A Method for Extracting High-Resolution Building Height Information in Rural Areas Using GF-7 Data
<p>The study area: (<b>a</b>) extent of the study area and building footprints, overlay on the Copernicus DEM hillshade layer; (<b>b</b>) location of the study area; and (<b>c</b>) demonstration of building types in the study area.</p> "> Figure 2
<p>Workflow of the building height extraction. Important intermediate products are marked with a darker background.</p> "> Figure 3
<p>The color encoding module: (<b>a</b>) two-stage color encoding; (<b>b</b>) RGB components of CMRMAP; (<b>c</b>) CMRMAP, digital surface model (DSM), and digital terrain model (DTM) in RGB color space.</p> "> Figure 4
<p>The architecture of Large Mask Inpainting (LaMa) [<a href="#B40-sensors-24-06076" class="html-bibr">40</a>].</p> "> Figure 5
<p>Comparisons of different DSM editing methods. The results are presented as multidirectional hillshade to show details: (<b>a</b>) original GF-7 DSM; (<b>d</b>) building mask, derived from the building footprints; (<b>b</b>) filled in using Copernicus DEM; (<b>c</b>) plane fitting; (<b>e</b>) terrain filter; and (<b>f</b>) our method, DELaMa.</p> "> Figure 6
<p>The building height map of the study area. Aggregated to 50 m ground sampling distance (GSD) for visualization.</p> "> Figure 7
<p>Examples of building height extraction. The first column is the GF-7 multispectral image, the second column is the GF-7 DSM, the third column is the normalized digital surface model (nDSM), and the fourth column is the extracted building height.</p> "> Figure 8
<p>Scatter plot of the building heights from GF-7 against the building heights from ICESat-2.</p> "> Figure 9
<p>Quality control and inspection of the validation process.</p> "> Figure 10
<p>Demonstrations of the impact of DSM editing methods on building height extraction in rugged terrain. The topographic data are presented as multidirectional hillshade to show details: (<b>a</b>) images of Zone 1 and Zone 2; (<b>b</b>) GF-7 DSM; (<b>c</b>) Copernicus DEM filling; (<b>d</b>) plane fitting; (<b>e</b>) terrain filter; and (<b>f</b>) DELaMa.</p> ">
Abstract
:1. Introduction
- Evaluate the capability and limitations of GF-7 images for building height extraction in rural areas.
- Develop a method for automatic DTM generation based on deep learning architecture.
2. Study Area and Data
2.1. Study Area
2.2. GF-7 Data
2.3. ICESat-2/ATLAS
2.4. Copernicus DEM
3. Methodology
3.1. Overview
3.2. Building Footprints Extraction
3.3. GF-7 Building Height Extraction
3.3.1. GF-7 DSM Generation
3.3.2. DELaMa
- Applies real FFT2d to the input tensor and concatenates real and imaginary parts:
- 2.
- Convolution in the frequency domain:
- 3.
- Inverse transform to recover spatial structure:
3.3.3. Extraction of Building Height from nDSM
3.4. ICESat-2 Building Height Extraction
3.5. Evaluation Indicators
4. Results
4.1. Building Footprints of the Study Area
4.2. Performance of DELaMa
4.3. Results of Building Height Extraction
5. Discussion
5.1. Building Height Accuracy Assessments
5.2. Impact of DSM Editing Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Si, G.; Chen, X.; Chen, J.; Zhao, W.; Li, S.; Li, X. Failure Criteria of Unreinforced Masonry Walls of Rural Buildings under the Impact of Flash Floods in Mountainous Regions. J. Mt. Sci. 2022, 19, 3388–3406. [Google Scholar] [CrossRef]
- Paulik, R.; Wild, A.; Zorn, C.; Wotherspoon, L. Residential Building Flood Damage: Insights on Processes and Implications for Risk Assessments. J. Flood Risk Manag. 2022, 15, e12832. [Google Scholar] [CrossRef]
- Zhou, J.; Li, S.; Nie, G.; Fan, X.; Deng, Y.; Xia, C. Research on Seismic Vulnerability of Buildings and Seismic Disaster Risk: A Case Study in Yancheng, China. Int. J. Disaster Risk Reduct. 2020, 45, 101477. [Google Scholar] [CrossRef]
- Xia, C.; Nie, G.; Li, H.; Fan, X.; Yang, R. Study on the Seismic Lethal Level of Buildings and Seismic Disaster Risk in Guangzhou, China. Geomat. Nat. Hazards Risk 2022, 13, 800–829. [Google Scholar] [CrossRef]
- Hong, Z.; Zhang, H.; Tong, X.; Liu, S.; Zhou, R.; Pan, H.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S. Rapid Fine-Grained Damage Assessment of Buildings on a Large Scale: A Case Study of the February 2023 Earthquake in Turkey. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5204–5220. [Google Scholar] [CrossRef]
- Schug, F.; Frantz, D.; Van Der Linden, S.; Hostert, P. Gridded Population Mapping for Germany Based on Building Density, Height and Type from Earth Observation Data Using Census Disaggregation and Bottom-up Estimates. PLoS ONE 2021, 16, e0249044. [Google Scholar] [CrossRef]
- Qian, Y.; Tang, L.; Zhao, J. A Review on Urban Height Extraction Using Remote Sensing Images. Acta Ecol. Sin. 2015, 35, 3886–3895. [Google Scholar] [CrossRef]
- Erener, A.; Sarp, G.; Karaca, M.I. An Approach to Urban Building Height and Floor Estimation by Using LiDAR Data. Arab. J. Geosci. 2020, 13, 1005. [Google Scholar] [CrossRef]
- Cai, P.; Guo, J.; Li, R.; Xiao, Z.; Fu, H.; Guo, T.; Zhang, X.; Li, Y.; Song, X. Automated Building Height Estimation Using Ice, Cloud, and Land Elevation Satellite 2 Light Detection and Ranging Data and Building Footprints. Remote Sens. 2024, 16, 263. [Google Scholar] [CrossRef]
- Abdullah, S.M.; Awrangjeb, M.; Lu, G. Automatic Segmentation of LiDAR Point Cloud Data at Different Height Levels for 3D Building Extraction. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Chengdu, China, 14–18 July 2014; pp. 1–6. [Google Scholar]
- Zhang, S.; Han, F.; Bogus, S.M. Building Footprint and Height Information Extraction from Airborne LiDAR and Aerial Imagery. In Proceedings of the Construction Research Congress 2020, Tempe, Arizona, 8–10 March 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 326–335. [Google Scholar]
- Wang, X.; Li, P. Extraction of Urban Building Damage Using Spectral, Height and Corner Information from VHR Satellite Images and Airborne LiDAR Data. ISPRS J. Photogramm. Remote Sens. 2020, 159, 322–336. [Google Scholar] [CrossRef]
- Lao, J.; Wang, C.; Zhu, X.; Xi, X.; Nie, S.; Wang, J.; Cheng, F.; Zhou, G. Retrieving Building Height in Urban Areas Using ICESat-2 Photon-Counting LiDAR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102596. [Google Scholar] [CrossRef]
- Sun, Y.; Shahzad, M.; Zhu, X.X. Building Height Estimation in Single SAR Image Using OSM Building Footprints. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar]
- Yamazaki, F.; Liu, W.; Mas, E.; Koshimura, S. Development of Building Height Data from High-Resolution SAR Imagery and Building Footprint. In Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures; Deodatis, G., Ellingwood, B., Frangopol, D., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 5493–5498. ISBN 978-1-138-00086-5. [Google Scholar]
- Jiang, L.; Wang, Z.; Yu, W. Model Based Building Height Retrieval from Single SAR Images. In Proceedings of the 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 20–22 August 2011; pp. 379–384. [Google Scholar]
- Zhang, H.; Xu, C.; Fan, Z.; Li, W.; Sun, K.; Li, D. Detection and Classification of Buildings by Height from Single Urban High-Resolution Remote Sensing Images. Appl. Sci. 2023, 13, 10729. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.C.; Cui, J.J.; Wang, M. The Study of Building-Height Inversion Based on the Shadow of High-Resolution Satellite Images. Appl. Mech. Mater. 2014, 556–562, 5107–5111. [Google Scholar] [CrossRef]
- Wu, B.; Huang, H.; Zhao, Y. Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons. Remote Sens. 2023, 15, 3786. [Google Scholar] [CrossRef]
- Zhu, X.; Ren, Z.; Nie, S.; Bao, G.; Ha, G.; Bai, M.; Liang, P. DEM Generation from GF-7 Satellite Stereo Imagery Assisted by Space-Borne LiDAR and Its Application to Active Tectonics. Remote Sens. 2023, 15, 1480. [Google Scholar] [CrossRef]
- Chen, P.; Huang, H.; Liu, J.; Wang, J.; Liu, C.; Zhang, N.; Su, M.; Zhang, D. Leveraging Chinese GaoFen-7 Imagery for High-Resolution Building Height Estimation in Multiple Cities. Remote Sens. Environ. 2023, 298, 113802. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wen, D.; Chen, H.; Gong, J. Assessing the Quality of Building Height Extraction from ZiYuan-3 Multi-View Imagery. Remote Sens. Lett. 2017, 8, 907–916. [Google Scholar] [CrossRef]
- Singla, J.G.; Trivedi, S. 3D Building Reconstruction and Validation Using High-Resolution Stereo Data. Curr. Sci. 2022, 122, 900. [Google Scholar] [CrossRef]
- Tian, Z.; Gong, Y. Building Height Extraction Based on Satellite GF-7 High-Resolution Stereo Image. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, X-1-2024, 219–224. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Meng, Q.; Zhang, L.; Wang, C.; Liu, X.; Zhao, M. Developing a Method to Extract Building 3D Information from GF-7 Data. Remote Sens. 2021, 13, 4532. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, Y.; Zhu, Z.; Jiang, S.; Jiang, W. Building Height Extraction from GF-7 Satellite Images Based on Roof Contour Constrained Stereo Matching. Remote Sens. 2022, 14, 1566. [Google Scholar] [CrossRef]
- Chen, P.; Huang, H.; Ye, F.; Liu, J.; Li, W.; Wang, J.; Wang, Z.; Liu, C.; Zhang, N. A Benchmark GaoFen-7 Dataset for Building Extraction from Satellite Images. Sci. Data 2024, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhao, S.; Jiang, W.; Yu, G. Urban Building Height Extraction from Gaofen-7 Stereo Satellite Images Enhanced by Contour Matching. Remote Sens. 2024, 16, 1556. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, X.; Zhao, C.; Xu, C.; Mo, F.; Dai, J. System Design and Key Technolongies of the GF-7 Satellite. Chin. Space Sci. Technol. 2020, 40, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; He, T.; Zhao, C.; Mo, F.; Guo, A.; Luo, W.; Yang, J. Demonstration of Surveying and Mapping System and Performance Evaluation of GF-7 Satellite. Spacecr. Eng. 2020, 29, 1–11. [Google Scholar]
- Li, D.; Sui, Z.; Long, X.; Li, Q.; Qiao, Z.; Zhong, H.; Wang, X. Geometry Processing and Accuracy Verification of Dual-Line Array Cameras of GF-7 Satellite. Natl. Remote Sens. Bull. 2024, 28, 756–766. [Google Scholar]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry Mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Goud, G.P.S.; Bhardwaj, A. Estimation of Building Heights and DEM Accuracy Assessment Using ICESat-2 Data Products. In Proceedings of the 8th International Electronic Conference on Sensors and Applications, Online, 1–15 November 2021; MDPI: Basel, Switzerland, 2021; p. 37. [Google Scholar]
- Meadows, M.; Jones, S.; Reinke, K. Vertical Accuracy Assessment of Freely Available Global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in Flood-Prone Environments. Int. J. Digit. Earth 2024, 17, 2308734. [Google Scholar] [CrossRef]
- Stiller, D.; Stark, T.; Wurm, M.; Dech, S.; Taubenbock, H. Large-Scale Building Extraction in Very High-Resolution Aerial Imagery Using Mask R-CNN. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 22–24 May 2019; pp. 1–4. [Google Scholar]
- Vincent, M.J.; Varalakshmi, P. Extraction of Building Footprint Using MASK-RCNN for High Resolution Aerial Imagery. Environ. Res. Commun. 2024, 6, 075015. [Google Scholar] [CrossRef]
- Han, Q.; Yin, Q.; Zheng, X.; Chen, Z. Remote Sensing Image Building Detection Method Based on Mask R-CNN. Complex Intell. Syst. 2022, 8, 1847–1855. [Google Scholar] [CrossRef]
- Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-Resolution Landcover Classification Using Random Forest. Remote Sens. Lett. 2014, 5, 112–121. [Google Scholar] [CrossRef]
- Hirschmuller, H. Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 807–814. [Google Scholar]
- Suvorov, R.; Logacheva, E.; Mashikhin, A.; Remizova, A.; Ashukha, A.; Silvestrov, A.; Kong, N.; Goka, H.; Park, K.; Lempitsky, V. Resolution-Robust Large Mask Inpainting with Fourier Convolutions. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 3172–3182. [Google Scholar]
- Luo, M.R.; Cui, G.; Li, C. Uniform Colour Spaces Based on CIECAM02 Colour Appearance Model. Color Res. Appl. 2006, 31, 320–330. [Google Scholar] [CrossRef]
- Rappaport, C. A Color Map for Effective Black-and-White Rendering of Color-Scale Images. IEEE Antennas Propag. Mag. 2002, 44, 94–96. [Google Scholar] [CrossRef]
- Dong, J.; Ni, W.; Zhang, Z.; Sun, G. Performance of ICESat-2 ATL08 Product on the Estimation of Forest Height by Referencing to Small Footprint LiDAR Data. Natl. Remote Sens. Bull. 2021, 25, 1294–1307. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, F.; Bao, Y.; Wang, C.; Wang, J.; Wu, J.; He, J.; Lao, J. Urban Building Height Extraction Accommodating Various Terrain Scenes Using ICESat-2/ATLAS Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103870. [Google Scholar] [CrossRef]
- Dandabathula, G.; Sitiraju, S.R.; Jha, C.S. Retrieval of Building Heights from ICESat-2 Photon Data and Evaluation with Field Measurements. Environ. Res. Infrastruct. Sustain. 2021, 1, 011003. [Google Scholar] [CrossRef]
Reference | DEM Filling | Plane Fitting | Terrain Filter | DELaMa | |
---|---|---|---|---|---|
Zone 1 | 5.36 | −0.18 | 3.10 | 4.88 | 4.94 |
Zone 2 | 4.81 | 3.59 | 3.29 | 3.84 | 4.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wang, P.; Hu, K.; Gu, C.; Jin, S.; Chen, L. A Method for Extracting High-Resolution Building Height Information in Rural Areas Using GF-7 Data. Sensors 2024, 24, 6076. https://doi.org/10.3390/s24186076
Liu M, Wang P, Hu K, Gu C, Jin S, Chen L. A Method for Extracting High-Resolution Building Height Information in Rural Areas Using GF-7 Data. Sensors. 2024; 24(18):6076. https://doi.org/10.3390/s24186076
Chicago/Turabian StyleLiu, Mingbo, Ping Wang, Kailong Hu, Changjun Gu, Shengyue Jin, and Lu Chen. 2024. "A Method for Extracting High-Resolution Building Height Information in Rural Areas Using GF-7 Data" Sensors 24, no. 18: 6076. https://doi.org/10.3390/s24186076
APA StyleLiu, M., Wang, P., Hu, K., Gu, C., Jin, S., & Chen, L. (2024). A Method for Extracting High-Resolution Building Height Information in Rural Areas Using GF-7 Data. Sensors, 24(18), 6076. https://doi.org/10.3390/s24186076