged OCT images to extract retinal-layer-based
biomarkers by accurate segmentation of retinal layers. However, the high cost of acquiring
OCT images, coupled with the necessity of comprehensively evaluating glaucoma progres-
sion highlights the need to integrate various clinical indicators beyond OCT image-based
biomarkers. Thus, in this study, we obtain an additional glaucoma-related biomarkers
based on accurate segmentation OD and OC from low-cost color fundus images. In clinic
practice, these distinct glaucoma-related biomarkers complement each other, when used
together, provide a more comprehensive tool for assisting in monitoring the development
of glaucoma from two different aspects.

In this study, we aim to develop a glaucoma-specifical model suitable for assisting in
tracking glaucoma progression and assessing prognosis, particularly for addressing the
challenge associated with the limited availability of pixel-level annotated glaucoma images.
Therefore, we propose a model to exploit wealth from sufficient and low-cost annotated
normal images. We utilize annotated normal fundus images as a resource for extracting
valuable features, while glaucoma fundus images as target samples to validate our pro-
posed model from two public glaucoma detection datasets, namely ORIGA and G1020.
In addition, we introduce the following three metrics to comprehensively evaluate our
proposed model: Dice for segmentation accuracy, CDRMSE for glaucoma-related features,
and G-score for both segmentation accuracy and glaucoma-related features.

We initially established the following three baselines: pixel-supervised-N baseline
(training with pixel-level annotated normal fundus images); pixel-supervised-G baseline
(training with pixel-level annotated glaucoma fundus images); and mixed pixel-supervised-
G&N baseline (training with glaucoma and normal images with pixel-level annotations).
Subsequently, we established and systematically validated our proposed model with the
adapted datasets. Through a comprehensive analysis of the experimental results, our pro-
posed model can be adapted to various situations. Notably, in the scenario of only normal
images with pixel-level annotations, our proposed model achieved a superior performance
over the pixel-supervised-N baseline while approaching that of the pixel-supervised-G
baseline. Specifically, the prediction results for the OC and optic rim significantly out-
performed the pixel-supervised-N baseline in terms of all three metrics, while the OD
performance remained almost the same. The observed difference in the results for the
OD and OC matches the inherent characteristics of glaucoma pathology. Furthermore,
compared with the pixel-mixed-G&N baseline, our proposed model consistently exhibited
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comparable performance, affirming the effectiveness of our proposed model. Additionally,
we found a significant improvement with the increase in size of the pixel-level annotated
normal images, attributed to a greater number of available annotations, enabling the
model to effectively capture essential features. When we only had glaucoma samples with
pixel-level annotations and some glaucoma samples without pixel-level annotations, our
proposed model yielded a better performance than the pixel-supervised-N model baseline
by capturing glaucoma-related features from the unannotated glaucoma samples.

In the case involving limited pixel-level annotated glaucoma and normal images, our
proposed model exhibited a capacity to further improve in performance, yielding better
results than the pixel-supervised-G&N baseline. These results highlight its potential in
addressing the challenge of the insufficient availability of annotated glaucoma images.
It also proves that detection or screening models, trained with mixed data with a direct
supervised strategy, is not the optimal choice for glaucoma samples and assisting in moni-
toring the progression and assessing the prognosis of glaucoma because of the high cost but
marginal performance gains. Therefore, our relationship-driven model effectively enhances
performance by disentangling the relationship between glaucoma and normal classes.

Moreover, we present in-depth insight into the role of style and domain supervision in
our proposed model. The model with only style or domain supervision modules achieved
superior performance compared to the pixel-supervised-N baseline. Notably, the domain
supervision model can achieve better results than the style supervision model. However,
implementation of the style supervision by Gram transformers is easier than the domain
supervision learning. Certainly, they each rely on distinct information to capture glaucoma-
style and glaucoma-domain features, respectively. We argue that low-cost supervision at a
single level is insufficient for pixel-level prediction tasks. Therefore, integrating advantages
from the style and domain annotations using a cooperative supervision strategy can exploit
simultaneously valuable features from style and domain information, surpassing the
capabilities of all single-supervision models. While raw glaucoma images have pixel-
level annotations, our proposed model demonstrates the capability with or without those
annotated glaucoma samples.

The visualization results of the test samples in both situations directly demonstrate
that our proposed model can capture target glaucoma-style and glaucoma-domain features,
approaching the target glaucoma class more than the pixel-supervised-N baseline for both
adapted datasets. In addition, our proposed model also showed a superior performance
on challenging samples. In summary, our proposed model can capture general features
by leveraging style- and domain-based similarities from low-cost pixel-level annotated
normal samples. Simultaneously, it exploits dissimilarities in style and domain to capture
glaucoma-related features and mitigate the impact of noised features.

Therefore, our proposed model can yield greater accuracy in delineating the OD and
OC boundaries in glaucoma-confirmed samples compared to existing models. By utilizing
these delineated boundaries, we can precisely calculate OC and OD diameters, as well
as their ratio, and provide morphological visualizations. As these markers are a critical
indicator for assessing the severity level of glaucoma, our proposed model serves as a
valuable tool for assisting in assessing the development of glaucoma compared with other
existing models.

Nevertheless, our proposed model still has certain limitations. Firstly, our proposed
model is not intended for direct application in the tracking of glaucoma progression;
rather, it aims to assist in the assessment of glaucoma progression by providing precise
segmentations of OD and OC in glaucoma-confirmed samples, as accurate assessment of
the progression of glaucoma depends on various clinical evidence, including visual field
assessment and intraocular pressure, rather than solely relying on CDR values. Moreover,
our proposed model is premised on patients with confirmed glaucoma, as the model is
designed to specifically assist in monitoring progression and assessment of the prognosis
of glaucoma with fundus images, making it unsuitable for scenarios of glaucoma screening
and detection. Furthermore, our proposed model exhibits a performance gap compared to
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the pixel-supervised-G baseline when without pixel-level annotated glaucoma samples,
deteriorating its practicality in clinic practice. Moreover, it shows modest performance on
challenging glaucoma images, restricting its applicability in diverse real-world scenarios,
and it may exhibit a limited contribution to algorithm development, as both of the main
employed techniques are already commonly used for various tasks.

In the near future, we aim to mitigate the modest performance observed on the chal-
lenging samples, with a focus on approximating the performance of the pixel-supervised-G
baseline when without annotated glaucoma samples. Furthermore, we plan to exploit
normal samples from different vendors, adapting various scenarios. Additionally, we
plan to collect a time-serial glaucoma monitoring progression dataset by continuously
tracking fundus images of the patients during their therapy, thus enabling a comprehen-
sive evaluation of the performance of glaucoma. Moreover, conducting an experiment to
compare the time required for annotating two sample classes (glaucoma and normal) and
to quantify the cost-effectiveness brought by normal samples represents a valuable avenue
for future research. In our future work, we aim to design a novel framework that leverages
the features associated with glaucoma progression, which may improve performance on
assisting in assessing glaucoma progression.

8. Conclusions

In this paper, we address the challenge of the high cost of developing a glaucoma-
specialized model to assist in monitoring glaucoma progression and prognosis assessment
by exploiting low-cost annotated normal fundus images with an annotation-efficient ap-
proach. We propose a cost-efficient model to capture features from style and domain
annotations between two classes. Our proposed model is suitable for various scenar-
ios including with or without annotated glaucoma images. The experimental results on
two adapted datasets demonstrate that our proposed model achieves a significantly su-
perior performance in both segmentation- and glaucoma-related metrics compared to the
baseline model. In addition, the visualization of the results provides direct evidence illus-
trating the advantages of our proposed model. The proposed model can yield performance
improvements and cost reductions simultaneously. We hope that our proposed model
offers valuable contributions to preventing vision loss caused by glaucoma.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s24227255/s1, Figure S1: (left) The color fundus image was captured
of normal people; (right) the color fundus image was of a patient with glaucoma. A, B, and C are
pixels in the image; Figure S2: The proposed model adapts Scenario 1 (only normal images have
pixel-level annotations); Figure S3: The proposed model adapts Scenario 2 (only glaucoma images
have pixel-level annotations); Figure S4: The proposed model adapts Scenario 3 (both normal and
glaucoma images have pixel-level annotations); Figure S5: An illustration of our preprocessing steps
for the color fundus images, including extracting ROIs based on the optic disc labels and employing
an adaptive histogram equalization algorithm to enhance contrast ratio; Table S1: Results of different
transfer models in the G1020 Dataset.

Author Contributions: Conceptualization, J.Z.; methodology, K.L.; software, K.L.; validation, K.L.;
formal analysis, K.L.; investigation, K.L.; writing—original draft preparation, K.L.; writing—review
and editing, J.Z.; visualization, K.L.; supervision, J.Z.; project administration, J.Z.; funding acquisition,
J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Key Program of Beijing Natural Science Foundation,
under grant: Z200024, and the Major Program of the National Natural Science Foundation of China,
under grants: 62394310 and 62394313.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data underlying the results presented in this paper are available in
Refs. [51,52].

https://www.mdpi.com/article/10.3390/s24227255/s1
https://www.mdpi.com/article/10.3390/s24227255/s1


Sensors 2024, 24, 7255 24 of 26

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tham, Y.-C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global Prevalence of Glaucoma and Projections of Glaucoma

Burden through 2040 A Systematic Review and Meta-Analysis. Ophthalmology 2014, 121, 2081–2090. [CrossRef] [PubMed]
2. Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA 2014, 311, 1901–1911.

[CrossRef] [PubMed]
3. Liu, K.; Zhang, J. Cost-Efficient and Glaucoma-Specifical Model by Exploiting Normal OCT Images with Knowledge Transfer

Learning. Biomed. Opt. Express 2023, 14, 6151. [CrossRef] [PubMed]
4. Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.;

et al. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [CrossRef]
5. Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal Imaging and Image Analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208.

[CrossRef]
6. Bock, R.; Meier, J.; Nyúl, L.G.; Hornegger, J.; Michelson, G. Glaucoma Risk Index: Automated Glaucoma Detection from Color

Fundus Images. Med. Image Anal. 2010, 14, 471–481. [CrossRef]
7. Li, T.; Bo, W.; Hu, C.; Kang, H.; Liu, H.; Wang, K.; Fu, H. Applications of Deep Learning in Fundus Images: A Review. Med. Image

Anal. 2021, 69, 101971. [CrossRef]
8. Nayak, J.; Acharya U., R.; Bhat, P.S.; Shetty, N.; Lim, T.-C. Automated Diagnosis of Glaucoma Using Digital Fundus Images. J.

Med. Syst. 2008, 33, 337. [CrossRef]
9. Aquino, A.; Gegúndez-Arias, M.E.; Marín, D. Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological,

Edge Detection, and Feature Extraction Techniques. IEEE Trans. Med. Imaging 2010, 29, 1860–1869. [CrossRef]
10. Yazid, H.; Arof, H.; Isa, H.M. Automated Identification of Exudates and Optic Disc Based on Inverse Surface Thresholding. J.

Med. Syst. 2012, 36, 1997–2004. [CrossRef]
11. Sedai, S.; Roy, P.K.; Mahapatra, D.; Garnavi, R.; Sedai, S.; Roy, P.K.; Mahapatra, D.; Garnavi, R.; Sedai, S.; Roy, P.K.; et al.

Segmentation of Optic Disc and Optic Cup in Retinal Fundus Images Using Shape Regression. In Proceedings of the 2016 38th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20
August 2016; Volume 2016, pp. 3260–3264. [CrossRef]

12. Sudhan, G.; Aravind, R.; Gowri, K.; Rajinikanth, V. Optic Disc Segmentation Based on Otsu’s Thresholding and Level Set. In
Proceedings of the 2017 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 5–7
January 2017; Volume 8150, pp. 75–82.

13. Xue, X.; Wang, L.; Du, W.; Fujiwara, Y.; Peng, Y. Multiple Preprocessing Hybrid Level Set Model for Optic Disc Segmentation in
Fundus Images. Sensors 2022, 22, 6899. [CrossRef] [PubMed]

14. Wong, D.W.K.; Liu, J.; Lim, J.H.; Jia, X.; Yin, F.; Li, H.; Wong, T.Y. Level-Set Based Automatic Cup-to-Disc Ratio Determination
Using Retinal Fundus Images in ARGALI. In Proceedings of the 2008 30th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; Volume 2008, pp. 2266–2269.
[CrossRef]

15. Lalonde, M.; Beaulieu, M.; Gagnon, L. Fast and Robust Optic Disc Detection Using Pyramidal Decomposition and Hausdorff-
Based Template Matching. IEEE Trans. Med. Imaging 2001, 20, 1194–1200. [CrossRef] [PubMed]

16. Yu, H.; Barriga, E.S.; Agurto, C.; Echegaray, S.; Pattichis, M.S.; Bauman, W.; Soliz, P. Fast Localization and Segmentation of Optic
Disk in Retinal Images Using Directional Matched Filtering and Level Sets. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 644–657.
[CrossRef] [PubMed]

17. Giachetti, A.; Ballerini, L.; Trucco, E.; Wilson, P.J. The Use of Radial Symmetry to Localize Retinal Landmarks. Comput. Med.
Imaging Graph. 2013, 37, 369–376. [CrossRef] [PubMed]

18. Zheng, Y.; Stambolian, D.; O’Brien, J.; Gee, J.C. Optic Disc and Cup Segmentation from Color Fundus Photograph Using Graph Cut with
Priors; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8150, pp. 75–82.

19. Bechar, M.E.A.; Settouti, N.; Barra, V.; Chikh, M.A. Semi-Supervised Superpixel Classification for Medical Images Segmentation:
Application to Detection of Glaucoma Disease. Multidimens. Syst. Signal Process. 2018, 29, 979–998. [CrossRef]

20. Cheng, J.; Liu, J.; Xu, Y.; Yin, F.; Wong, D.W.K.; Tan, N.-M.; Tao, D.; Cheng, C.-Y.; Aung, T.; Wong, T.Y. Superpixel Classification
Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening. IEEE Trans. Med. Imaging 2013, 32, 1019–1032. [CrossRef]

21. Mohamed, N.A.; Zulkifley, M.A.; Zaki, W.M.D.W.; Hussain, A. An Automated Glaucoma Screening System Using Cup-to-Disc
Ratio via Simple Linear Iterative Clustering Superpixel Approach. Biomed. Signal Process. Control 2019, 53, 101454. [CrossRef]

22. Fu, H.; Li, F.; Xu, Y.; Liao, J.; Xiong, J.; Shen, J.; Liu, J.; Zhang, X.; iChallenge-GON study group. A Retrospective Comparison
of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs. Transl. Vis. Sci.
Technol. 2020, 9, 33. [CrossRef]

23. Maiti, S.; Maji, D.; Dhara, A.K.; Sarkar, G. Automatic Detection and Segmentation of Optic Disc Using a Modified Convolution
Network. Biomed. Signal Process. Control 2022, 76, 103633. [CrossRef]

24. Tan, J.H.; Acharya, U.R.; Bhandary, S.V.; Chua, K.C.; Sivaprasad, S. Segmentation of Optic Disc, Fovea and Retinal Vasculature
Using a Single Convolutional Neural Network. J. Comput. Sci. 2017, 20, 70–79. [CrossRef]

https://doi.org/10.1016/j.ophtha.2014.05.013
https://www.ncbi.nlm.nih.gov/pubmed/24974815
https://doi.org/10.1001/jama.2014.3192
https://www.ncbi.nlm.nih.gov/pubmed/24825645
https://doi.org/10.1364/BOE.500917
https://www.ncbi.nlm.nih.gov/pubmed/38420316
https://doi.org/10.1126/science.1957169
https://doi.org/10.1109/RBME.2010.2084567
https://doi.org/10.1016/j.media.2009.12.006
https://doi.org/10.1016/j.media.2021.101971
https://doi.org/10.1007/s10916-008-9195-z
https://doi.org/10.1109/TMI.2010.2053042
https://doi.org/10.1007/s10916-011-9659-4
https://doi.org/10.1109/embc.2016.7591424
https://doi.org/10.3390/s22186899
https://www.ncbi.nlm.nih.gov/pubmed/36146249
https://doi.org/10.1109/iembs.2008.4649648
https://doi.org/10.1109/42.963823
https://www.ncbi.nlm.nih.gov/pubmed/11700746
https://doi.org/10.1109/TITB.2012.2198668
https://www.ncbi.nlm.nih.gov/pubmed/22588616
https://doi.org/10.1016/j.compmedimag.2013.06.005
https://www.ncbi.nlm.nih.gov/pubmed/23886574
https://doi.org/10.1007/s11045-017-0483-y
https://doi.org/10.1109/TMI.2013.2247770
https://doi.org/10.1016/j.bspc.2019.01.003
https://doi.org/10.1167/tvst.9.2.33
https://doi.org/10.1016/j.bspc.2022.103633
https://doi.org/10.1016/j.jocs.2017.02.006


Sensors 2024, 24, 7255 25 of 26

25. Sevastopolsky, A. Optic Disc and Cup Segmentation Methods for Glaucoma Detection with Modification of U-Net Convolutional
Neural Network. Pattern Recognit. Image Anal. 2017, 27, 618–624. [CrossRef]

26. Apostolopoulos, S.; Zanet, S.D.; Ciller, C.; Wolf, S.; Sznitman, R. Pathological OCT Retinal Layer Segmentation Using Branch
Residual U-Shape Networks. Medical Image Computing and Computer Assisted Intervention. In Proceedings of the MICCAI
2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017; pp. 294–301.

27. Siddique, N.; Sidike, P.; Elkin, C.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A review of theory
and applications. IEEE Access 2021, 9, 82031–82057. [CrossRef]

28. Fu, H.; Cheng, J.; Xu, Y.; Wong, D.W.K.; Liu, J.; Cao, X. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep
Network and Polar Transformation. IEEE Trans. Med. Imaging 2018, 37, 1597–1605. [CrossRef] [PubMed]

29. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th
International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018,
Granada, Spain, 20 September 2018; pp. 3–11.

30. Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context Encoder Network for 2D Medical
Image Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [CrossRef]

31. Guo, X.; Li, J.; Lin, Q.; Tu, Z.; Hu, X.; Che, S. Joint Optic Disc and Cup Segmentation Using Feature Fusion and Attention. Comput.
Biol. Med. 2022, 150, 106094. [CrossRef]

32. Zhou, W.; Ji, J.; Jiang, Y.; Wang, J.; Qi, Q.; Yi, Y. EARDS: EfficientNet and Attention-Based Residual Depth-Wise Separable
Convolution for Joint OD and OC Segmentation. Front. Neurosci. 2023, 17, 1139181. [CrossRef]

33. Gómez-Valverde, J.J.; Antón, A.; Fatti, G.; Liefers, B.; Herranz, A.; Santos, A.; Sánchez, C.I.; Ledesma-Carbayo, M.J. Automatic
Glaucoma Classification Using Color Fundus Images Based on Convolutional Neural Networks and Transfer Learning. Biomed.
Opt. Express 2019, 10, 892. [CrossRef]

34. Fumero, F.; Alayon, S.; Sanchez, J.L.; Sigut, J.; Gonzalez-Hernandez, M. RIM-ONE: An Open Retinal Image Database for Optic
Nerve Evaluation. In Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems (CBMS),
Bristol, UK, 27–30 June 2011; pp. 1–6. [CrossRef]

35. Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural
Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med.
Imaging 2016, 35, 1285–1298. [CrossRef]

36. Zoph, B.; Ghiasi, G.; Lin, T.-Y.; Cui, Y.; Liu, H.; Cubuk, E.D.; Le, Q.V. Rethinking Pre-Training and Self-Training. arXiv 2020.
[CrossRef]

37. Hemelings, R.; Elen, B.; Barbosa-Breda, J.; Lemmens, S.; Meire, M.; Pourjavan, S.; Vandewalle, E.; Veire, S.V.d.; Blaschko, M.B.;
Boever, P.D.; et al. Accurate Prediction of Glaucoma from Colour Fundus Images with a Convolutional Neural Network That
Relies on Active and Transfer Learning. Acta Ophthalmol. 2020, 98, e94–e100. [CrossRef]

38. Quellec, G.; Lamard, M.; Conze, P.-H.; Massin, P.; Cochener, B. Automatic Detection of Rare Pathologies in Fundus Photographs
Using Few-Shot Learning. Med. Image Anal. 2020, 61, 101660. [CrossRef] [PubMed]

39. Bhardwaj, C.; Jain, S.; Sood, M. Transfer Learning Based Robust Automatic Detection System for Diabetic Retinopathy Grading.
Neural Comput. Appl. 2021, 33, 13999–14019. [CrossRef]

40. Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional Neural Networks for
Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [CrossRef] [PubMed]

41. Christopher, M.; Belghith, A.; Bowd, C.; Proudfoot, J.A.; Goldbaum, M.H.; Weinreb, R.N.; Girkin, C.A.; Liebmann, J.M.; Zangwill,
L.M. Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in
Fundus Photographs. Sci. Rep. 2018, 8, 16685. [CrossRef]

42. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE
2021, 109, 43–76. [CrossRef]

43. Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding Transfer Learning for Medical Imaging. In Proceedings
of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019;
pp. 3342–3352.

44. Zhang, C.; Lei, T.; Chen, P. Diabetic Retinopathy Grading by a Source-Free Transfer Learning Approach. Biomed. Signal Process.
Control 2022, 73, 103423. [CrossRef]

45. Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185.
[CrossRef]

46. Zhao, S.; Yue, X.; Zhang, S.; Li, B.; Zhao, H.; Wu, B.; Krishna, R.; Gonzalez, J.; Sangiovanni-Vincentelli, A.; Seshia, S.; et al. A
Review of Single-Source Deep Unsupervised Visual Domain Adaptation. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 473–493.
[CrossRef]

47. Lei, H.; Liu, W.; Xie, H.; Zhao, B.; Yue, G.; Lei, B. Unsupervised Domain Adaptation Based Image Synthesis and Feature Alignment
for Joint Optic Disc and Cup Segmentation. IEEE J. Biomed. Health 2021, 26, 90–102. [CrossRef]

48. Keaton, M.R.; Zaveri, R.J.; Doretto, G. CellTranspose: Few-Shot Domain Adaptation for Cellular Instance Segmentation. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023;
pp. 455–466. [CrossRef]

https://doi.org/10.1134/S1054661817030269
https://doi.org/10.1109/ACCESS.2021.3086020
https://doi.org/10.1109/TMI.2018.2791488
https://www.ncbi.nlm.nih.gov/pubmed/29969410
https://doi.org/10.1109/TMI.2019.2903562
https://doi.org/10.1016/j.compbiomed.2022.106094
https://doi.org/10.3389/fnins.2023.1139181
https://doi.org/10.1364/BOE.10.000892
https://doi.org/10.1109/cbms.2011.5999143
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.48550/arxiv.2006.06882
https://doi.org/10.1111/aos.14193
https://doi.org/10.1016/j.media.2020.101660
https://www.ncbi.nlm.nih.gov/pubmed/32028213
https://doi.org/10.1007/s00521-021-06042-2
https://doi.org/10.1109/TMI.2016.2535302
https://www.ncbi.nlm.nih.gov/pubmed/26978662
https://doi.org/10.1038/s41598-018-35044-9
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1016/j.bspc.2021.103423
https://doi.org/10.1109/TBME.2021.3117407
https://doi.org/10.1109/TNNLS.2020.3028503
https://doi.org/10.1109/JBHI.2021.3085770
https://doi.org/10.1109/wacv56688.2023.00053


Sensors 2024, 24, 7255 26 of 26

49. Feng, Y.; Wang, Z.; Xu, X.; Wang, Y.; Fu, H.; Li, S.; Zhen, L.; Lei, X.; Cui, Y.; Ting, J.S.Z.; et al. Contrastive Domain Adaptation with
Consistency Match for Automated Pneumonia Diagnosis. Med. Image Anal. 2023, 83, 102664. [CrossRef]

50. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

51. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971. [CrossRef]

52. Zhang, Z.; Yin, F.S.; Liu, J.; Wong, W.K.; Tan, N.M.; Lee, B.H.; Cheng, J.; Wong, T.Y. ORIGA-light: An Online Retinal Fundus
Image Database for Glaucoma Analysis and Research. In Proceedings of the 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; Volume 2010, pp. 3065–3068.
[CrossRef]

53. Bajwa, M.N.; Singh, G.A.P.; Neumeier, W.; Malik, M.I.; Dengel, A.; Ahmed, S. G1020: A Benchmark Retinal Fundus Image
Dataset for Computer-Aided Glaucoma Detection. In Proceedings of the 2020 International Joint Conference on Neural Networks
(IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [CrossRef]

54. Reza, A.M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. J.
VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [CrossRef]

55. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.media.2022.102664
https://doi.org/10.1145/3422622
https://doi.org/10.1109/cvpr.2017.316
https://doi.org/10.1109/iembs.2010.5626137
https://doi.org/10.1109/ijcnn48605.2020.9207664
https://doi.org/10.1023/B:VLSI.0000028532.53893.82

	Introduction 
	Related Work 
	OD and OC Segmentation Approaches for Fundus Images 
	Cost-Efficient Strategies in Medical Image 

	Methods 
	Overview of the Proposed Model 
	Style and Domain Collaborative Supervision Learning 
	Style Contrastive Learning 
	Domain Adversarial Learning 
	Objective Function for Our Proposed Model 
	Overtraining Procedure 

	Experiments 
	Dataset 
	Overview of Dataset 
	Preprocessing of Images 

	Experimental Configuration 
	Implementation Details and Evaluation Metrics 

	Experimental Results 
	Baseline Model Results 
	Pixel-Level Annotations from Normal Samples: Pixel-Supervised-N Baseline 
	Pixel-Level Annotations from Glaucoma Samples: Pixel-Supervised-G Baseline 
	Pixel-Level Annotations from Normal and Glaucoma Samples: Pixel-Supervised-G&N Baseline 

	The Proposed Model’s Results 
	Single Style-Level Contrastive Learning Model 
	Single-Domain-Level Adversarial Learning Model 
	Collaborative Style Contrastive and Domain Adversarial Learning Model 

	Results of Varying the Sizes of Pixel-Level Annotated Normal Images 
	The Adaptability of the Proposed Model in Other Scenarios 
	Results for the Adapted G1020 Fundus Image Dataset 
	Computational Complexity of the Models 

	Visualization 
	Visualization of the Results for Common and Challenging Samples 
	The Distribution of the Features for Different Models 
	The Style Gap Between the Results and Ground Truths for the Various Models 

	Discussion 
	Conclusions 
	References

