A Learned-SVD Approach to the Electromagnetic Inverse Source Problem
<p>Geometry of the inverse source problem.</p> "> Figure 2
<p>The L-SVD reconstruction approach and its parallelism with SVD.</p> "> Figure 3
<p>Representation of the L-SVD reconstruction strategy. The upper horizontal path refers to dAE, which takes noisy data in the input and provides denoised data as the output. The lower horizontal path represents the sAE, which reconstructs the ground truth from the originating source. The green path refers to the reconstruction path via the Σ network connecting the data and source latent spaces.</p> "> Figure 4
<p>Normalized singular values (dB) of the operator matrix <math display="inline"><semantics> <mrow> <munder accentunder="true"> <munder accentunder="true"> <mi mathvariant="bold-italic">A</mi> <mo stretchy="true">_</mo> </munder> <mo stretchy="true">_</mo> </munder> </mrow> </semantics></math>.</p> "> Figure 5
<p>MLP architecture of the dAE.</p> "> Figure 6
<p>MLP architecture of the sAE.</p> "> Figure 7
<p>MLP architecture of the <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> network.</p> "> Figure 8
<p>Two representative examples randomly selected in the test dataset, with SNR = 30 dB, showing the magnitude of inputs, outputs, and ground truth data for dAE.</p> "> Figure 9
<p>Two representative examples randomly selected in the test dataset, with SNR = 30 dB, showing the magnitude of the true source (input) and the one reconstructed via sAE (output). The current sources shown in the graphs are the ones generating the radiated fields in <a href="#sensors-24-04496-f008" class="html-fig">Figure 8</a>.</p> "> Figure 10
<p>Two representative examples randomly selected in the test dataset, with SNR = 30 dB, showing the amplitude of the true source and those retrieved via TSVD and L-SVD. The true sources in the graphs are those previously shown in the examples of <a href="#sensors-24-04496-f009" class="html-fig">Figure 9</a>.</p> "> Figure 11
<p>Illustrating the missing additivity property of linearity for L-SVD.</p> "> Figure 12
<p>Illustrating the missing homogeneity property of linearity for L-SVD.</p> ">
Abstract
:1. Introduction
2. Inverse-Source Formulation for TSVD
3. L-SVD Reconstruction Approach
3.1. Mathematical Formulation
- Encoding the data via the encoder to produce the latent code analogously to the product of the SVD approach;
- Connecting the latent codes and through the operator, which mimics the SVD computation of ;
- Decoding the latent code with the decoder which corresponds to the final left multiplication by in the SVD.
3.2. A Test Case and Dataset Generation
3.3. The TSVD Approach for the Considered Test Case
3.4. Network Traning and Architecture
3.5. Performance Metric
4. Numerical Results
4.1. Performance of the dAE
4.2. Performance of the sAE
4.3. Performance of the Σ Network
4.4. Performance of the Full L-SVD Network
4.5. Robustness of Noise in Data
5. Discussion: Relevance of the Results and Potentials and Limitations of L-SVD
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chew, W.; Wang, Y.; Otto, G.; Lesselier, D.; Bolomey, J. On the inverse source method of solving inverse scattering problems. Inv. Probl. 1994, 10, 547–553. [Google Scholar] [CrossRef]
- Pastorino, M. Microwave Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Bertero, M.; Boccacci, P.; De Mol, C. Introduction to Inverse Problems in Imaging; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Devaney, A.; Sherman, G. Nonuniqueness in inverse source and scattering problems. IEEE Trans. Antennas Propag. 1982, 30, 1034–1037. [Google Scholar] [CrossRef]
- Tikhonov, A.N. Solution of incorrectly formulated problems and the regularization method. Sov Dok 1963, 4, 1035–1038. [Google Scholar]
- Pierri, R.; Soldovieri, F. On the information content of the radiated fields in the near zone over bounded domains. Inverse Probl. 1998, 14, 321. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Soldovieri, F.; Solimene, R.; Monte, L.L.; Bavusi, M.; Loperte, A. Sparse reconstruction from GPR data with applications to rebar detection. IEEE Trans. Instrum. Meas. 2010, 60, 1070–1079. [Google Scholar] [CrossRef]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Springer Science & Business Media: Berlin, Germany, 1996; Volume 375. [Google Scholar]
- Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [Google Scholar] [CrossRef] [PubMed]
- McCann, M.T.; Jin, K.H.; Unser, M. Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal Process. Mag. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Lucas, A.; Iliadis, M.; Molina, R.; Katsaggelos, A.K. Using deep neural networks for inverse problems in imaging: Beyond analytical methods. IEEE Signal Process. Mag. 2018, 35, 20–36. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, X. Deep-learning schemes for full-wave nonlinear inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1849–1860. [Google Scholar] [CrossRef]
- Ongie, G.; Jalal, A.; Metzler, C.A.; Baraniuk, R.G.; Dimakis, A.G.; Willett, R. Deep learning techniques for inverse problems in imaging. IEEE J. Sel. Areas Inf. Theory 2020, 1, 39–56. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.G.; Teixeira, F.L.; Liu, C.; Nehorai, A.; Cui, T.J. DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering. IEEE Trans. Antennas Propag. 2018, 67, 1819–1825. [Google Scholar] [CrossRef]
- Sanghvi, Y.; Kalepu, Y.; Khankhoje, U.K. Embedding deep learning in inverse scattering problems. IEEE Trans. Comput. Imaging 2019, 6, 46–56. [Google Scholar] [CrossRef]
- Yao, H.M.; Wei, E.I.; Jiang, L. Two-step enhanced deep learning approach for electromagnetic inverse scattering problems. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2254–2258. [Google Scholar] [CrossRef]
- Chen, X.; Wei, Z.; Maokun, L.; Rocca, P. A review of deep learning approaches for inverse scattering problems. Progr. Electromagn. Res. 2020, 167, 67–81. [Google Scholar] [CrossRef]
- Yin, T.; Tan, K.; Chen, X. Far-field approximation learning method for millimeter-wave short-range imaging. IEEE Trans. Antennas Propag. 2023, 71, 3441–3449. [Google Scholar] [CrossRef]
- Salucci, M.; Arrebola, M.; Shan, T.; Li, M. Artificial intelligence: New frontiers in real-time inverse scattering and electromagnetic imaging. IEEE Trans. Antennas Propag. 2022, 70, 6349–6364. [Google Scholar] [CrossRef]
- Campbell, S.D.; Jenkins, R.P.; O’Connor, P.J.; Werner, D. The explosion of artificial intelligence in antennas and propagation: How deep learning is advancing our state of the art. IEEE Antennas Propag. Mag. 2020, 63, 16–27. [Google Scholar] [CrossRef]
- Huang, C.; He, R.; Ai, B.; Molisch, A.F.; Lau, B.K.; Haneda, K.; Liu, B.; Wang, C.X.; Yang, O.; Oesteges, C.; et al. Artificial intelligence enabled radio propagation for communications—Part I: Channel characterization and antenna-channel optimization. IEEE Trans. Antennas Propag. 2022, 70, 3939–3954. [Google Scholar] [CrossRef]
- Huang, C.; He, R.; Ai, B.; Molisch, A.F.; Lau, B.K.; Haneda, K.; Liu, B.; Wang, C.X.; Yang, O.; Oesteges, C.; et al. Artificial intelligence enabled radio propagation for communications—Part II: Scenario identification and channel modeling. IEEE Trans. Antennas Propag. 2022, 70, 3955–3969. [Google Scholar] [CrossRef]
- Andriulli, F.; Chen, P.Y.; Erricolo, D.; Jin, J.M. Guest editorial machine learning in antenna design, modeling, and measurements. IEEE Trans. Antennas Propag. 2022, 70, 4948–4952. [Google Scholar] [CrossRef]
- Patnaik, A.; Choudhury, B.; Pradhan, P.; Mishra, R.K.; Christodoulou, C. An ANN application for fault finding in antenna arrays. IEEE Trans. Antennas Propag. 2007, 55, 775–777. [Google Scholar] [CrossRef]
- D’Ambrosio, G. Performance Analysis of Non-Conventional Approaches for Electromagnetic Inverse Source. Laurea Degree Thesis, Università di Napoli Federico II, Naples, Italy, 2021/2022. [Google Scholar]
- Cinotti, E. Autoencoder for Electromagnetic Inverse Source. Laurea degree Thesis, Università di Napoli Federico II, Naples, Italy, 2021/2022. [Google Scholar]
- Boink, Y.; Brune, C. Learned SVD: Solving inverse problems via hybrid autoencoding. arXiv 2019, arXiv:1912.10840. [Google Scholar]
- Benefenati, A.; Bisazza, G.; Causin, P. A Learned-SVD approach for regularization diffuse optical tomography. arXiv 2021, arXiv:2111.13401. [Google Scholar]
- Capozzoli, A.; Catapano, I.; Curcio, C.; D’Ambrosio, G.; Esposito, G.; Gennarelli, G.; Liseno, A.; Ludeno, G.; Soldovieri, F. Resolution-enhanced electromagnetic inverse source: A deep learning approach. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2812–2816. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Shi, L.; Gamba, P.; Wang, H. Dynamic low-rank and sparse priors constrained deep autoencoders for hyperspectral anomaly detection. IEEE Trans. Instrum. Meas. 2024, 73, 2500518. [Google Scholar] [CrossRef]
- Su, H.; Wu, Z.; Du, Q.; Du, P. Hyperspectral anomaly detection using collaborative representation with outlier removal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 5029–5038. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Li, Y.; Wang, H. Deep self-representation learning framework for hyperspectral anomaly detection. IEEE Trans. Instrum. Meas. 2024, 73, 5002016. [Google Scholar] [CrossRef]
- Leone, G.; Munno, F.; Pierri, R. Inverse source on conformal conic geometries. IEEE Trans. Antennas Propag. 2020, 69, 1596–1609. [Google Scholar] [CrossRef]
- Capozzoli, A.; Curcio, C.; Liseno, A. Different metrics for singular value optimization in near-field antenna characterization. Sensor 2021, 21, 2122. [Google Scholar] [CrossRef]
- Jørgensen, E.; Meincke, P.; Cappellin, C.; Sabbadini, M. Improved source reconstruction technique for antenna diagnostics. In Proceedings of the 32nd ESA Antenna Workshop on Antennas for Space Applications Digest, Noordwijk, The Netherlands, 5–8 October 2010; pp. 1–7. [Google Scholar]
- Gennarelli, G.; Al Khatib, O.; Soldovieri, F. Inverse source data-processing strategies for radio-frequency localization in indoor environments. Sensors 2017, 17, 2469. [Google Scholar] [CrossRef] [PubMed]
- Gennarelli, G.; Solimene, R.; Soldovieri, F.; Amin, M.G. Three-dimensional through-wall sensing of moving targets using passive multistatic radars. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 141–148. [Google Scholar] [CrossRef]
- Mukanova, B.G.; Isakov, V.T.; Kembay, A.S.; Boranbaev, S.A. Inverse source identification problem for the wave equation: An application for interpreting GPR data. Eurasian J. Math. Comput. Appl. 2020, 8, 78–91. [Google Scholar]
- Harrington, R.F. Time-Harmonic Electromagnetic Fields; IEEE Press: New York, NY, USA, 2001. [Google Scholar]
- Slepian, D.; Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 1961, 40, 43–63. [Google Scholar] [CrossRef]
- Landau, H.J.; Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 1961, 40, 65–84. [Google Scholar] [CrossRef]
- Gori, F. Effects of coherence in inverse optics. Inverse Problems in Scattering and Imaging; Bertero, M., Pike, R., Eds.; Hilger: Bristol, UK, 1992; pp. 204–227. [Google Scholar]
- Harrington, R.F.; Harrington, J.L. Field Computation by Moment Methods; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991. [Google Scholar]
- Theis, L.; Shi, W.; Cunningham, A.; Huszár, F. Lossy image compression with compressive autoencoders. arXiv 2017, arXiv:1703.00395. [Google Scholar]
- Fornaro, G.; Serafino, F.; Soldovieri, F. Three-dimensional focusing with multipass SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 507–517. [Google Scholar] [CrossRef]
- Hansen, P.C.; O’Leary, D.P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 1993, 14, 1487–1503. [Google Scholar] [CrossRef]
- Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [Google Scholar] [CrossRef]
- Bin, D.; Qian, H.; Zhou, J. Activation functions and their characteristics in deep neural networks. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018. [Google Scholar]
- Chollet, F. Building autoencoders in keras. The Keras Blog 2016, 14. Available online: https://blog.keras.io/building-autoencoders-in-keras.html (accessed on 10 April 2024).
- Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Ahmed, S.S. Microwave imaging in security—Two decades of innovation. IEEE J. Microw. 2021, 1, 191–201. [Google Scholar] [CrossRef]
- Sera, T. Computed Tomography. In Transparency in Biology; Soga, K., Umezawa, M., Okubo, K., Eds.; Springer Nature: Singapore, 2021. [Google Scholar]
- Nayak, K.S.; Lim, Y.; Campbell-Washburn, A.E.; Steeden, J. Real-time magnetic resonance imaging. J. Magn. Res. Imaging 2022, 55, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, T.K.; Salazar-Palma, M.; Zhu, M.D.; Chen, H. Deconvolving measured electromagnetic responses. In Modern Characterization of Electromagnetic Systems and its Associated Metrology; IEEE Press: New York, NY, USA, 2021; pp. 491–518. [Google Scholar]
- Zhang, Z.; Yezzi, A.J.; Gallego, G. Formulating event-based image reconstruction as a linear inverse problem with deep regularization using optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 8372–8389. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Fu, L.Y.; Pan, W.; Li, Q.; Huang, J. Optimized pseudo-Padé Fourier migrator in terms of propagation angles. IEEE Access 2020, 8, 32054–32065. [Google Scholar] [CrossRef]
- Martin, T.; Drissen, L.; Prunet, S. Data reduction and calibration accuracy of the imaging Fourier transform spectrometer SITELLE. Mon. Not. R. Astron. Soc. 2021, 505, 5514–5529. [Google Scholar] [CrossRef]
- Morelli, R. An Autoencoder Approach for the Electromagnetic Inverse Source Problem from Near- and Far-Zone Data. Laurea. Degree Thesis, Università di Napoli Federico II, Naples, Italy, 2022/2023. [Google Scholar]
- Capozzoli, A.; Catapano, I.; Curcio, C.; D’Ambrosio, G.; Esposito, G.; Gennarelli, G.; Liseno, A.; Ludeno, G.; Soldovieri, F. Numerical results on the use of the L-SVD Approach for the solution of the inverse source problem from amplitude-only data. In Proceedings of the 18th European Conference on Antennas and Propagation, Glasgow, UK, 17–22 March 2024; pp. 1–4. [Google Scholar]
- Capozzoli, A.; Curcio, C.; Liseno, A. Singular value optimization in inverse electromagnetic scattering. IEEE Antennas Wirel. Prop. Lett. 2017, 16, 1094–1097. [Google Scholar] [CrossRef]
- Capozzoli, A.; Curcio, C.; Liseno, A. Singular value optimization for multifrequency multimonostatic inverse scattering over circular domains under the Born approximation. Radio Sci. Lett. 2022, 4, 1–5. [Google Scholar]
Parameter | Value |
---|---|
Source semi-extension | |
Observation domain semi-extension | |
Number of source points | |
Number of measurement points | |
Distance between domains |
Option/Parameter | dAE | sAE | |
---|---|---|---|
Optimizer | ADAM | ADAM | ADAM |
Initial learning rate | 10−3 | 10−3 | 10−3 |
Learning-rate drop period | 500 | 500 | 250 |
Learning-rate drop factor | 0.5 | 0.5 | 0.5 |
Mini-batch size | 640 | 640 | 64 |
Max. number of epochs | 5000 | 5000 | 1000 |
Input | Output | TSVD (NDF) | TSVD (L-Curve) |
---|---|---|---|
3.16 | 0.50 | 6.85 | 0.71 |
TSVD (NDF) | TSVD (L-Curve) | L-SVD |
---|---|---|
33.15 | 30.43 | 5.30 |
SNR [dB] | Input | Output | TSVD (NDF) | TSVD (L-Curve) |
---|---|---|---|---|
30 | 3.16 | 0.50 | 6.85 | 0.71 |
20 | 10.00 | 1.54 | 7.04 | 2.18 |
10 | 31.65 | 4.85 | 8.76 | 6.50 |
0 | 100.04 | 15.27 | 18.62 | 18.94 |
SNR [dB] | TSVD (NDF) | TSVD (L-Curve) | L-SVD |
---|---|---|---|
30 | 35.15 | 30.43 | 5.30 |
20 | 35.19 | 31.90 | 7.56 |
10 | 35.54 | 33.96 | 17.68 |
0 | 38.94 | 39.38 | 46.73 |
SNR [dB] | Input | Output | TSVD (NDF) | TSVD (L-Curve) |
---|---|---|---|---|
30 | 3.16 | 0.84 | 6.85 | 0.71 |
20 | 10.00 | 1.37 | 7.04 | 2.18 |
10 | 31.65 | 3.73 | 8.76 | 6.50 |
0 | 100.04 | 11.54 | 18.62 | 18.94 |
SNR [dB] | TSVD (NDF) | TSVD (L-Curve) | L-SVD |
---|---|---|---|
30 | 35.15 | 30.43 | 6.16 |
20 | 35.19 | 31.90 | 7.54 |
10 | 35.54 | 33.96 | 14.73 |
0 | 38.94 | 39.38 | 31.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capozzoli, A.; Catapano, I.; Cinotti, E.; Curcio, C.; Esposito, G.; Gennarelli, G.; Liseno, A.; Ludeno, G.; Soldovieri, F. A Learned-SVD Approach to the Electromagnetic Inverse Source Problem. Sensors 2024, 24, 4496. https://doi.org/10.3390/s24144496
Capozzoli A, Catapano I, Cinotti E, Curcio C, Esposito G, Gennarelli G, Liseno A, Ludeno G, Soldovieri F. A Learned-SVD Approach to the Electromagnetic Inverse Source Problem. Sensors. 2024; 24(14):4496. https://doi.org/10.3390/s24144496
Chicago/Turabian StyleCapozzoli, Amedeo, Ilaria Catapano, Eliana Cinotti, Claudio Curcio, Giuseppe Esposito, Gianluca Gennarelli, Angelo Liseno, Giovanni Ludeno, and Francesco Soldovieri. 2024. "A Learned-SVD Approach to the Electromagnetic Inverse Source Problem" Sensors 24, no. 14: 4496. https://doi.org/10.3390/s24144496
APA StyleCapozzoli, A., Catapano, I., Cinotti, E., Curcio, C., Esposito, G., Gennarelli, G., Liseno, A., Ludeno, G., & Soldovieri, F. (2024). A Learned-SVD Approach to the Electromagnetic Inverse Source Problem. Sensors, 24(14), 4496. https://doi.org/10.3390/s24144496