Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,442)

Search Parameters:
Keywords = building height

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4363 KiB  
Article
The Effect of Soil and Topography Factors on Larix gmelinii var. Principis-rupprechtii Forest Mortality and Capability of Decision Tree Binning Method and Generalized Linear Models in Predicting Tree Mortality
by Zhaohui Yang, Wei Zou, Haodong Liu, Ram P. Sharma, Mengtao Zhang and Zhenhua Hu
Forests 2024, 15(12), 2060; https://doi.org/10.3390/f15122060 (registering DOI) - 22 Nov 2024
Abstract
Understanding the factors influencing individual tree mortality is essential for sustainable forest management, particularly for Prince Rupprech’s larch (Larix gmelinii var. Principis-rupprechtii) in North China’s natural forests. This study focused on 20 sample plots (20 × 20 m each) established in [...] Read more.
Understanding the factors influencing individual tree mortality is essential for sustainable forest management, particularly for Prince Rupprech’s larch (Larix gmelinii var. Principis-rupprechtii) in North China’s natural forests. This study focused on 20 sample plots (20 × 20 m each) established in Shanxi Province, North China. This study compared three individual tree mortality models—Generalized Linear Model (GLM), Linear Discriminant Analysis (LDA), and Bayesian Generalized Linear Model (Bayesian GLM)—finding that both GLM and Bayesian GLM achieved approximately 0.87 validation accuracy on the test dataset. Due to its simplicity, GLM was selected as the final model. Building on the GLM model, six binning methods were applied to categorize diameter at breast height (DBH): equal frequency binning, equal width binning, cluster-based binning, quantile binning, Chi-square binning, and decision tree binning. Among these, the decision tree binning method achieved the highest performance, with an accuracy of 90.12% and an F1 score of 90.06%, indicating its effectiveness in capturing size-dependent mortality patterns. This approach provides valuable insights into factors affecting mortality and offers practical guidance for managing Larix gmelinii var. Principis-rupprechtii forests in temperate regions. Full article
Show Figures

Figure 1

Figure 1
<p>Study area with sample plots’ location.</p>
Full article ">Figure 2
<p>Calculation process of six binning methods.</p>
Full article ">Figure 3
<p>The distribution of <span class="html-italic">DBH</span> (<b>a</b>) and tree mortality rate for the <span class="html-italic">DBH</span> group (<b>b</b>). Note: tree mortality rate is a unitless proportion, representing the percentage of trees that have died within each <span class="html-italic">DBH</span> group.</p>
Full article ">Figure 4
<p>Removed Wald statistics (<b>a</b>), removed AIC difference (<b>b</b>), adjusted AIC difference (<b>c</b>), and normalized adjusted AIC difference (<b>d</b>) results of each variable.</p>
Full article ">Figure 5
<p>Roc curves of GLM model, LDA model, and Bayesian GLM model.</p>
Full article ">Figure 6
<p>Distribution of <span class="html-italic">DBH</span> and distribution of <span class="html-italic">DBH</span> based on five different binning methods: (<b>a</b>) original <span class="html-italic">DBH</span> distribution; (<b>b</b>) equal frequency binning of <span class="html-italic">DBH</span>; (<b>c</b>) equal width binning of <span class="html-italic">DBH</span>; (<b>d</b>) cluster-based binning of <span class="html-italic">DBH</span>; (<b>e</b>) quantile binning of <span class="html-italic">DBH</span>; (<b>f</b>) Chi-square binning of <span class="html-italic">DBH</span>.</p>
Full article ">Figure 7
<p>Decision tree analysis of tree mortality based on <span class="html-italic">DBH</span>.</p>
Full article ">Figure 8
<p>Evaluation of individual tree mortality GLM model using different binning methods: Accuracy, F1 Score, Precision, Sensitivity, and Specificity.</p>
Full article ">
20 pages, 1432 KiB  
Article
Energy Saving for Impinging Jet Ventilation System by Employing Various Supply Duct Locations and Return Grill Elevation
by Bandar Awadh Almohammadi, Eslam Hussein, Khaled M. Almohammadi, Hassanein A. Refaey and Mohamed A. Karali
Buildings 2024, 14(12), 3716; https://doi.org/10.3390/buildings14123716 - 21 Nov 2024
Abstract
The study of energy savings in ventilation systems within buildings is crucial. Impinging jet ventilation (IJV) systems have garnered significant interest from researchers. The identification of the appropriate location for the IJV reveals a gap in the existing literature. This research was conducted [...] Read more.
The study of energy savings in ventilation systems within buildings is crucial. Impinging jet ventilation (IJV) systems have garnered significant interest from researchers. The identification of the appropriate location for the IJV reveals a gap in the existing literature. This research was conducted to address the existing gap by examining the impact of IJV location on energy savings and thermal comfort. A comprehensive three-dimensional CFD model is examined to accurately simulate the real environment of an office room (3 × 3 × 2.9 m3) during cooling mode, without the application of symmetrical plans. Four locations have been selected: two at the corners and two along the midwalls, designated for fixed-person positions. The return vent height is analyzed utilizing seven measurements: 2.9, 2.6, 2.3, 1.7, 1.1, 0.8, and 0.5 m. The RNG k–ε turbulence model is implemented alongside enhanced wall treatment. The findings indicated that the optimal range for the return vent height is between 1.7 and 0.8 m. It is advisable to utilize the IJV midwall 1 location, positioned behind the seated individual and away from the exterior hot wall. It is characterized by low vortex formation in the local working zone that contributes to a more comfortable sensation while providing recognized energy-saving potential. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
13 pages, 5460 KiB  
Article
Effects of Tall Buildings on Visually Morphological Traits of Urban Trees
by Yongxin Xue, Jiheng Li, Xiaofan Nan, Chengyang Xu and Bingqian Ma
Forests 2024, 15(12), 2053; https://doi.org/10.3390/f15122053 - 21 Nov 2024
Viewed by 100
Abstract
The visual morphology of trees significantly impacts urban green micro-landscape aesthetics. Proximity to tall buildings affects tree form due to competition for space and light. The study investigates the impact of tall buildings on six visually morphological traits of eight common ornamental species [...] Read more.
The visual morphology of trees significantly impacts urban green micro-landscape aesthetics. Proximity to tall buildings affects tree form due to competition for space and light. The study investigates the impact of tall buildings on six visually morphological traits of eight common ornamental species in urban micro-landscapes in Beijing, with the distance and direction between trees and buildings as variables. It found that as trees grow closer to buildings, most angiosperms show increased crown asymmetry degree and crown loss, and reduced crown round degree and crown stretch degree (i.e., Sophora japonica L. and Acer truncatum Bunge saw a 52.26% and 47.62% increase in crown asymmetry degree, and a 20.35% and 21.59% decrease in crown round degree, respectively). However, the pattern of crown morphological changes in gymnosperms is poor (the closer the distance, the lower the height-to-diameter ratio of Pinus tabuliformis Carr., while the height-to-diameter ratio of Juniperus chinensis Roxb. significantly increases). In terms of orientation, gymnosperms on the west side of buildings have a greater crown asymmetry degree. It suggests that planting positions relative to buildings affect tree morphology. Recommendations include planting J. chinensis closer to buildings but keeping angiosperms like Fraxinus velutina Torr., S. japonica, and A. truncatum more than 3 m away to ensure healthy crown development. Full article
(This article belongs to the Special Issue Structure, Function, and Value of Urban Forest)
Show Figures

Figure 1

Figure 1
<p>The research area of the study.</p>
Full article ">Figure 2
<p>Illustrative diagram of tree visual morphology at different distances. (<b>a</b>) <span class="html-italic">G. biloba</span> within 0–3 m; (<b>b</b>) <span class="html-italic">G. biloba</span> within 3–6 m; (<b>c</b>) <span class="html-italic">G. biloba</span> within 6–9 m; (<b>d</b>) <span class="html-italic">A. truncatum</span> within 0–3 m; (<b>e</b>) <span class="html-italic">A. truncatum</span> within 3–6 m; (<b>f</b>) <span class="html-italic">A. truncatum</span> within 6–9 m.</p>
Full article ">Figure 2 Cont.
<p>Illustrative diagram of tree visual morphology at different distances. (<b>a</b>) <span class="html-italic">G. biloba</span> within 0–3 m; (<b>b</b>) <span class="html-italic">G. biloba</span> within 3–6 m; (<b>c</b>) <span class="html-italic">G. biloba</span> within 6–9 m; (<b>d</b>) <span class="html-italic">A. truncatum</span> within 0–3 m; (<b>e</b>) <span class="html-italic">A. truncatum</span> within 3–6 m; (<b>f</b>) <span class="html-italic">A. truncatum</span> within 6–9 m.</p>
Full article ">Figure 3
<p>The influence of building distance on the visually morphological traits of individual gymnosperm trees (a: <span class="html-italic">P. bungeana</span>; b: <span class="html-italic">G. biloba</span>; c: <span class="html-italic">P. tabuliformis</span>; d: <span class="html-italic">J. chinensis</span>). (Different lowercase letters indicate significant differences between different groups. * indicates significant difference <span class="html-italic">p</span> ≤ 0.05; *** indicates difference significance <span class="html-italic">p</span> ≤ 0.001).</p>
Full article ">Figure 3 Cont.
<p>The influence of building distance on the visually morphological traits of individual gymnosperm trees (a: <span class="html-italic">P. bungeana</span>; b: <span class="html-italic">G. biloba</span>; c: <span class="html-italic">P. tabuliformis</span>; d: <span class="html-italic">J. chinensis</span>). (Different lowercase letters indicate significant differences between different groups. * indicates significant difference <span class="html-italic">p</span> ≤ 0.05; *** indicates difference significance <span class="html-italic">p</span> ≤ 0.001).</p>
Full article ">Figure 4
<p>The influence of building distance on the visually morphological traits of individual angiosperm trees (a: <span class="html-italic">F. velutina</span>; b: <span class="html-italic">S. japonica</span>; c: <span class="html-italic">K. paniculata</span>; d: <span class="html-italic">A. truncatum</span>). (Different lowercase letters indicate significant differences between different groups. * indicates significant difference <span class="html-italic">p</span> ≤ 0.05; ** indicates significant difference <span class="html-italic">p</span> ≤ 0.01; *** indicates difference significance <span class="html-italic">p</span> ≤ 0.001).</p>
Full article ">Figure 5
<p>The influence of building orientation on individual visually morphological traits of gymnosperm trees. (Different lowercase letters indicate significant differences between different groups. * indicates significant difference <span class="html-italic">p</span> ≤ 0.05).</p>
Full article ">Figure 6
<p>The influence of building orientation on individual visually morphological traits of angiosperms trees. (Different lowercase letters indicate significant differences between different groups).</p>
Full article ">
24 pages, 21738 KiB  
Article
New Method to Correct Vegetation Bias in a Copernicus Digital Elevation Model to Improve Flow Path Delineation
by Gabriel Thomé Brochado and Camilo Daleles Rennó
Remote Sens. 2024, 16(22), 4332; https://doi.org/10.3390/rs16224332 - 20 Nov 2024
Viewed by 266
Abstract
Digital elevation models (DEM) are widely used in many hydrologic applications, providing key information about the topography, which is a major driver of water flow in a landscape. Several open access DEMs with near-global coverage are currently available, however, they represent the elevation [...] Read more.
Digital elevation models (DEM) are widely used in many hydrologic applications, providing key information about the topography, which is a major driver of water flow in a landscape. Several open access DEMs with near-global coverage are currently available, however, they represent the elevation of the earth’s surface including all its elements, such as vegetation cover and buildings. These features introduce a positive elevation bias that can skew the water flow paths, impacting the extraction of hydrological features and the accuracy of hydrodynamic models. Many attempts have been made to reduce the effects of this bias over the years, leading to the generation of improved datasets based on the original global DEMs, such as MERIT DEM and, more recently, FABDEM. However, even after these corrections, the remaining bias still affects flow path delineation in a significant way. Aiming to improve on this aspect, a new vegetation bias correction method is proposed in this work. The method consists of subtracting from the Copernicus DEM elevations their respective forest height but adjusted by correction factors to compensate for the partial penetration of the SAR pulses into the vegetation cover during the Copernicus DEM acquisition process. These factors were calculated by a new approach where the slope around the pixels at the borders of each vegetation patch were analyzed. The forest height was obtained from a global dataset developed for the year 2019. Moreover, to avoid temporal vegetation cover mismatch between the DEM and the forest height dataset, we introduced a process where the latter is automatically adjusted to best match the Copernicus acquisition year. The correction method was applied for regions with different forest cover percentages and topographic characteristics, and the result was compared to the original Copernicus DEM and FABDEM, which was used as a benchmark for vegetation bias correction. The comparison method was hydrology-based, using drainage networks obtained from topographic maps as reference. The new corrected DEM showed significant improvements over both the Copernicus DEM and FABDEM in all tested scenarios. Moreover, a qualitative comparison of these DEMs was also performed through exhaustive visual analysis, corroborating these findings. These results suggest that the use of this new vegetation bias correction method has the potential to improve DEM-based hydrological applications worldwide. Full article
Show Figures

Figure 1

Figure 1
<p>Position of study areas overlayed to a natural color Sentinel-2 cloud free composite of the year 2020 of South America.</p>
Full article ">Figure 2
<p>Sentinel-2 cloud free composite of the year 2020 and color representation of Copernicus DEM elevations of the study areas. The numbers in the top left corner of each panel refer to the study area depicted on it.</p>
Full article ">Figure 3
<p>Comparison between the forest height datasets. The figure presents a natural color Sentinel-2 cloud free composite of the year 2020 of the entire Area 1, with the subset area marked by the red rectangle (<b>top left</b>); the Sentinel-2 image of the subset area (<b>top center</b>); a grayscale representation of Copernicus DEM elevations on the subset area (<b>top right</b>); the Sentinel-2 composite overlayed by a color representation of Potapov et al. [<a href="#B44-remotesensing-16-04332" class="html-bibr">44</a>] (<b>bottom left</b>), Lang et al. [<a href="#B45-remotesensing-16-04332" class="html-bibr">45</a>] (<b>bottom center</b>) and Tolan et al. [<a href="#B46-remotesensing-16-04332" class="html-bibr">46</a>] (<b>bottom right</b>) forest height datasets, where heights equal to zero are transparent.</p>
Full article ">Figure 4
<p>Effect of forest height overestimation and canopy elevation underestimation on the estimated ground elevation. The illustration represents the difference (Δh1) between the estimated and actual forest heights, the original and corrected DEMs elevation profiles (dotted lines), the differences between the actual and estimated canopy elevations (Δh2), and ground elevations (Δh1 + Δh2).</p>
Full article ">Figure 5
<p>Copernicus DEM vegetation bias correction workflow.</p>
Full article ">Figure 6
<p>Stream flow paths comparison workflow.</p>
Full article ">Figure 7
<p>Flow path displacement area calculation. The illustration shows the drainage network overlayed by an initial point from where the reference and DEM-extracted flow paths are traced, until they the circle with radius <span class="html-italic">r</span> centered around the point. The flow path displacement area, highlighted in gray, is the sum of the areas located between these lines.</p>
Full article ">Figure 8
<p>Example of flow paths selection. The panels present the reference drainage network for Area 1 (<b>left</b>), the set of flow paths extracted from it using a 2000 m radius (<b>center</b>), and the flow paths selected from the latter (<b>right</b>). The lines are represented in yellow color in all panels, with the Sentinel-2 composite of the year 2020 in the background.</p>
Full article ">Figure 9
<p>Comparison between DEMs and vertical profiles in Area 1. The figure presents color representations of Copernicus, FABDEM, and the new corrected DEM elevation data over the study area (<b>top</b>); its natural color Sentinel-2 cloud-free composite of the year 2020, overlayed by the elevation profile lines identified by their respective numbers (<b>bottom left</b>); and charts showing the observed DEM elevations along the profile lines, with the background colored gray in areas covered by vegetation, according to the adjusted forest height obtained for the area (<b>bottom right</b>).</p>
Full article ">Figure 10
<p>Example of a region within Area 1 where the blurring effect was identified. The figure presents a natural color Sentinel-2 cloud-free composite of the year 2020 of the study area, overlayed by red rectangle highlighting the region featured in the other panels (<b>top left</b>); a color representation of the elevations of Copernicus DEM (<b>top right</b>), FABDEM (<b>bottom left</b>) and the new corrected DEM (<b>bottom right</b>), showing the different level of degradation of the finer topographic features visible in the original DEM.</p>
Full article ">Figure 11
<p>Comparison between DEMs and vertical profiles in Area 2. The figure presents color representations of Copernicus, FABDEM, and the new corrected DEM elevation data over the study area (<b>top</b>); its natural color Sentinel-2 cloud-free composite of the year 2020, overlayed by the elevation profile lines identified by their respective numbers (<b>bottom left</b>); and charts showing the observed DEM elevations along the profile lines, with the background colored gray in areas covered by vegetation, according to the adjusted forest height obtained for the area (<b>bottom right</b>).</p>
Full article ">Figure 12
<p>Comparison between DEMs and vertical profiles in Area 3. The figure presents color representations of Copernicus, FABDEM, and the new corrected DEM elevation data over the study area (<b>top</b>); its natural color Sentinel-2 cloud-free composite of the year 2020, overlayed by the elevation profile lines identified by their respective numbers (<b>bottom left</b>); and charts showing the observed DEM elevations along the profile lines, with the background colored gray in areas covered by vegetation, according to the adjusted forest height obtained for the area (<b>bottom right</b>).</p>
Full article ">Figure 13
<p>Example of a region within Area 3 where the blurring effect was identified. The figure presents a natural color Sentinel-2 cloud-free composite of the year 2020 of the study area, overlayed by red rectangle highlighting the region featured in the other panels (<b>top left</b>); a color representation of the elevations of Copernicus DEM (<b>top right</b>), FABDEM (<b>bottom left</b>) and the new corrected DEM (<b>bottom right</b>), showing the different level of degradation of the finer topographic features visible in the original DEM.</p>
Full article ">Figure 14
<p>Comparison between DEMs and vertical profiles in Area 4. The figure presents color representations of Copernicus, FABDEM and our corrected DEM elevation data over the study area (<b>top</b>); its natural color Sentinel-2 cloud-free composite of the year 2020, overlayed by the elevation profile lines identified by their respective numbers (<b>bottom left</b>); and charts showing the observed DEM elevations along the profile lines, with the background colored gray in areas covered by vegetation, according to the adjusted forest height obtained for the area (<b>bottom right</b>).</p>
Full article ">Figure 15
<p>Comparison of drainage networks extracted from the DEMs. The figure is composed of the natural color Sentinel-2 cloud-free composite of the year 2020 of the study areas overlayed by a red rectangle/highlighting the regions featured in the panels below (<b>first row</b>); Sentinel-2 composite of the highlighted regions, overlayed by the reference drainage lines and the ones extracted from Copernicus DEM, FABDEM, and the new corrected DEM, all in yellow color and placed side by side, organized in rows per study area.</p>
Full article ">
18 pages, 13617 KiB  
Article
Observation and Numerical Simulation of Cross-Mountain Airflow at the Hong Kong International Airport from Range Height Indicator Scans of Radar and LIDAR
by Ying Wa Chan, Kai Wai Lo, Ping Cheung, Pak Wai Chan and Kai Kwong Lai
Atmosphere 2024, 15(11), 1391; https://doi.org/10.3390/atmos15111391 - 19 Nov 2024
Viewed by 207
Abstract
Apart from headwind changes, crosswind changes may be hazardous to aircraft operation. This paper presents two cases of recently observed crosswind changes from the range height indicator scans of ground-based remote sensing meteorological equipment, namely an X-band microwave radar and a short-range LIDAR. [...] Read more.
Apart from headwind changes, crosswind changes may be hazardous to aircraft operation. This paper presents two cases of recently observed crosswind changes from the range height indicator scans of ground-based remote sensing meteorological equipment, namely an X-band microwave radar and a short-range LIDAR. Both instruments have a range resolution down to around 30 m, allowing the study of fine-scale details of the vertical profiles of cross-mountain airflow at the Hong Kong International Airport. Rapidly evolving winds have been observed by the equipment in tropical cyclone situations, revealing high levels of turbulence and vertically propagating waves. The eddy dissipation rate derived from radar spectrum width indicated severe turbulence, with values exceeding 0.5 m2/3 s−1. In order to study the feasibility of predicting such disturbed airflow, a mesoscale meteorological model and a computational fluid dynamics model with high spatial resolution are used in this paper. It is found that the mesoscale meteorological model alone is sufficient to capture some rapidly evolving airflow features, including the turbulence level, the waves, and the rapidly changing wind speeds. However, the presence of reverse flow could only be reproduced with the use of a building-resolving computational fluid dynamics model. This paper aims at providing a reference for airports to consider the feasibility of performing high-resolution numerical simulations of rapidly evolving airflow to alert the pilots in advance for airports in complex terrains and the setup of buildings. Full article
(This article belongs to the Special Issue Tropical Cyclones: Observations and Prediction (2nd Edition))
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) The surface synoptic chart at 0200 Hong Kong time on 2 September 2023 and (<b>b</b>) the surface synoptic chart at 0200 Hong Kong time on 7 September 2024.</p>
Full article ">Figure 2
<p>The locations of the X-band dual polarisation phased array weather radar (PAWR) and the wind profiler at Sha Lo Wan (SLW), as well as the short-range LIDAR at the Government Flying Service (GFS) headquarters at the Hong Kong International Airport (HKIA).</p>
Full article ">Figure 3
<p>(<b>a</b>) The RHI spectral width scan and (<b>b</b>) the associated cross-section of the eddy dissipation rate (EDR) as well as (<b>c</b>) the three-dimensional wind fields (left: horizontal wind field at height of around 34 m above sea level. Right: wind field projected on the cross-sectional plane A–B on the left panel) obtained/retrieved using the SLW radar data at around 0255 Hong Kong time on 2 September 2023.</p>
Full article ">Figure 3 Cont.
<p>(<b>a</b>) The RHI spectral width scan and (<b>b</b>) the associated cross-section of the eddy dissipation rate (EDR) as well as (<b>c</b>) the three-dimensional wind fields (left: horizontal wind field at height of around 34 m above sea level. Right: wind field projected on the cross-sectional plane A–B on the left panel) obtained/retrieved using the SLW radar data at around 0255 Hong Kong time on 2 September 2023.</p>
Full article ">Figure 4
<p>(<b>a</b>) The RHI spectral width scan and (<b>b</b>) the associated cross-section of the eddy dissipation rate (EDR) as well as (<b>c</b>) the three-dimensional wind fields (left: horizontal wind field at height of around 34 m above sea level. Right: wind field projected on the cross-sectional plane A–B on the left panel) obtained/retrieved using the SLW radar data at around 0305 Hong Kong time on 2 September 2023.</p>
Full article ">Figure 4 Cont.
<p>(<b>a</b>) The RHI spectral width scan and (<b>b</b>) the associated cross-section of the eddy dissipation rate (EDR) as well as (<b>c</b>) the three-dimensional wind fields (left: horizontal wind field at height of around 34 m above sea level. Right: wind field projected on the cross-sectional plane A–B on the left panel) obtained/retrieved using the SLW radar data at around 0305 Hong Kong time on 2 September 2023.</p>
Full article ">Figure 5
<p>(<b>a</b>) The 1st, 2nd, and 3rd nested domains of the RAMS simulation. (<b>b</b>) The 3rd, 4th, and 5th nested domains of the RAMS simulation.</p>
Full article ">Figure 6
<p>(<b>a</b>) Observations of horizontal wind profiles from the SLW wind profiler from 18:00 Hong Kong time on 1 September 2023 to 06:00 Hong Kong Time on 2 September 2023 (+8 UTC). (<b>b</b>) Simulated horizontal wind profiles (wind barbs) and vertical velocities (background colour) from the RAMS on 1 September 2023 from 15UTC to 22UTC.</p>
Full article ">Figure 7
<p>Simulation of RHI scans of (<b>a</b>) the EDR and (<b>b</b>) wind field from the RAMS on 18:54:10 UTC, 1 September 2023.</p>
Full article ">Figure 8
<p>(<b>a</b>) The domain of the PALM simulation denoted by a red rectangle where the boundary is the 5th nested domain of the RAMS simulation. The blue line indicates the location of the RHI scan of the GFS LIDAR. (<b>b</b>) The PALM simulation domain with building heights indicated by the colour bar. The blue cross symbol indicates the location of the GFS LIDAR, and the blue line shows the location of its RHI scan.</p>
Full article ">Figure 9
<p>(<b>a</b>) RHI scans of radial wind velocity from the GFS LIDAR at 00:40:18 Hong Kong time (+8 UTC) on 7 September 2024. (<b>b</b>) RHI scans of radial wind velocity from the GFS LIDAR at 00:42:36 Hong Kong time (+8 UTC) on 7 September 2024.</p>
Full article ">Figure 10
<p>(<b>a</b>) The RAMS simulation for RHI scans of radial wind velocity from the GFS LIDAR at 16:40:10 UTC on 6 September 2024. (<b>b</b>) The RAMS simulation for RHI scans of radial wind velocity from the GFS LIDAR at 16:43:40 UTC on 6 September 2024.</p>
Full article ">Figure 11
<p>The RAMS simulation of radial wind velocity from the GFS LIDAR with an extended range at 16:40:10 UTC on 6 September 2024.</p>
Full article ">Figure 12
<p>The PALM simulation for RHI scans of radial wind velocity from the GFS LIDAR at four different instances, namely (<b>a</b>) 16:40UTC, (<b>b</b>) 16:42 UTC, (<b>c</b>) 16:43 UTC, and (<b>d</b>) 16:45 UTC on 6 September 2024.</p>
Full article ">
25 pages, 3993 KiB  
Article
Intelligent Forecast Model for Project Cost in Guangdong Province Based on GA-BP Neural Network
by Changqing Li, Yang Xiao, Xiaofu Xu, Zhuoyu Chen, Haofeng Zheng and Huiling Zhang
Buildings 2024, 14(11), 3668; https://doi.org/10.3390/buildings14113668 - 18 Nov 2024
Viewed by 291
Abstract
Project cost forecasting is a complex and critical process, and it is of paramount importance for the successful implementation of engineering projects. Accurately forecasting project costs can help project managers and relevant decision-makers make informed decisions, thereby avoiding unnecessary cost overruns and time [...] Read more.
Project cost forecasting is a complex and critical process, and it is of paramount importance for the successful implementation of engineering projects. Accurately forecasting project costs can help project managers and relevant decision-makers make informed decisions, thereby avoiding unnecessary cost overruns and time delays. Furthermore, accurately forecasting project costs can make important contributions to better controlling engineering costs, optimizing resource allocation, and reducing project risks. To establish a high-precision cost forecasting model for construction projects in Guangdong Province, based on case data of construction projects in Guangdong Province, this paper first uses the Analytic Hierarchy Process (AHP) to obtain the characteristic parameters that affect project costs. Then, a neural network training and testing dataset is constructed, and a genetic algorithm (GA) is used to optimize the initial weights and biases of the neural network. The GA-BP neural network is used to establish a cost forecasting model for construction projects in Guangdong Province. Finally, by using parameter sensitivity analysis theory, the importance of the characteristic values that affect the project cost is ranked, and the optimal direction for controlling the project cost is obtained. The results showed: (1) The determination coefficient between the forecasting and actual values of the project cost forecasting model based on the BP neural network testing set is 0.87. After GA optimization, the determination coefficient between the forecasting and actual values of the GA-BP neural network testing set is 0.94. The accuracy of the intelligent forecast model for construction project cost in Guangdong Province has been significantly improved after optimization through GA. (2) Based on sensitivity analysis of neural network parameters, the most significant factor affecting the cost of construction projects in Guangdong Province is the number of above-ground floors, followed by the main structure type, foundation structure, above-ground building area, total building area, underground building area, fortification intensity, and building height. The results of parameter sensitivity analysis indicate the direction for cost control in construction projects. The research results of this paper provide theoretical guidance for cost control in construction projects. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

Figure 1
<p>Hierarchical Analysis Structure Diagram.</p>
Full article ">Figure 2
<p>Neural Network Structure.</p>
Full article ">Figure 3
<p>GA Flowchart.</p>
Full article ">Figure 4
<p>GA-BP neural network flowchart.</p>
Full article ">Figure 5
<p>Quantitative Factor Weight Results.</p>
Full article ">Figure 6
<p>Qualitative Factor Weight Results.</p>
Full article ">Figure 7
<p>Comparison between forecasting and actual values in the training set (<span class="html-italic">R</span><sup>2</sup> = 0.84).</p>
Full article ">Figure 8
<p>Comparison between forecasting and actual values in the test set (<span class="html-italic">R</span><sup>2</sup> = 0.87).</p>
Full article ">Figure 9
<p>Comparison between forecasting and actual values in the training set (<span class="html-italic">R</span><sup>2</sup> = 0.90).</p>
Full article ">Figure 10
<p>Comparison between forecasting and actual values in the test set (<span class="html-italic">R</span><sup>2</sup> = 0.94).</p>
Full article ">Figure 11
<p>Bar Chart of Relative Importance of Feature Parameters.</p>
Full article ">
21 pages, 3938 KiB  
Article
Development of Innovative Thermoplastic Foam Materials Using Two Additive Manufacturing Technologies for Application in Evaporative Cooling Systems
by Jesús Castillo-González, Francisco Comino, Roberta Caruana, Manfredo Guilizzoni, Paula Conrat, Manuel Ruiz de Adana and Francisco J. Navas-Martos
Polymers 2024, 16(22), 3190; https://doi.org/10.3390/polym16223190 - 16 Nov 2024
Viewed by 903
Abstract
Evaporative cooling systems have emerged as low-energy consumption alternatives to traditional vapor compression systems for building air conditioning. This study explored the feasibility of utilizing polymeric foamed materials produced through additive manufacturing as wetting materials in evaporative cooling systems. Specifically, two different commercial [...] Read more.
Evaporative cooling systems have emerged as low-energy consumption alternatives to traditional vapor compression systems for building air conditioning. This study explored the feasibility of utilizing polymeric foamed materials produced through additive manufacturing as wetting materials in evaporative cooling systems. Specifically, two different commercial polylactic acid filaments, each containing a percentage of a chemical blowing agent, were studied. Experiments were designed to evaluate the influence of critical process parameters (line width, flow rate, speed, and layer height) on the performance of the resulting foamed materials in terms of evaporative cooling by conducting water absorption, capillarity, porosity, and wettability tests. Considering that high water absorption, capillarity, and porosity, coupled with an intermediate contact angle, are advantageous for evaporative cooling effectiveness, a low flow rate was found to be the most important parameter to improve these properties’ values. The results showed that the appropriate combination of polymer and process parameters allowed the production of foamed polymer-based materials processed by additive manufacturing technology with optimal performance. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p>Schematic representation of a drop (<b>a</b>) on a flat smoot substrate, with the intrinsic Young’s contact angle; (<b>b</b>) on a rough substrate in the Wenzel wetting state, with the apparent Wenzel contact angle; (<b>c</b>) on a rough substrate in the Cassie–Baxter wetting state, with the apparent Cassie–Baxter contact angle.</p>
Full article ">Figure 2
<p>Setup for capillary rise tests.</p>
Full article ">Figure 3
<p>Samples of DW (<b>top</b>) and DB (<b>bottom</b>) manufactured for the water absorption tests.</p>
Full article ">Figure 4
<p>Samples of DW (<b>left</b>) and DB (<b>right</b>) manufactured for the porosity tests.</p>
Full article ">Figure 5
<p>Samples of DW (<b>left</b>) and DB (<b>right</b>) manufactured for the wettability and SEM tests.</p>
Full article ">Figure 6
<p>Influence chart obtained from the statistical analysis of the DOE results.</p>
Full article ">Figure 7
<p>Images showing the macropores of all samples made with the DB and DW materials.</p>
Full article ">Figure 8
<p>Capillarity tests of (<b>a</b>) DW and (<b>b</b>) DB samples.</p>
Full article ">Figure 9
<p>Water absorption test of (<b>a</b>) DW and (<b>b</b>) DB samples.</p>
Full article ">Figure 10
<p>SEM images of samples DW1, DW6, DW7, DB1, DB6, and DB7.</p>
Full article ">Figure 11
<p>(<b>a</b>) DPV and (<b>b</b>) CPV vs. pore width.</p>
Full article ">Figure 12
<p>Results of water vapor adsorption isotherm tests for both foam materials.</p>
Full article ">Figure 13
<p>Boxplot showing the wettability results of all the samples studied: in the direction parallel to printing (//) in blue and perpendicular to printing (<sub>┴</sub>) in red.</p>
Full article ">Figure 14
<p>Images of the resulting drop contours (left contour in red and right contour in yellow), taken in the direction parallel (<b>left</b> picture) and perpendicular (<b>right</b> picture) to printing.</p>
Full article ">
20 pages, 6019 KiB  
Article
Experimental Measurements of Wind Flow Characteristics on an Ellipsoidal Vertical Farm
by Simeng Xie, Pedro Martinez-Vazquez and Charalampos Baniotopoulos
Buildings 2024, 14(11), 3646; https://doi.org/10.3390/buildings14113646 - 16 Nov 2024
Viewed by 402
Abstract
The rise of high-rise vertical farms in cities is helping to mitigate urban constraints on crop production, including land, transportation, and yield requirements. However, separate issues arise regarding energy consumption. The utilisation of wind energy resources in high-rise vertical farms is therefore on [...] Read more.
The rise of high-rise vertical farms in cities is helping to mitigate urban constraints on crop production, including land, transportation, and yield requirements. However, separate issues arise regarding energy consumption. The utilisation of wind energy resources in high-rise vertical farms is therefore on the agenda. In this study, we investigate the aerodynamic performance of an ellipsoidal tall building with large openings to determine, on the one hand, the threshold income wind that could impact human comfort, and on the other, the turbulence intensity at specific locations on the roof and façade where micro-wind turbines could operate. To this end, we calculate the wind pressure coefficient and turbulence intensity of two scale models tested within a wind tunnel facility and compare the results with a separate CFD simulation completed in the past. The results confirm that the wind turbines installed on the building façade at a height of at least z/h = 0.725 can operate properly when the inlet wind speed is greater than 7 m/s. Meanwhile, the wind regime on the roof is more stable, which could yield higher energy harvesting via wind turbines. Furthermore, we observe that the overall aerodynamic performance of the models tested best under wind flowing at angles of 45° and 60° with respect to their centreline, whereas the turbulence at the wind envelope compares to that of the free wind flow at roof height. Full article
(This article belongs to the Special Issue Wind Load Effects on High-Rise and Long-Span Structures: 2nd Edition)
Show Figures

Figure 1

Figure 1
<p>Prototype of vertical farm (<b>a</b>) model A, (<b>b</b>) model B, and (<b>c</b>) computational domain.</p>
Full article ">Figure 2
<p>Wind tunnel test equipment: (<b>a</b>) model A, (<b>b</b>) model B.</p>
Full article ">Figure 3
<p>Distribution of pressure taps on the surface of the vertical farms: (<b>a</b>) model A, (<b>b</b>) model B.</p>
Full article ">Figure 4
<p>(<b>a</b>) Mean wind speed profile and turbulence intensity profile, and (<b>b</b>) longitudinal wind velocity spectrum at the h = 360 mm of the model.</p>
Full article ">Figure 5
<p>Wind speed at different inlet velocities of each test layer in (<b>a</b>) wind tunnel tests and (<b>b</b>) CFD simulations.</p>
Full article ">Figure 6
<p>Comparisons of mean wind pressure coefficients obtained by wind tunnel tests and CFD in different angles.</p>
Full article ">Figure 6 Cont.
<p>Comparisons of mean wind pressure coefficients obtained by wind tunnel tests and CFD in different angles.</p>
Full article ">Figure 7
<p>Turbulence intensity in (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>U</mi> </mrow> </msub> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math> for different inlet wind speeds for each wind angle of vertical farm building roof.</p>
Full article ">Figure 8
<p>(<b>a</b>) Wind speeds at model A Z/H = 1.185 and model B Z/H = 0.725 heights for different inlet wind speeds, and (<b>b</b>) turbulence intensities at z/h = 1.185 and z/h = 0.725 heights when the model is placed in wind tunnel and the free-flow domain.</p>
Full article ">Figure 9
<p>Turbulence intensity of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>U</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>W</mi> </mrow> </msub> </mrow> </semantics></math> in the wind tunnel test at (<b>a</b>) model A z/h = 1.185 and (<b>b</b>) model B z/h = 0.725 heights.</p>
Full article ">Figure 10
<p>The theoretical maximum wind energy of each wind turbine of model A at z/h = 1.185 and model B at z/h = 1.185.</p>
Full article ">
19 pages, 9478 KiB  
Article
Assessment of Health-Oriented Layout and Perceived Density in High-Density Public Residential Areas: A Case Study of Shenzhen
by Guangxun Cui, Menghan Wang, Yue Fan, Fei Xue and Huanhui Chen
Buildings 2024, 14(11), 3626; https://doi.org/10.3390/buildings14113626 - 14 Nov 2024
Viewed by 438
Abstract
Rapid urbanization has intensified public housing development and building density, posing significant challenges to residents’ well-being and urban sustainability. With the population of the Greater Bay Area on the rise, enhancing the spatial quality of public housing is now essential. The study proposed [...] Read more.
Rapid urbanization has intensified public housing development and building density, posing significant challenges to residents’ well-being and urban sustainability. With the population of the Greater Bay Area on the rise, enhancing the spatial quality of public housing is now essential. The study proposed a quantitative framework to evaluate the relationship between the residential design elements and perceived density in high-density public housing neighborhoods. It employed a virtual reality perception experiment to analyze the relationship between significant spatial indicators and perceived density by investigating 16 high-density residential layout models in 3 configurations: Tower-Enclosed, Balanced Slab-Enclosed, and Staggered Slab-Enclosed. The results indicate that: (1) greater building height intensifies perceived density, leading to sensations of overcrowding and discomfort; (2) an increased sky ratio mitigates perceived density, fostering a more open and pleasant environment; (3) recessed residential facades enhance residents’ density perception; and (4) Staggered Slab-Enclosed Layout configurations receive the most favorable evaluations regarding perceived density. The authors attempt to go beyond current regulations to propose tailored solutions for Shenzhen’s high-density context, improving spatial efficiency and residential comfort in future public housing designs. The finding provides scientific evidence to support urban planners and policymakers in developing more resilient and sustainable high-density neighborhoods. Full article
(This article belongs to the Special Issue Urban Wellbeing: The Impact of Spatial Parameters)
Show Figures

Figure 1

Figure 1
<p>Typical cases of public housing in China.: (<b>a</b>) Aerial View of Qiaoxiang Village, Shenzhen (source: from the authors); (<b>b</b>) Site Plan of Qiaoxiang Village, Shenzhen (Map data: Google Earth, ©2020 Maxar Technologies); (<b>c</b>) Aerial View of Longrui Jiayuan, Shenzhen (source: from the authors); (<b>d</b>) Site Plan of Longrui Jia yuan, Shenzhen (Map data: ©2024 Google).</p>
Full article ">Figure 2
<p>Research Framework.</p>
Full article ">Figure 3
<p>Classification of High-Density block-style residential area.</p>
Full article ">Figure 4
<p>Logic of Experimental Model Construction.</p>
Full article ">Figure 5
<p>Experimental Models.</p>
Full article ">Figure 6
<p>VR Scenes of the Experimental Models.</p>
Full article ">Figure 7
<p>VR Scenes of the Experimental Models.</p>
Full article ">Figure 8
<p>Perception Path.</p>
Full article ">Figure 9
<p>Scatter-Box plot of Perceived Density.</p>
Full article ">
33 pages, 16303 KiB  
Article
Influence of Urban Morphologies on the Effective Mean Age of Air at Pedestrian Level and Mass Transport Within Urban Canopy Layer
by Yuanyuan Lin, Mathias Cehlin, Arman Ameen, Mats Sandberg and Marita Wallhagen
Buildings 2024, 14(11), 3591; https://doi.org/10.3390/buildings14113591 - 12 Nov 2024
Viewed by 414
Abstract
This study adapted the mean age of air, a time scale widely utilized in evaluating indoor ventilation, to assess the impact of building layouts on urban ventilation capacity. To distinguish it from its applications in enclosed indoor environments, the adapted index was termed [...] Read more.
This study adapted the mean age of air, a time scale widely utilized in evaluating indoor ventilation, to assess the impact of building layouts on urban ventilation capacity. To distinguish it from its applications in enclosed indoor environments, the adapted index was termed the effective mean age of air (τ¯E). Based on an experimentally validated method, computational fluid dynamic (CFD) simulations were performed for parametric studies on four generic parameters that describe urban morphologies, including building height, building density, and variations in the heights or frontal areas of adjacent buildings. At the breathing level (z = 1.7 m), the results indicated three distinct distribution patterns of insufficiently ventilated areas: within recirculation zones behind buildings, in the downstream sections of the main road, or within recirculation zones near lateral facades. The spatial heterogeneity of ventilation capacity was emphasized through the statistical distributions of τ¯E. In most cases, convective transport dominates the purging process for the whole canopy zone, while turbulent transport prevails for the pedestrian zone. Additionally, comparisons with a reference case simulating an open area highlighted the dual effects of buildings on urban ventilation, notably through the enhanced dilution promoted by the helical flows between buildings. This study also serves as a preliminary CFD practice utilizing τ¯E with the homogenous emission method, and demonstrates its capability for assessing urban ventilation potential in urban planning. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Figure 1
<p>Top-view sketch of the wind tunnel experiment by Brown et al. [<a href="#B39-buildings-14-03591" class="html-bibr">39</a>], with the target region adopted for CFD validation highlighted in red. Notations: <span class="html-italic">B</span> = model width, <span class="html-italic">H</span> = model height, <span class="html-italic">W</span> = model spacing, V1~5 = measurement positions, with corresponding normalized coordinates denoted as <span class="html-italic">n</span> × <span class="html-italic">x</span>/<span class="html-italic">H</span>.</p>
Full article ">Figure 2
<p>Geometries of scaled-up calculation domain and models for validation cases. (<b>a</b>) 3D sketch of the calculation domain, with boundary conditions specified. (<b>b</b>) Top view of the calculation domain. Notations: <span class="html-italic">B</span> = model width, <span class="html-italic">L</span> = model length, W = model spacing, <span class="html-italic">H</span><sub>0</sub> = model height in the reference value as 30 m, <span class="html-italic">x</span><sub>0</sub> and <span class="html-italic">x<sub>t</sub></span> are <span class="html-italic">x</span> coordinates of the starting and ending positions of the built area. Arrows indicate the direction of flow.</p>
Full article ">Figure 3
<p>Three near-wall mesh arrangements for the mesh-independence test, with varying minimum grid spacing near the model edges, denoted as (<b>a</b>) fine mesh, (<b>b</b>) medium mesh, and (<b>c</b>) coarse mesh separately. Model locations are indicated in blue.</p>
Full article ">Figure 4
<p>Vertical profiles in validation cases compared with wind tunnel measurements in [<a href="#B39-buildings-14-03591" class="html-bibr">39</a>]: (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="false"> <mrow> <mi>u</mi> </mrow> <mo>¯</mo> </mover> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> at sampling position V3, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="false"> <mrow> <mi>w</mi> </mrow> <mo>¯</mo> </mover> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> at position V5, and (<b>c</b>) <span class="html-italic">k</span>(<span class="html-italic">z</span>) at position V1.</p>
Full article ">Figure 4 Cont.
<p>Vertical profiles in validation cases compared with wind tunnel measurements in [<a href="#B39-buildings-14-03591" class="html-bibr">39</a>]: (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="false"> <mrow> <mi>u</mi> </mrow> <mo>¯</mo> </mover> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> at sampling position V3, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="false"> <mrow> <mi>w</mi> </mrow> <mo>¯</mo> </mover> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> at position V5, and (<b>c</b>) <span class="html-italic">k</span>(<span class="html-italic">z</span>) at position V1.</p>
Full article ">Figure 5
<p>Sketches of the computational domain for the full-scale base case: (<b>a</b>) 3D view of the computational domain, illustrating its relative position to the model cluster and detailed geometries of cubic building models; (<b>b</b>) top view. Arrows indicate the direction of flow.</p>
Full article ">Figure 6
<p>Sketches of (<b>a</b>) uniform-height cases in group A, (<b>b</b>) cases in group B with varied building densities, (<b>c</b>) cases with variations in height in group C, and (<b>d</b>) cases in group D with varied frontal areas arranged in a staggered pattern, and its top view below.</p>
Full article ">Figure 6 Cont.
<p>Sketches of (<b>a</b>) uniform-height cases in group A, (<b>b</b>) cases in group B with varied building densities, (<b>c</b>) cases with variations in height in group C, and (<b>d</b>) cases in group D with varied frontal areas arranged in a staggered pattern, and its top view below.</p>
Full article ">Figure 7
<p>Sketches of different sections, taking the base case for example. Illustrations of (<b>a</b>) pedestrian zone, (<b>b</b>) canopy zone, and (<b>c</b>) crossroads with their respective inlet, outlet, and roof interfaces stressed. (<b>d</b>) Coverages of main road and crossroads.</p>
Full article ">Figure 7 Cont.
<p>Sketches of different sections, taking the base case for example. Illustrations of (<b>a</b>) pedestrian zone, (<b>b</b>) canopy zone, and (<b>c</b>) crossroads with their respective inlet, outlet, and roof interfaces stressed. (<b>d</b>) Coverages of main road and crossroads.</p>
Full article ">Figure 8
<p>Contours of velocity magnitude with streamlines at the breathing level (<span class="html-italic">z</span> = 1.7 m) for selected representative cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure 9
<p>3D streamlines of selected representative cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure 10
<p>Contours plots of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at the breathing level (<span class="html-italic">z</span> = 1.7 m) for selected representative cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure 11
<p>Box plots of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at the breathing level section within the built area. Subfigures (<b>a</b>–<b>d</b>) are arranged in the order corresponding to case groups A to D. The marks in the box plots are as follows: black dot = average; red line within the box = median; red dots = the 95th percentile; and red crosses = maximum. The upper and lower boundaries of the boxes correspond to the lower quartile (25th percentile) and upper quartile (75th percentile) of each data set, respectively, and whiskers extend up to 1.5 times of the interquartile range (IQR).</p>
Full article ">Figure 11 Cont.
<p>Box plots of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at the breathing level section within the built area. Subfigures (<b>a</b>–<b>d</b>) are arranged in the order corresponding to case groups A to D. The marks in the box plots are as follows: black dot = average; red line within the box = median; red dots = the 95th percentile; and red crosses = maximum. The upper and lower boundaries of the boxes correspond to the lower quartile (25th percentile) and upper quartile (75th percentile) of each data set, respectively, and whiskers extend up to 1.5 times of the interquartile range (IQR).</p>
Full article ">Figure 11 Cont.
<p>Box plots of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at the breathing level section within the built area. Subfigures (<b>a</b>–<b>d</b>) are arranged in the order corresponding to case groups A to D. The marks in the box plots are as follows: black dot = average; red line within the box = median; red dots = the 95th percentile; and red crosses = maximum. The upper and lower boundaries of the boxes correspond to the lower quartile (25th percentile) and upper quartile (75th percentile) of each data set, respectively, and whiskers extend up to 1.5 times of the interquartile range (IQR).</p>
Full article ">Figure 12
<p>Horizontal profiles of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> along the main road at breathing level for each case, presented in order by group. Subfigures (<b>a</b>–<b>d</b>) are arranged in the order corresponding to case groups A to D.</p>
Full article ">Figure 13
<p>The average <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at breathing level for each crossroad, categorized by groups. Subfigures (<b>a</b>–<b>d</b>) are arranged in the order corresponding to case groups A to D.</p>
Full article ">Figure 14
<p>Contribution fractions of normalized convective (<span class="html-italic">F<sub>m</sub></span>) and turbulent transport rate (<span class="html-italic">F<sub>t</sub></span>) for the canopy zone of cases in (<b>a</b>) group A with three different incoming flow velocities, and (<b>b</b>–<b>d</b>) showing the other cases in group order.</p>
Full article ">Figure 15
<p>Contribution fractions of normalized convective (<span class="html-italic">F<sub>m</sub></span>) and turbulent transport rate (<span class="html-italic">F<sub>t</sub></span>) for the pedestrian zone of cases in (<b>a</b>) group A with three different incoming flow velocities, and (<b>b</b>–<b>d</b>) showing the other cases in group order.</p>
Full article ">Figure 16
<p>(<b>a</b>) Contour of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at the breathing level of empty case with <span class="html-italic">U</span><sub>0</sub> = 3 m/s; (<b>b</b>) contours of normalized age of air index for base case with three different coming flow velocities.</p>
Full article ">Figure A1
<p>Contours of velocity magnitude with streamlines at the breathing level (<span class="html-italic">z</span> = 1.7 m) for all cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure A1 Cont.
<p>Contours of velocity magnitude with streamlines at the breathing level (<span class="html-italic">z</span> = 1.7 m) for all cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure A1 Cont.
<p>Contours of velocity magnitude with streamlines at the breathing level (<span class="html-italic">z</span> = 1.7 m) for all cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure A1 Cont.
<p>Contours of velocity magnitude with streamlines at the breathing level (<span class="html-italic">z</span> = 1.7 m) for all cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure A2
<p>Contours plots of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at the breathing level (<span class="html-italic">z</span> = 1.7 m) for all cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure A2 Cont.
<p>Contours plots of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at the breathing level (<span class="html-italic">z</span> = 1.7 m) for all cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">Figure A2 Cont.
<p>Contours plots of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>τ</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi>E</mi> </mrow> </msub> </mrow> </semantics></math> at the breathing level (<span class="html-italic">z</span> = 1.7 m) for all cases. The case name for each subfigure is provided in the upper-left corner.</p>
Full article ">
20 pages, 10246 KiB  
Article
Investigation into the Mechanism of the Impact of Sunlight Exposure Area of Urban Artificial Structures and Human Activities on Land Surface Temperature Based on Point of Interest Data
by Yuchen Wang, Yu Zhang and Nan Ding
Land 2024, 13(11), 1879; https://doi.org/10.3390/land13111879 - 10 Nov 2024
Viewed by 524
Abstract
With rapid urbanization, the urban heat island (UHI) effect has intensified, posing challenges to human health and ecosystems. This study explores the impact of sunlight exposure areas of artificial structures and human activities on land surface temperature (LST) in Hefei and Xuzhou, using [...] Read more.
With rapid urbanization, the urban heat island (UHI) effect has intensified, posing challenges to human health and ecosystems. This study explores the impact of sunlight exposure areas of artificial structures and human activities on land surface temperature (LST) in Hefei and Xuzhou, using Landsat 9 data, Google imagery, nighttime light data, and Point of Interest (POI) data. Building shadow distributions and urban road surface areas were derived, and geospatial analysis methods were applied to assess their impact on LST. The results indicate that the sunlight exposure areas of roofs and roads are the primary factors affecting LST, with a more pronounced effect in Xuzhou, while anthropogenic heat plays a more prominent role in Hefei. The influence of sunlight exposure on building facades is relatively weak, and population density shows a limited impact on LST. The geographical detector model reveals that interactions between roof and road sunlight exposure and anthropogenic heat are key drivers of LST increases. Based on these findings, urban planning should focus on optimizing building layouts and heights, enhancing greening on roofs and roads, and reducing the sunlight exposure areas of artificial structures. Additionally, strategically utilizing building shadows and minimizing anthropogenic heat emissions can help lower local temperatures and improve the urban thermal environment. Full article
(This article belongs to the Special Issue Geospatial Data in Land Suitability Assessment: 2nd Edition)
Show Figures

Figure 1

Figure 1
<p>Geographical location and land cover of the study areas: (<b>a</b>) location of Anhui and Jiangsu in China; (<b>b</b>) location and land cover of Hefei’s built-up area; and (<b>c</b>) location and land cover of Xuzhou’s built-up area.</p>
Full article ">Figure 2
<p>POI data for (<b>a</b>,<b>d</b>) buildings, roads, and (<b>b</b>,<b>e</b>) real-time population distribution, along with (<b>c</b>,<b>f</b>) NTL imagery for Hefei and Xuzhou.</p>
Full article ">Figure 3
<p>(<b>a</b>) The relationship between the spatial distribution of building shadows and solar illumination; (<b>b</b>) solar azimuth and solar elevation angle.</p>
Full article ">Figure 4
<p>Methodology flow for extracting sunlight exposure area of artificial structures.</p>
Full article ">Figure 5
<p>(<b>a</b>) Building roof sunlight exposure area extraction; (<b>b</b>) sunlit building facade sunlight exposure area extraction; (<b>c</b>) road sunlight exposure area extraction.</p>
Full article ">Figure 6
<p>LST inversion results of (<b>a</b>) Hefei and (<b>b</b>) Xuzhou with 300 × 300 m grids.</p>
Full article ">Figure 7
<p>Spatial distribution map of all influencing factors on 300 × 300 m grids in Hefei and Xuzhou.</p>
Full article ">Figure 8
<p>The matrix scatter plot between LST and each impact factor: (<b>a</b>) Hefei and (<b>b</b>) Xuzhou.</p>
Full article ">Figure 9
<p>Moran’s I and LISA results for the spatial correlation between LST and influencing factors in Hefei and Xuzhou.</p>
Full article ">Figure 10
<p>Interaction detection results for LST and influencing factors: (<b>a</b>) Hefei, (<b>b</b>) Xuzhou.</p>
Full article ">
25 pages, 14877 KiB  
Technical Note
Open-Source Software for Building-Integrated Photovoltaic Tiling for Novelty Architecture
by Alexander W. H. Chin, Koami Soulemane Hayibo and Joshua M. Pearce
Designs 2024, 8(6), 118; https://doi.org/10.3390/designs8060118 - 10 Nov 2024
Viewed by 469
Abstract
Novelty architecture buildings can be tiled with conventional rectangular solar photovoltaic (PV) modules with both close-packed cells or partially transparent modules, vastly increasing renewable energy, reducing carbon emissions, and allowing for positive energy buildings. To enable this potential, in this study, for the [...] Read more.
Novelty architecture buildings can be tiled with conventional rectangular solar photovoltaic (PV) modules with both close-packed cells or partially transparent modules, vastly increasing renewable energy, reducing carbon emissions, and allowing for positive energy buildings. To enable this potential, in this study, for the first time, two open-source programs were developed and integrated to provide a foundation for designing and coating real-life novelty architecture buildings and objects with solar PV modules. First, a tiling algorithm was proposed and integrated into Blender that can generate solar PV modules on the face of any 3D model, and an augmented Python version of SAM was developed to simulate the performance of the resultant irregularly shaped PV systems. The integrated open-source software was used to analyze the energy performance of seven different novelty BIPVs located across the globe. The buildings’ energy performance was compared to conventional ground-based PV systems, and the results showed that the conventional arrays generate more energy per unit power than the BIPVs. The analysis reveals that the more complex the building model geometry, the less energy the building generates; however, the novelty BIPV power and energy densities far surpass conventional ground-based PV. The real estate savings observed were substantial, reaching 170% in one case where the BIPV reached 750 m in height. The BIPVs’ energy production is optimized by orienting the building via rotation and only needs to be carried out a single time for replication anywhere globally. The results show that the energy yield of the BIPV increases as the building becomes more detailed while the total power and energy decrease, indicating the need for the careful balancing of priorities in building design. Finally, the energy simulations demonstrate the potential for net-positive energy buildings and contribute to net-zero-emission cities. The findings indicate that BIPVs are not only appropriate for conventional residential houses and commercial buildings, but also for historical building replicas or monuments in the future. Further studies are needed to investigate the structural, electrical, and socio-economic aspects of novelty-architecture BIPVs. Full article
(This article belongs to the Topic Net Zero Energy and Zero Emission Buildings)
Show Figures

Figure 1

Figure 1
<p>STL models of the seven buildings architecture considered in this study. (<b>a</b>) The Thinker. (<b>b</b>) The Winged Victory of Samothrace. (<b>c</b>) The Colossus of Rhodes. (<b>d</b>) The Stanford Bunny. (<b>e</b>) The Tree. (<b>f</b>) The Inunnguaq. (<b>g</b>) The Pyramid.</p>
Full article ">Figure 2
<p>Rectangular overlay to determine the ground footprint (gray rectangle) of the novelty architecture BIPV, example of The Thinker model. (<b>a</b>) Side view. (<b>b</b>) Top view.</p>
Full article ">Figure 3
<p>Diagram of the PV layout used to estimate the ground footprint of the GPV.</p>
Full article ">Figure 4
<p>Rendering of The Thinker model design with tiled PV in different types of cities. (<b>a</b>) Fictional modern city. (<b>b</b>) Fictional futuristic city.</p>
Full article ">Figure 5
<p>Basic architectural render of some building models showing PV tiling in a location close to their cultural heritage. (<b>a</b>) Bunny in Stanford University, Stanford, CA, USA. (<b>b</b>) Inunnguaq near Roundhouse in Toronto, ON, Canada. (<b>c</b>) Colossus straddling the harbor in Rhodes, Greece. (<b>d</b>) Winged Angel of Samothrace on top of a hill near Athens, Greece.</p>
Full article ">Figure 6
<p>Rendering of the outside and inside of the Tree and Pyramid models tiled with semitransparent BIPV. (<b>a</b>) Tree model in downtown Vancouver, BC, Canada. (<b>b</b>) Pyramid model in Stanford University, Stanford, CA, USA. (<b>c</b>) Inside view of the pyramid model looking towards the Bunny.</p>
Full article ">Figure 7
<p>Sample simulation results showing the faces that generate the most energy per unit area (MWh/m<sup>2</sup>) in the optimal azimuth orientation of the Bunny model. (<b>a</b>) Treemap plot showing all faces with the energy density. (<b>b</b>) Front view of the Bunny model showing the faces with the energy density. (<b>c</b>) Side view of the Bunny model showing the faces with the energy density.</p>
Full article ">Figure 8
<p>Azimuth (°) dependency of the annual energy yield (MWh/MW) of the BIPVs simulated in London, ON, Canada. The azimuth of Face 0 of each building was used as the reference angle.</p>
Full article ">Figure 9
<p>Comparison of the polygon decimation impact on energy yield, the number of faces, and the appearance of The Thinker building model. (<b>a</b>) Energy yield (MWh/MW) plot for three different decimations with an azimuth optimization. On the right, the energy yield (MWh/MW) of each face is represented on a treemap plot with the corresponding building appearance. (<b>b</b>) Medium decimation (higher resolution). (<b>c</b>) Low decimation. (<b>d</b>) Extremely Low decimation (lower resolution).</p>
Full article ">Figure 10
<p>BIPV power density (MW/m<sup>2</sup>) as a function of building height (m) showing the comparison to real-world modern building heights.</p>
Full article ">Figure 11
<p>Representative Mitrex façade prints on PV modules: (<b>a</b>) marble, (<b>b</b>) sandstone, (<b>c</b>) granite, (<b>d</b>) slate, (<b>e</b>) wood, (<b>f</b>) brick, (<b>g</b>) metal, and (<b>h</b>) solid colors.</p>
Full article ">Figure 12
<p>Pyramid rendering using marble solar facing.</p>
Full article ">Figure A1
<p>The ray sections within the polygon start with an odd number of intersections and end with an even number of intersections [<a href="#B66-designs-08-00118" class="html-bibr">66</a>].</p>
Full article ">
16 pages, 2285 KiB  
Article
Numerical Investigations on the Enhancement of Convective Heat Transfer in Fast-Firing Brick Kilns
by Julian Unterluggauer, Manuel Schieder, Stefan Gutschka, Stefan Puskas, Stefan Vogt and Bernhard Streibl
Energies 2024, 17(22), 5617; https://doi.org/10.3390/en17225617 - 10 Nov 2024
Viewed by 459
Abstract
In order to reduce CO2 emissions in the brick manufacturing process, the effectiveness of the energy-intensive firing process needs to be improved. This can be achieved by enhancing the heat transfer in order to reduce firing times. As a result, current development [...] Read more.
In order to reduce CO2 emissions in the brick manufacturing process, the effectiveness of the energy-intensive firing process needs to be improved. This can be achieved by enhancing the heat transfer in order to reduce firing times. As a result, current development of tunnel kilns is oriented toward fast firing as a long-term goal. However, a struggling building sector and complicated challenges, such as different requirements for product quality, have impeded developments in this direction. This creates potential for the further development of oven designs, such as improved airflow through the kiln. In this article, numerical flow simulations are used to investigate two different reconstruction measures and compare them to the initial setup. In the first measure, the kiln height is reduced, while in the second measure, the kiln cars are adjusted to alternate the height of the bricks so that every other pair of bricks is elevated, creating a staggered arrangement. Both measures are investigated to determine the effect on the heating rate compared to the initial configuration. A transient grid independence study is performed, ensuring numerical convergence and the setup is validated by experimental results from measurements on the initial kiln configuration. The simulations show that lowering the kiln height improves the heat transfer rate by 40%, while the staggered arrangement of the bricks triples it. This leads to an average brick temperature after two hours which is around 130 °C higher compared to the initial kiln configuration. Therefore, the firing time can be significantly reduced. However, the average pressure loss coefficient rises by 70% to 90%, respectively, in the staggered configuration. Full article
(This article belongs to the Special Issue Advanced Simulation of Turbulent Flows and Heat Transfer)
Show Figures

Figure 1

Figure 1
<p>Schematic drawing of a fast-firing kiln.</p>
Full article ">Figure 2
<p>Three different brick settings—(<b>a</b>) big setup, (<b>b</b>) small setup, and (<b>c</b>) offset setup—and (<b>d</b>) the brick dimensions.</p>
Full article ">Figure 3
<p>Computational domain of the offset setup (blue—inlet; red—outlet; grey—walls; yellow—evaluation plane).</p>
Full article ">Figure 4
<p>Velocity profiles for the (<b>a</b>) large setup, (<b>b</b>) small setup, and (<b>c</b>) offset setup.</p>
Full article ">Figure 5
<p>Transient behavior of the mesh based on (<b>a</b>) R (<b>b</b>) GCI and (<b>c</b>) <math display="inline"><semantics> <mo>Φ</mo> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>) Position of the temperature sensor and (<b>b</b>) simulated and measured brick and air temperature in the cooling and heating zones.</p>
Full article ">Figure 7
<p>Comparison of the brick temperatures after (<b>a</b>) 3000 s; (<b>b</b>) 16,200 s; (<b>c</b>) 12,000 s.</p>
Full article ">Figure 8
<p>Comparison of the brick temperature between three different setups.</p>
Full article ">Figure 9
<p>Temperature plot at 2000 s for the (<b>a</b>) big, (<b>b</b>) small, and (<b>c</b>) offset setups.</p>
Full article ">Figure 10
<p>Velocity plot at 5000 s for the (<b>a</b>) big, (<b>b</b>) small, and (<b>c</b>) offset setups.</p>
Full article ">Figure 11
<p>(<b>a</b>) Heat transfer coefficient <math display="inline"><semantics> <mi>α</mi> </semantics></math> of the fourth brick and the (<b>b</b>) pressure loss coefficient <math display="inline"><semantics> <mi>ζ</mi> </semantics></math> for four bricks during the heating process.</p>
Full article ">Figure 12
<p>Comparison between the big and offset setups in terms of air temperature ramp based on measurements.</p>
Full article ">Figure 13
<p>Convectional and radiative heat transfer.</p>
Full article ">Figure 14
<p>Temperature spread in the brick <math display="inline"><semantics> <mrow> <mo>Δ</mo> </mrow> </semantics></math>T and average temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mi>v</mi> <mi>e</mi> </mrow> </msub> </semantics></math> from the big setup compared to those of the offset setup, with the air temperature ramp based on measurements.</p>
Full article ">
15 pages, 4236 KiB  
Article
Automated Estimation of Building Heights with ICESat-2 and GEDI LiDAR Altimeter and Building Footprints: The Case of New York City and Los Angeles
by Yunus Kaya
Buildings 2024, 14(11), 3571; https://doi.org/10.3390/buildings14113571 - 9 Nov 2024
Viewed by 761
Abstract
Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) [...] Read more.
Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) cadastral data, ground measurements (total station, Global Positioning System (GPS), ground laser scanning) and air-based (such as Unmanned Aerial Vehicle—UAV) measurement methods are used to determine building heights, more comprehensive and advanced techniques need to be used in large-scale studies, such as in cities or countries. Although satellite-based altimetry data, such as Ice, Cloud and land Elevation Satellite (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI), provide important information on building heights due to their high vertical accuracy, it is often difficult to distinguish between building photons and other objects. To overcome this challenge, a self-adaptive method with minimal data is proposed. Using building photons from ICESat-2 and GEDI data and building footprints from the New York City (NYC) and Los Angeles (LA) open data platform, the heights of 50,654 buildings in NYC and 84,045 buildings in LA were estimated. As a result of the study, root mean square error (RMSE) 8.28 m and mean absolute error (MAE) 6.24 m were obtained for NYC. In addition, 46% of the buildings had an RMSE of less than 5 m and 7% less than 1 m. In LA data, the RMSE and MAE were 6.42 m and 4.66 m, respectively. It was less than 5 m in 67% of the buildings and less than 1 m in 7%. However, ICESat-2 data had a better RMSE than GEDI data. Nevertheless, combining the two data provided the advantage of detecting more building heights. This study highlights the importance of using minimum data for determining urban-scale building heights. Moreover, continuous monitoring of urban alterations using satellite altimetry data would provide more effective energy consumption assessment and management. Full article
Show Figures

Figure 1

Figure 1
<p>Study area map. The red line represents the path of ICESat-2. The green grid represents the path of GEDI.</p>
Full article ">Figure 2
<p>The flow chart of the study.</p>
Full article ">Figure 3
<p>Accuracy of building height estimation: (<b>a</b>–<b>c</b>) show the accuracy of ICESat-2, GEDI and combined data for NYC, respectively; (<b>d</b>–<b>f</b>) show the accuracy of ICESat-2, GEDI, and combined data for LA, respectively.</p>
Full article ">Figure 4
<p>Number of buildings estimated with different RMSE values for NYC (<b>left</b>) and LA (<b>right</b>).</p>
Full article ">Figure 5
<p>RMSE values of buildings of different heights and their proportions to the total number of buildings.</p>
Full article ">Figure 6
<p>Photon counts and RMSE values used to estimate building height.</p>
Full article ">
16 pages, 8383 KiB  
Article
Monitoring of Overburden Failure with a Large Fractured-Height Working Face in a Deep Jurassic Coal Seam Based on the Electric Method
by Rongxin Wu, Yuze Wu, Binyang Sun, Guanqun Zhou and Leilei Zheng
Appl. Sci. 2024, 14(22), 10293; https://doi.org/10.3390/app142210293 - 8 Nov 2024
Viewed by 413
Abstract
The development height of a water-flowing fractured zone is the key parameter to consider when carrying out mining under water pressure and coal mining with water conservation. In this paper, Jurassic coal seam 3-1 in the Menkeqing Coal Mine was taken as the [...] Read more.
The development height of a water-flowing fractured zone is the key parameter to consider when carrying out mining under water pressure and coal mining with water conservation. In this paper, Jurassic coal seam 3-1 in the Menkeqing Coal Mine was taken as the research target, and a three-dimensional mining geological model was established by using FLAC3D to study the deformation and failure rules of overburden. Three roof boreholes were drilled in the auxiliary transportation roadway of adjacent working faces for dynamic monitoring by the resistivity method, which can better observe the whole process from failure to stability of the overburden. The results show that due to the complex sedimentary environment and large buried depth of coal seams in western China, there is a large deviation between the calculation results of the empirical formula of the fractured zone height under the “Regulations of buildings, water, railway and main well lane leaving coal pillar and press coal mining” (three regulations) and the simulation and on-site measurement. Based on the comprehensive analysis, the influence range of mining advance abutment pressure is approximately 60 m. The height of the water-flowing fractured zone is approximately 106 m, and it is located at the interface between sandy mudstone and mudstone. The height of the caving zone is approximately 22 m, and it is located at the interface between fine sandstone and medium sandstone. The ratio of the fractured height and coal seam thickness (Rf) reached 24.4, which was basically consistent with the test result of the adjacent Yushenfu mining area (which was 26 on average). There is no obvious change in the development height of the caving zone and water-flowing fracture zone from the working face to the drilling borehole position of more than 120 m, which reflects that the height of the overburden failure zone is related to the control of lithological combination. Full article
Show Figures

Figure 1

Figure 1
<p>Geographical location and geological profile of the study area. (<b>a</b>) Geographical location; (<b>b</b>) Geologic profile.</p>
Full article ">Figure 2
<p>Schematic diagram of the rock mechanical loading test (compressive strength test).</p>
Full article ">Figure 3
<p>Schematic diagram of 3D numerical model.</p>
Full article ">Figure 4
<p>Profile of working face maximum principal stress. (<b>a</b>) Excavation 20 m, (<b>b</b>) Excavation 100 m, (<b>c</b>) Excavation 160 m, (<b>d</b>) Excavation 200 m.</p>
Full article ">Figure 5
<p>Profile of working face plastic zone. (<b>a</b>) Excavation 20 m, (<b>b</b>) Excavation 100 m, (<b>c</b>) Excavation 200 m.</p>
Full article ">Figure 6
<p>Schematic diagram of observation system layout.</p>
Full article ">Figure 7
<p>Monitoring cycle data collection and recording.</p>
Full article ">Figure 8
<p>Borehole #1’s resistivity background imaging profile.</p>
Full article ">Figure 9
<p>Resistivity inversion profile of the working face in front of the orifice.</p>
Full article ">Figure 10
<p>Resistivity inversion profile of the working face behind the orifice.</p>
Full article ">Figure 11
<p>Cross-borehole resistivity imaging profile.</p>
Full article ">Figure 11 Cont.
<p>Cross-borehole resistivity imaging profile.</p>
Full article ">
Back to TopTop