Localized Bearing Fault Analysis for Different Induction Machine Start-Up Modes via Vibration Time–Frequency Envelope Spectrum
<p>(<b>a</b>) Expanded deep-groove ball bearings view, (<b>b</b>) bearing geometry including numbering of rolling elements (i.e., 1 to 9 numbers) and main dimensions.</p> "> Figure 2
<p>Defect ratio graphic description.</p> "> Figure 3
<p>Bearing defect vibration signal <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and its envelope.</p> "> Figure 4
<p>Signal processing pipeline graphic description with an inner race defect example.</p> "> Figure 5
<p>Induction motor specimen cross-section.</p> "> Figure 6
<p>Test bench graphic description. (1) Induction machine including faulty bearing, (2) DC generator imposing constant resistant torque, (3) flexible coupling.</p> "> Figure 7
<p>Accelerometer locus description. (<b>a</b>) Vertical xy-plane, (<b>b</b>) horizontal xz-plane.</p> "> Figure 8
<p>Bearing defect description. (<b>a</b>) Healthy, (<b>a</b>) 0.5 mm inner race defect, (<b>c</b>) 1 mm inner race defect, (<b>d</b>) 0.5 mm outer race defect, (<b>e</b>) 1 mm outer race defect.</p> "> Figure 9
<p>Line-fed induction machine startup vibration signal at 12 o’clock for (<b>a</b>) rated line-to-line voltage, (<b>b</b>) 50% rated line-to-line voltage.</p> "> Figure 10
<p>Vibration envelope spectrum analysis acquired at 12 o’clock position at rated slip, (<b>a</b>) healthy, (<b>b</b>) 0.5 mm outer race defect, (<b>c</b>) 1 mm outer race defect, (<b>d</b>) 0.5 mm inner race defect, (<b>e</b>) 1 mm inner race defect.</p> "> Figure 11
<p>Vibration amplitude comparison among two defect widths. Signals acquired at 12 o’clock at rated slip. (<b>a</b>) Outer race defects, (<b>b</b>) inner race defects.</p> "> Figure 12
<p>Healthy bearing at rated slip, (<b>a</b>) line-started 100% rated voltage, (<b>b</b>) line-started 50% rated voltage, (<b>c</b>) VFD-fed 20 s ramp, (<b>d</b>) VFD-fed 5 s ramp.</p> "> Figure 13
<p>Outer race 0.5 mm defect at rated slip, (<b>a</b>) line-started 100% rated voltage, (<b>b</b>) line-started 50% rated voltage, (<b>c</b>) VFD-fed 20 s ramp, (<b>d</b>) VFD-fed 5 s ramp.</p> "> Figure 14
<p>Outer race 1 mm defect at rated slip, (<b>a</b>) line-started 100% rated voltage, (<b>b</b>) line-started 50% rated voltage, (<b>c</b>) VFD-fed 20 s ramp, (<b>d</b>) VFD-fed 5 s ramp.</p> "> Figure 15
<p>Inner race 0.5 mm defect at rated slip, (<b>a</b>) line-started 100% rated voltage, (<b>b</b>) line-started 50% rated voltage, (<b>c</b>) VFD-fed 20 s ramp, (<b>d</b>) VFD-fed 5 s ramp.</p> "> Figure 16
<p>Inner race 1 mm defect at rated slip, (<b>a</b>) line-started 100% rated voltage, (<b>b</b>) line-started 50% rated voltage, (<b>c</b>) VFD-fed 20 s ramp, (<b>d</b>) VFD-fed 5 s ramp.</p> "> Figure 17
<p>Load dependency steady-state analysis. (<b>a</b>) <math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mi>B</mi> <mi>F</mi> <mi>O</mi> </mrow> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mrow> <mi>B</mi> <mi>F</mi> <mi>O</mi> </mrow> </msub> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mi>B</mi> <mi>F</mi> <mi>I</mi> </mrow> </msub> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mrow> <mi>B</mi> <mi>F</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 18
<p>Load variation analysis during the line-started excitation mode at 50% rated line-to-line voltage. Vibration signals acquired at 12 o’clock. (<b>a</b>) Healthy bearing, (<b>b</b>) outer race 0.5 mm defect, (<b>c</b>) outer race 1 mm defect, (<b>d</b>) inner race 0.5 mm defect, (<b>e</b>) inner race 1 mm defect.</p> "> Figure 19
<p>Load variation analysis during the VFD-fed excitation mode with 20 s ramp duration. (<b>a</b>) Healthy, (<b>b</b>) outer race 0.5 mm defect, vibration signals acquired at 12 o’clock, (<b>c</b>) outer race 1 mm defect, (<b>d</b>) inner race 0.5 mm defect, (<b>e</b>) inner race 1 mm defect.</p> "> Figure 20
<p>HUST dataset experimental test bench description [<a href="#B53-sensors-24-06935" class="html-bibr">53</a>].</p> "> Figure 21
<p>VFD-fed start-ups for inner and outer race defects, (<b>a</b>) HUST dataset inner race defect, (<b>b</b>) custom dataset inner race defect, (<b>c</b>) HUST dataset outer race defect, (<b>d</b>) custom dataset outer race defect.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Localized Bearing Fault Mechanics
2.2. Time–Frequency Envelope Spectrum
3. Experiment Description
4. Analysis of Results
4.1. Steady-State Analysis
4.2. Transient Analysis
4.3. Effects of Load on the Characteristic Defect Signature
4.4. Comparison with HUST Dataset
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
STFT | Short-Time Fourier Transform |
CWRU | Case Western Reserve University |
DWT | Discrete Wavelet Transform |
EMD | Empirical Mode Decomposition |
CWT | Continuous Wavelet Transform |
WVD | Wigner–Ville Distribution |
MUSIC | Multiple Signal Classification |
DE | Drive End |
FFT | Fast Fourier Transform |
HT | Hilbert Transform |
VFD | Variable Frequency Drive |
References
- Al-Badri, M.; Pillay, P. Modified Efficiency Estimation Tool for Three-Phase Induction Motors. IEEE Trans. Energy Convers. 2022, 38, 771–779. [Google Scholar] [CrossRef]
- Orlowska-Kowalska, T.; Wolkiewicz, M.; Pietrzak, P.; Skowron, M.; Ewert, P.; Tarchala, G.; Krzysztofiak, M.; Kowalski, C.T. Fault diagnosis and fault-tolerant control of PMSM drives–state of the art and future challenges. IEEE Access 2022, 10, 59979–60024. [Google Scholar] [CrossRef]
- Khan, M.A.; Asad, B.; Kudelina, K.; Vaimann, T.; Kallaste, A. The bearing faults detection methods for electrical machines—the state of the art. Energies 2022, 16, 296. [Google Scholar] [CrossRef]
- Loparo, K. Bearing Vibration Data Set. 2003. Available online: https://engineering.case.edu/bearingdatacenter/download-data-file (accessed on 21 October 2024).
- Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. In Proceedings of the PHM Society European Conference, Bilbao, Spain, 5–8 July 2016; Volume 3. [Google Scholar]
- Zhang, X.; Zhao, B.; Lin, Y. Machine learning based bearing fault diagnosis using the case western reserve university data: A review. IEEE Access 2021, 9, 155598–155608. [Google Scholar] [CrossRef]
- Mian, Z.; Deng, X.; Dong, X.; Tian, Y.; Cao, T.; Chen, K.; Al Jaber, T. A literature review of fault diagnosis based on ensemble learning. Eng. Appl. Artif. Intell. 2024, 127, 107357. [Google Scholar] [CrossRef]
- Kuemmlee, H.; Gross, T.; Kolerus, J. Machine vibrations and diagnostics the world of ISO. In Proceedings of the Industry Applications Society 60th Annual Petroleum and Chemical Industry Conference, Chicago, IL, USA, 23–25 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–13. [Google Scholar]
- Tsypkin, M. The origin of the electromagnetic vibration of induction motors operating in modern industry: Practical experience—Analysis and diagnostics. IEEE Trans. Ind. Appl. 2016, 53, 1669–1676. [Google Scholar] [CrossRef]
- McCloskey, A.; Arrasate, X.; Hernández, X.; Gómez, I.; Almandoz, G. Analytical calculation of vibrations of electromagnetic origin in electrical machines. Mech. Syst. Signal Process. 2018, 98, 557–569. [Google Scholar] [CrossRef]
- Blodt, M.; Granjon, P.; Raison, B.; Rostaing, G. Models for bearing damage detection in induction motors using stator current monitoring. IEEE Trans. Ind. Electron. 2008, 55, 1813–1822. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, N. Detection of bearing faults in mechanical systems using stator current monitoring. IEEE Trans. Ind. Inform. 2016, 13, 1341–1349. [Google Scholar] [CrossRef]
- Duque-Perez, O.; Del Pozo-Gallego, C.; Morinigo-Sotelo, D.; Fontes Godoy, W. Condition monitoring of bearing faults using the stator current and shrinkage methods. Energies 2019, 12, 3392. [Google Scholar] [CrossRef]
- Frosini, L.; Harlişca, C.; Szabó, L. Induction machine bearing fault detection by means of statistical processing of the stray flux measurement. IEEE Trans. Ind. Electron. 2014, 62, 1846–1854. [Google Scholar] [CrossRef]
- Zamudio-Ramirez, I.; Osornio-Rios, R.A.; Antonino-Daviu, J.A.; Cureño-Osornio, J.; Saucedo-Dorantes, J.J. Gradual wear diagnosis of outer-race rolling bearing faults through artificial intelligence methods and stray flux signals. Electronics 2021, 10, 1486. [Google Scholar] [CrossRef]
- Immovilli, F.; Bellini, A.; Rubini, R.; Tassoni, C. Diagnosis of bearing faults in induction machines by vibration or current signals: A critical comparison. IEEE Trans. Ind. Appl. 2010, 46, 1350–1359. [Google Scholar] [CrossRef]
- Rai, A.; Upadhyay, S.H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol. Int. 2016, 96, 289–306. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [Google Scholar] [CrossRef]
- McFadden, P.; Smith, J. Model for the vibration produced by a single point defect in a rolling element bearing. J. Sound Vib. 1984, 96, 69–82. [Google Scholar] [CrossRef]
- Rubini, R.; Meneghetti, U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech. Syst. Signal Process. 2001, 15, 287–302. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, D.; Cheng, J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement 2007, 40, 943–950. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J.; Chobsaard, S. A comparison of cyclostationary and envelope analysis in the diagnostics of rolling element bearings. In Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 5–9 June 2000; Proceedings (Cat. No. 00CH37100). IEEE: Piscataway, NJ, USA, 2000; Volume 6, pp. 3882–3885. [Google Scholar]
- Li, L.; Qu, L. Cyclic statistics in rolling bearing diagnosis. J. Sound Vib. 2003, 267, 253–265. [Google Scholar] [CrossRef]
- Liu, D.; Cui, L.; Wang, H. Rotating machinery fault diagnosis under time-varying speeds: A review. IEEE Sens. J. 2023, 23, 29969–29990. [Google Scholar] [CrossRef]
- Smith, W.A.; Randall, R.B.; du Mée, X.d.C.; Peng, P. Use of cyclostationary properties to diagnose planet bearing faults in variable speed conditions. In Proceedings of the 10th DST Group International Conference on Health and Usage Monitoring Systems, 17th Australian Aerospace Congress, Melbourne, Australia, 26–28 February 2017; pp. 26–28. [Google Scholar]
- Liu, D.; Cheng, W.; Wen, W. Generalized demodulation with tunable E-Factor for rolling bearing diagnosis under time-varying rotational speed. J. Sound Vib. 2018, 430, 59–74. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, T.W.; Na, J.; Fung, R.F. Envelope order tracking for fault detection in rolling element bearings. J. Sound Vib. 2012, 331, 5644–5654. [Google Scholar] [CrossRef]
- Sierra-Alonso, E.F.; Caicedo-Acosta, J.; Orozco Gutiérrez, Á.Á.; Quintero, H.F.; Castellanos-Dominguez, G. Short-time/-angle spectral analysis for vibration monitoring of bearing failures under variable speed. Appl. Sci. 2021, 11, 3369. [Google Scholar] [CrossRef]
- Lee, D.H.; Hong, C.; Jeong, W.B.; Ahn, S. Time–frequency envelope analysis for fault detection of rotating machinery signals with impulsive noise. Appl. Sci. 2021, 11, 5373. [Google Scholar] [CrossRef]
- Paliwal, D.; Choudhury, A.; Tingarikar, G. Wavelet and scalar indicator based fault assessment approach for rolling element bearings. Procedia Mater. Sci. 2014, 5, 2347–2355. [Google Scholar] [CrossRef]
- Liu, W.; Han, J.; Jiang, J. A novel ball bearing fault diagnosis approach based on auto term window method. Measurement 2013, 46, 4032–4037. [Google Scholar] [CrossRef]
- Yu, G.; Wang, Z.; Zhao, P. Multisynchrosqueezing transform. IEEE Trans. Ind. Electron. 2018, 66, 5441–5455. [Google Scholar] [CrossRef]
- Ding, C.; Huang, W.; Shen, C.; Jiang, X.; Wang, J.; Zhu, Z. Synchroextracting frequency synchronous chirplet transform for fault diagnosis of rotating machinery under varying speed conditions. Struct. Health Monit. 2024, 23, 1403–1422. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, L.; Hu, N.; Zeng, J. A Synchrosqueezed Transform Method Based on Fast Kurtogram and Demodulation and Piecewise Aggregate Approximation for Bearing Fault Diagnosis. Sensors 2024, 24, 2502. [Google Scholar] [CrossRef]
- Agrawal, S.; Mohanty, S.R.; Agarwal, V. Bearing fault detection using Hilbert and high frequency resolution techniques. IETE J. Res. 2015, 61, 99–108. [Google Scholar] [CrossRef]
- Ruiz-Sarrio, J.E.; Antonino-Daviu, J.A.; Zamudio-Ramirez, I.; Osornio-Rios, R.A. Incipient Bearing Fault Signature Identification via Vibration Envelope Analysis and MUSIC. In Proceedings of the 2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE), Ulsan, Republic of Korea, 18–21 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Ruiz-Sarrio, J.E.; Antonino-Daviu, J.A.; Martis, C. Comprehensive diagnosis of localized rolling bearing faults during rotating machine start-up via vibration envelope analysis. Electronics 2024, 13, 375. [Google Scholar] [CrossRef]
- Antonino-Daviu, J. Electrical monitoring under transient conditions: A new paradigm in electric motors predictive maintenance. Appl. Sci. 2020, 10, 6137. [Google Scholar] [CrossRef]
- Lee, S.B.; Stone, G.C.; Antonino-Daviu, J.; Gyftakis, K.N.; Strangas, E.G.; Maussion, P.; Platero, C.A. Condition monitoring of industrial electric machines: State of the art and future challenges. IEEE Ind. Electron. Mag. 2020, 14, 158–167. [Google Scholar] [CrossRef]
- Garcia-Calva, T.; Morinigo-Sotelo, D.; Fernandez-Cavero, V.; Romero-Troncoso, R. Early detection of faults in induction motors—A review. Energies 2022, 15, 7855. [Google Scholar] [CrossRef]
- Yakhni, M.F.; Cauet, S.; Sakout, A.; Assoum, H.; Etien, E.; Rambault, L.; El-Gohary, M. Variable speed induction motors’ fault detection based on transient motor current signatures analysis: A review. Mech. Syst. Signal Process. 2023, 184, 109737. [Google Scholar] [CrossRef]
- Battulga, B.; Shaikh, M.F.; Goktas, T.; Arkan, M.; Lee, S.B. Vibration-Based Identification of Mechanical Defects in Induction Motor-driven Systems During the Starting Transient. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–7. [Google Scholar]
- Ruiz-Sarrio, J.E.; Biot-Monterde, V.; Madariaga-Cifuentes, C.; Navarro-Navarro, A.; Antonino-Daviu, J.A. On the Utilization of Radial Vibration Transient Signals for Induction Machine Misalignment Diagnosis. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Konar, P.; Chattopadhyay, P. Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Appl. Soft Comput. 2011, 11, 4203–4211. [Google Scholar] [CrossRef]
- Haddad, R.Z.; Lopez, C.A.; Pons-Llinares, J.; Antonino-Daviu, J.; Strangas, E.G. Outer race bearing fault detection in induction machines using stator current signals. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 801–808. [Google Scholar]
- Boyanton, H.E.; Hodges, G. Bearing fluting [motors]. IEEE Ind. Appl. Mag. 2002, 8, 53–57. [Google Scholar] [CrossRef]
- Singh, S.; Howard, C.Q.; Hansen, C.H. An extensive review of vibration modelling of rolling element bearings with localised and extended defects. J. Sound Vib. 2015, 357, 300–330. [Google Scholar] [CrossRef]
- Harris, T.A.; Kotzalas, M.N. Rolling Bearing Analysis-2 Volume Set; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Randall, R.B.; Antoni, J.; Chobsaard, S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mech. Syst. Signal Process. 2001, 15, 945–962. [Google Scholar] [CrossRef]
- Bastami, A.R.; Vahid, S. A comprehensive evaluation of the effect of defect size in rolling element bearings on the statistical features of the vibration signal. Mech. Syst. Signal Process. 2021, 151, 107334. [Google Scholar] [CrossRef]
- Lindell, H.; Grétarsson, S.L.; Machens, M. High Frequency Shock Vibrations and Implications of ISO 5349: Measurement of Vibration, Simulating Pressure Propagation, Risk Assessment and Preventive Measures. 2017. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1233230&dswid=-2115 (accessed on 21 October 2024).
- Fernandez-Cavero, V.; Morinigo-Sotelo, D.; Duque-Perez, O.; Pons-Llinares, J. A comparison of techniques for fault detection in inverter-fed induction motors in transient regime. IEEE Access 2017, 5, 8048–8063. [Google Scholar] [CrossRef]
- Thuan, N.D.; Hong, H.S. HUST bearing: A practical dataset for ball bearing fault diagnosis. BMC Res. Notes 2023, 16, 138. [Google Scholar] [CrossRef] [PubMed]
Number of poles | 4 |
Rated power | 1.1 kW |
Rated speed | 1440 rpm |
Power factor | 0.78 |
Rated voltage | 230/400 V |
Number of rotor bars | 28 |
Number of stator slots | 36 |
[mm] | [mm] | [mm] | [mm] |
---|---|---|---|
25 | 52.00 | 7.94 | 38.5 |
BFO | BFI | BSF | CF |
3.59 | 5.41 | 2.37 | 0.40 |
Line-Started | VFD-Fed | |||
---|---|---|---|---|
Frequency [Hz] | Amplitude [dB] | Frequency [Hz] | Amplitude [dB] | |
Outer race, 0.5 mm | ||||
86.67 | −51.34 | 86.67 | −60.21 | |
173.31 | −52.82 | 173.31 | −59.53 | |
260 | −54.58 | 259.96 | −61.24 | |
Outer race, 1 mm | ||||
86.44 | −62.4 | 86.6 | −60.47 | |
172.9 | −63.32 | 173.23 | −60.32 | |
259.32 | −63.33 | 259.83 | −60.32 | |
Inner race, 0.5 mm | ||||
129.37 | −49.95 | 129.4 | −49.81 | |
258.74 | −51.12 | 258.8 | −51.63 | |
388.1 | −52.88 | 388.17 | −52.98 | |
Inner race, 1 mm | ||||
129.27 | −58.39 | 129.33 | −56.15 | |
258.53 | −59.52 | 258.67 | −56.63 | |
387.8 | −61.19 | 388 | −57.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Sarrio, J.E.; Antonino-Daviu, J.A.; Martis, C. Localized Bearing Fault Analysis for Different Induction Machine Start-Up Modes via Vibration Time–Frequency Envelope Spectrum. Sensors 2024, 24, 6935. https://doi.org/10.3390/s24216935
Ruiz-Sarrio JE, Antonino-Daviu JA, Martis C. Localized Bearing Fault Analysis for Different Induction Machine Start-Up Modes via Vibration Time–Frequency Envelope Spectrum. Sensors. 2024; 24(21):6935. https://doi.org/10.3390/s24216935
Chicago/Turabian StyleRuiz-Sarrio, Jose E., Jose A. Antonino-Daviu, and Claudia Martis. 2024. "Localized Bearing Fault Analysis for Different Induction Machine Start-Up Modes via Vibration Time–Frequency Envelope Spectrum" Sensors 24, no. 21: 6935. https://doi.org/10.3390/s24216935