Implementation of an Intelligent Trap for Effective Monitoring and Control of the Aedes aegypti Mosquito
<p>The life cycle of the <span class="html-italic">Aedes aegypti</span> mosquito and the transmission of viral diseases.</p> "> Figure 2
<p>System architecture of the proposed IoT system.</p> "> Figure 3
<p>Prototype of smart trap.</p> "> Figure 4
<p>Illustration of perspectives of the smart trap, highlighting its components: (<b>a</b>) Ventilation ducts, as well as the entry and exit openings for insects; (<b>b</b>) Hardware and its connections; (<b>c</b>) Access door, used for both insect removal and replacement of adhesive tape or pheromone liquid.</p> "> Figure 5
<p>Internal view of the trap. Internal View of the trap: (<b>a</b>) represents the the detection of a bee and (<b>b</b>) the detection of an <span class="html-italic">Aedes aegypti</span> mosquito.</p> "> Figure 6
<p>Images from data set of (<b>a</b>) butterfly; (<b>b</b>) bee; and (<b>c</b>) <span class="html-italic">Aedes aegypti</span>.</p> "> Figure 7
<p>Images from onboard camera.</p> "> Figure 8
<p>Flowchart.</p> "> Figure 9
<p>The Things Network (TTN).</p> "> Figure 10
<p>Node-RED flow.</p> "> Figure 11
<p>Temperature and humidity monitoring dashboard and real-time detection of winged insects.</p> "> Figure 12
<p>Traps in squares and streams in Santa Rita do Sapucaí-MG.</p> "> Figure 13
<p>Trap location map.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Biology and Behaviour of Aedes aegypti
2.2. Smart Traps and Pest Control
3. Methodology
3.1. Architecture
3.2. Hardware
Prototyping the Smart Trap
3.3. Computer Vision Model
3.3.1. Data for Insect Detection and Classification
3.3.2. YOLOv7
3.4. User Interface
4. Experimental Results
- Point A: This point is located in an area with moderate obstacles, such as some walls and furniture between the communication device (ESP32 LoRa) and the gateway. The distance between the device and the gateway is approximately 20 m in a straight line.
- Point B: This point is located in an area with significant obstacles, such as thick walls and interfering electronic equipment. The distance between the device and the gateway is approximately 30 m with direct obstacles in the path.
- Point C: This point is located in an area with minimal obstacles, with a clear line of sight between the device and the gateway. The distance between the device and the gateway is approximately 40 m in a straight line, without significant obstacles in the path.
5. Conclusions
- Model Refinement: Enhance the model’s ability to discriminate between classes, aiming for more precise identification, particularly when there is visual overlap or significant lighting variations;
- Expansion of Dataset: Increase the diversity and volume of the dataset, covering a wider range of environmental conditions and variations in insect characteristics, for greater model generalization;
- Adaptation to Dynamic Environments: Investigate strategies to increase the model’s robustness in dynamic environments, where variable weather conditions may impact detection effectiveness;
- Exploration of Advanced Techniques: Explore the application of advanced machine learning techniques, such as using more complex neural networks or transfer learning methods, to improve the model’s efficiency;
- Integration of Other Data Sources: Explore the integration of data from different sources, such as additional sensors or weather information, to enrich the analysis of insect behavioral patterns.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabelo, A.C.L.; Amâncio, F.F.; Oiko, C.S.F.; Ferraz, M.L.; Carneiro, M. Caracterização dos casos confirmados de dengue por meio da técnica de linkage de bancos de dados, para avaliar a circulação viral em Belo Horizonte, 2009–2014. Epidemiol. Serviços Saúde 2020, 29, e2019354. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A review. Insects 2018, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Maciel, E.L.N.; Frutuoso, L.C.V.; de Oliveira Garcia, M.H.; Werneck, G.; da Cunha, R.V.; Lima, N.V.T. Government Efforts Leverage Effective Combating Against Dengue in Brazil. SciELO Prepr. 2024. [Google Scholar] [CrossRef]
- Laxmi, A.R.; Mishra, A. RFID based logistic management system using internet of things (IoT). In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 556–559. [Google Scholar]
- Mazhar, T.; Irfan, H.M.; Haq, I.; Ullah, I.; Ashraf, M.; Shloul, T.A.; Ghadi, Y.Y.; Imran; Elkamchouchi, D.H. Analysis of Challenges and Solutions of IoT in Smart Grids Using AI and Machine Learning Techniques: A Review. Electronics 2023, 12, 242. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Silva, D.F.; Souza, V.M.; Ellis, D.P.; Keogh, E.J.; Batista, G.E. Exploring Low Cost Laser Sensors to Identify Flying Insect Species: Evaluation of Machine Learning and Signal Processing Methods. J. Intell. Robot. Syst. 2015, 80, 313–330. [Google Scholar] [CrossRef]
- Soghigian, J.; Gloria-Soria, A.; Robert, V.; Le Goff, G.; Failloux, A.B.; Powell, J.R. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 2020, 29, 3593–3606. [Google Scholar] [CrossRef]
- Neiderud, C.J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef]
- Rocha, L.; Sousa, N.; Rodrigues, J.; Catão, A.; Marques, C.; Fernandes, É.K.; Luz, C. Efficacy of Tolypocladium cylindrosporum against Aedes aegypti eggs, larvae and adults. J. Appl. Microbiol. 2015, 119, 1412–1419. [Google Scholar] [CrossRef]
- Dhenni, R.; Yohan, B.; Alisjahbana, B.; Lucanus, A.; Riswari, S.F.; Megawati, D.; Haryanto, S.; Gampamole, D.; Hayati, R.F.; Sari, K.; et al. Comparative cytokine profiling identifies common and unique serum cytokine responses in acute chikungunya and dengue virus infection. BMC Infect. Dis. 2021, 21, 639. [Google Scholar] [CrossRef]
- Alencar Filho, E.B.; Castro Silva, J.W.; Cavalcanti, S.C. Quantitative structure-toxicity relationships and molecular highlights about Aedes aegypti larvicidal activity of monoterpenes and related compounds. Med. Chem. Res. 2016, 25, 2171–2178. [Google Scholar] [CrossRef]
- Ayers, J.B.; Coatsworth, H.G.; Kang, S.; Dinglasan, R.R.; Zhou, L. Clustered rapid induction of apoptosis limits ZIKV and DENV-2 proliferation in the midguts of Aedes aegypti. Commun. Biol. 2021, 4, 69. [Google Scholar] [CrossRef]
- Kantor, A.M.; Grant, D.G.; Balaraman, V.; White, T.A.; Franz, A.W. Ultrastructural analysis of chikungunya virus dissemination from the midgut of the yellow fever mosquito, Aedes aegypti. Viruses 2018, 10, 571. [Google Scholar] [CrossRef] [PubMed]
- Soundravally, R.; Hoti, S.; Patil, S.A.; Cleetus, C.; Zachariah, B.; Kadhiravan, T.; Narayanan, P.; Kumar, B.A. Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. Int. J. Infect. Dis. 2014, 18, 68–72. [Google Scholar] [CrossRef]
- McCarthy, M.K.; Reynoso, G.V.; Winkler, E.S.; Mack, M.; Diamond, M.S.; Hickman, H.D.; Morrison, T.E. MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2. PLoS Pathog. 2020, 16, e1008292. [Google Scholar] [CrossRef]
- Azevedo, R.; de Sousa, J.; Araujo, M.; Martins Filho, A.; de Alcantara, B.; Araujo, F.; Queiroz, M.G.; Cruz, A.C.; Vasconcelos, B.H.B.; Chiang, J.O.; et al. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci. Rep. 2018, 8, 1. [Google Scholar] [CrossRef]
- Suckling, D. Monitoring for surveillance and management. In Pheromone Communication in Moths: Evolution, Behavior, and Application; University of California Press: Berkeley, CA, USA, 2016; pp. 337–347. [Google Scholar]
- Landois, H. Die Ton-und Stimmapparate der Insecten: In Anatomisch-Physiologischer und Akustischer Beziehung; W. Engelmann: Berlin, Germany, 1867. [Google Scholar]
- Chadwick, L.E. A simple stroboscopic method for the study of insect flight. Psyche A J. Entomol. 1939, 46, 1–8. [Google Scholar] [CrossRef]
- Hobbs, S.; Hodges, G. An optical method for automatic classification and recording of a suction trap catch. Bull. Entomol. Res. 1993, 83, 47–51. [Google Scholar] [CrossRef]
- Semwal, A.; Melvin, L.M.J.; Mohan, R.E.; Ramalingam, B.; Pathmakumar, T. AI-enabled mosquito surveillance and population mapping using Dragonfly robot. Sensors 2022, 22, 4921. [Google Scholar] [CrossRef]
- Lee, H.S.; Noh, B.E.; Kim, S.Y.; Kim, H.; Lee, H.I. The Comparative Field Evaluation of Four Different Traps for Mosquito Surveillance in the Republic of Korea. Insects 2024, 15, 531. [Google Scholar] [CrossRef]
- Sayeedi, M.F.A.; Hafiz, F.; Rahman, M.A. MosquitoFusion: A Multiclass Dataset for Real-Time Detection of Mosquitoes, Swarms, and Breeding Sites Using Deep Learning. arXiv 2024, arXiv:2404.01501. [Google Scholar]
- Santos, D.A.; Teixeira, L.E.; Alberti, A.M.; Furtado, V.; Rodrigues, J.J. Sensitivity and noise evaluation of an optoelectronic sensor for mosquitoes monitoring. In Proceedings of the 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 26–29 June 2018; pp. 1–5. [Google Scholar]
- Potamitis, I.; Rigakis, I.; Fysarakis, K. The electronic McPhail trap. Sensors 2014, 14, 22285–22299. [Google Scholar] [CrossRef] [PubMed]
- Taye, M.M. Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. Computation 2023, 11, 52. [Google Scholar] [CrossRef]
- Adhane, G.; Dehshibi, M.M.; Masip, D. A deep convolutional neural network for classification of aedes albopictus mosquitoes. IEEE Access 2021, 9, 72681–72690. [Google Scholar] [CrossRef]
- Lima, G.A.; Cotrin, R.O.; Belan, P.A.; de Araújo, S.A. Sistema de Visão Computacional para Identificação Automática de Potenciais Focos do Mosquito Aedes aegypti Usando Drones. RISTI-Revista Ibérica de Sistemas e Tecnologias de Informação 2021, 93–109. [Google Scholar] [CrossRef]
- Munteanu, D.; Moina, D.; Zamfir, C.G.; Petrea, Ș.M.; Cristea, D.S.; Munteanu, N. Sea mine detection framework using YOLO, SSD and EfficientDet deep learning models. Sensors 2022, 22, 9536. [Google Scholar] [CrossRef]
- Fort, A.; Peruzzi, G.; Pozzebon, A. Quasi-real time remote video surveillance unit for lorawan-based image transmission. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), Rome, Italy, 7–9 June 2021; pp. 588–593. [Google Scholar]
- Dhou, S.; Alnabulsi, A.; Al-Ali, A.R.; Arshi, M.; Darwish, F.; Almaazmi, S.; Alameeri, R. An IoT machine learning-based mobile sensors unit for visually impaired people. Sensors 2022, 22, 5202. [Google Scholar] [CrossRef]
- Pronello, C.; Garzón Ruiz, X.R. Evaluating the Performance of Video-Based Automated Passenger Counting Systems in Real-World Conditions: A Comparative Study. Sensors 2023, 23, 7719. [Google Scholar] [CrossRef]
- Rahman, M.S.; Pientong, C.; Zafar, S.; Ekalaksananan, T.; Paul, R.E.; Haque, U.; Rocklöv, J.; Overgaard, H.J. Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach. One Health 2021, 13, 100358. [Google Scholar] [CrossRef]
- Isawasan, P. Aedes Mosquitos. 2021. Available online: https://www.kaggle.com/datasets/pradeepisawasan/aedes-mosquitos (accessed on 24 April 2023).
- Veeralakrishna. Butterfly Dataset. 2021. Available online: https://www.kaggle.com/datasets/veeralakrishna/butterfly-dataset (accessed on 24 April 2023).
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Transmitter Output Power | 14 dBm |
Spreading Factor (SF) | 14 dB |
Coding Rate (CR) | 4/5 |
Bandwidth (BW) | 125 kHz |
Payload Length | 320 bytes |
Real Class | Aedes aegypti | Bee | Butterfly | Total |
---|---|---|---|---|
Aedes aegypti | 97 | 0 | 3 | 100 |
Bee | 0 | 100 | 0 | 100 |
Butterfly | 9.9 | 0 | 90.1 | 100 |
Total | 106.9 | 100 | 93.1 | 300 |
Location | 2.5 dBi Antenna | 6dBi Antenna |
---|---|---|
Point A | RSSI: −85 dBm | RSSI: −80 dBm |
Data Rate: 100 kbps | Data Rate: 120 kbps | |
Point B | RSSI: −90 dBm | RSSI: −75 dBm |
Data Rate: 80 kbps | Data Rate: 150 kbps | |
Point C | RSSI: −95 dBm | RSSI: −70 dBm |
Data Rate: 60 kbps | Data Rate: 180 kbps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, D.; Mafra, S. Implementation of an Intelligent Trap for Effective Monitoring and Control of the Aedes aegypti Mosquito. Sensors 2024, 24, 6932. https://doi.org/10.3390/s24216932
Oliveira D, Mafra S. Implementation of an Intelligent Trap for Effective Monitoring and Control of the Aedes aegypti Mosquito. Sensors. 2024; 24(21):6932. https://doi.org/10.3390/s24216932
Chicago/Turabian StyleOliveira, Danilo, and Samuel Mafra. 2024. "Implementation of an Intelligent Trap for Effective Monitoring and Control of the Aedes aegypti Mosquito" Sensors 24, no. 21: 6932. https://doi.org/10.3390/s24216932