Disciplining a Rubidium Atomic Clock Based on Adaptive Kalman Filter
<p>Diagram of the internal connections of the rubidium atomic clock control system (<b>a</b>) PRS10. (<b>b</b>) Counter based on TDC and FPGA. (<b>c</b>) GPS receiver. (<b>d</b>) STM32 F407. (<b>e</b>) PC.</p> "> Figure 2
<p>Diagram of the main components of the rubidium atomic clock control system. (<b>a</b>) Power supply. (<b>b</b>) PRS10. (<b>c</b>) Counter. (<b>d</b>) STM32 F407.</p> "> Figure 3
<p>The system algorithm flowchart.</p> "> Figure 4
<p>Measured clock difference data between the rubidium atomic clock and GPS before disciplining. (<b>a</b>) Clock difference data for one day. (<b>b</b>) Detailed view of the clock difference for sampling points 10,000 to 10,500.</p> "> Figure 5
<p>Diagram of the convergence results of the state noise parameters and process noise parameter through iteration. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mi>R</mi> </semantics></math>.</p> "> Figure 6
<p>Measured clock difference and predicted values using the AKF.</p> "> Figure 7
<p>Estimated frequency deviation using the AKF and measured frequency deviation. (<b>a</b>) Estimated frequency deviation; (<b>b</b>) measured frequency deviation.</p> "> Figure 8
<p>Test equipment and test site (room temperature). (<b>a</b>) Multichannel frequency comparator VCH-315; (<b>b</b>) multichannel time counter (MTC108).</p> "> Figure 9
<p>Frequency variation curve of the rubidium atomic clock before and after the initial adjustment.</p> "> Figure 10
<p>Diagram of the frequency deviation of the rubidium atomic clock before and after discipline, with the reference frequency from UTC (NTSC). (<b>a</b>) Before discipline; (<b>b</b>) after discipline.</p> "> Figure 11
<p>Frequency stability of the rubidium atomic clock compared to the undisciplined rubidium atomic clock.</p> "> Figure 12
<p>Feature analysis of GPS 1PPS. (<b>a</b>) Clock difference between the GPS 1PS and the UTC (NTSC) 1PPS signal; (<b>b</b>) frequency stability.</p> "> Figure 13
<p>Clock difference diagram between the rubidium atomic clock and the UTC (NTSC) 1PPS signal before and after discipline. (<b>a</b>) Undisciplined rubidium atomic clock; (<b>b</b>) disciplined rubidium atomic clock.</p> ">
Abstract
:1. Introduction
2. Basic Principle and Control System
2.1. Kalman Model for Rubidium Atomic Clocks
2.2. Methods for Adjusting Rubidium Atomic Clock
2.3. Ping-Pong Algorithm
- The measured clock offset and the predicted clock offset have the same sign, and the direction of the clock offset change approaches zero:
- 2.
- The current clock offset and the predicted clock offset at the next moment have the same sign, and the trend of the clock offset change moves away from zero:
- 3.
- The current clock offset and the predicted clock offset at the next moment have opposite signs. In this case, the ideal adjustment amount is to reduce the clock’s rate to zero:
2.4. Control System
3. Description of the Algorithm
3.1. ALS Method
- Innovation Sequence Update: Compute the steady-state Kalman gain and derive the sequence of innovations from the filtered measurements.
- Autocorrelation function: Calculate the autocorrelation function of the innovation sequence to capture temporal correlations in the residuals.
- Noise parameters Estimation: The LS method is adopted to revise the estimates of the noise parameters.
- Covariance Matrix Update: Incorporate the refined noise parameter estimates to adjust and refresh the covariance matrices Q and R.
- Convergence Assessment of Noise Covariance Matrices: Evaluate whether Q and R converged, indicating the stability of their values. If convergence is attained, the iterative process is concluded; otherwise, the algorithm reverts to Step 3 to iterate further.
3.2. Initializing the State Vector
3.3. Initializing the Covariance Matrix
4. Test Results and Analysis
4.1. Values of Noise Parameters
4.2. Estimation of the State Vector
4.3. Disciplining Results of the Rubidium Atomic Clock
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.F.; Xu, J.N.; Wu, M.; Li, F.N. Analysis of the Long-Term Characteristics of BDS On-Orbit Satellite Atomic Clock: Since BDS-3 Was Officially Commissioned. Remote Sens. 2022, 14, 4535. [Google Scholar] [CrossRef]
- Waller, P.; Gonzalez, F.; Binda, S.; Sesia, I.; Hidalgo, I.; Tobias, G.; Tavella, P. The In-Orbit Performances of GIOVE Clocks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Jaduszliwer, B.; Camparo, J. Past, present and future of atomic clocks for GNSS. Gps Solut. 2021, 25, 27. [Google Scholar] [CrossRef]
- Mallette, L.A.; Rochat, P.; White, J. An introduction to satellite based atomic frequency standards. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; p. 1339. [Google Scholar]
- Bandi, T.N.; Clock, T. Advanced space rubidium atomic frequency standard for satellite navigation. Gps Solut. 2022, 26, 54. [Google Scholar] [CrossRef]
- Rohden, M.; Sorge, A.; Timme, M.; Witthaut, D. Self-Organized Synchronization in Decentralized Power Grids. Phys. Rev. Lett. 2012, 109, 064101. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.W.; Liu, Y.; Yao, W.X.; Zhao, J.C.; Liu, Y.L. Utilization of Chip-Scale Atomic Clock for Synchrophasor Measurements. IEEE Trans. Power Deliv. 2016, 31, 2299–2300. [Google Scholar] [CrossRef]
- Kurata, N. Development and application of an autonomous time synchronization sensor device using a chip scale atomic clock. Sens. Transducers 2018, 219, 17–25. [Google Scholar]
- Lisdat, C.; Klempt, C. Quantum engineering for optical clocks. Nature 2020, 588, 397–398. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, B.; Zheng, Z.; Chen, Z.; Zhu, X. Research on the joint timekeeping of pulsars and atomic clocks based on Vondrak–Cepek filtering. Mon. Not. R. Astron. Soc. 2023, 521, 2553–2559. [Google Scholar] [CrossRef]
- Petrov, A.A.; Davydov, V.V. Improvement Frequency Stability of Caesium Atomic Clock for Satellite Communication System. In Proceedings of the 15th International Conference on Next-Generation Wired/Wireless Advanced Networks and Systems (NEW2AN) and 8th Conference on Internet of Things and Smart Spaces (ruSMART), St Petersburg, Russia, 26–28 August 2015; pp. 739–744. [Google Scholar]
- Schiller, S.; Tino, G.; Lemonde, P.; Sterr, U.; Lisdat, C.; Görlitz, A.; Poli, N.; Nevsky, A.; Salomon, C. The space optical clocks project. In Proceedings of the International Conference on Space Optics—ICSO 2010, Rhodes Island, Greece, 20 November 2017; pp. 705–710. [Google Scholar]
- Bandi, T.N.; Affolderbach, C.; Calosso, C.E.; Mileti, G. High-performance laser-pumped rubidium frequency standard for satellite navigation. Electron. Lett. 2011, 47, 698–699. [Google Scholar] [CrossRef]
- Bandi, T.N. A comprehensive overview of atomic clocks and their applications. Biol. Eng. Med. Sci. Rep. 2023, 9, 1–10. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Qin, F.J.; Ding, Z.C.; Xu, R.; Li, D.Y. Research on the Frequency Stabilization System of an External Cavity Diode Laser Based on Rubidium Atomic Modulation Transfer Spectroscopy Technology. Photonics 2024, 11, 298. [Google Scholar] [CrossRef]
- Cui, J.; Ming, G.; Wang, F.; Li, J.; Wang, P.; Kang, S.; Zhao, F.; Zhong, D.; Mei, G. Realization of a Rubidium Atomic Frequency Standard with Short-Term Stability in 10–14 τ-1/2 Level. IEEE Trans. Instrum. Meas. 2024, 73, 1500507. [Google Scholar] [CrossRef]
- Allan, D.W.; Weiss, M.A. Accurate time and frequency transfer during common-view of a GPS satellite. In Proceedings of the 34th Annual Symposium on Frequency Control, Philadelphia, PA, USA, 28–30 May 1980; pp. 334–346. [Google Scholar]
- Fan, D.; Shi, S.; Li, X. Research on rubidium atomic clock disciplined method based on GPS receiver. J. Electron. Meas. Instrum. 2013, 27, 980–985. [Google Scholar]
- Stein, S. Kalman filter analysis of precision clocks with real-time parameter estimation. In Proceedings of the 43rd Annual Symposium on Frequency Control, Denver, CO, USA, 31 May–2 June 1989; pp. 232–236. [Google Scholar]
- Hutsell, S.T. Relating the Hadamard variance to MCS Kalman filter clock estimation. In Proceedings of the 27th Annual Precise Time and Time Interval Systems and Applications Meeting, San Diego, CA, USA, 29 November 1995; pp. 291–302. [Google Scholar]
- Howe, D.A.; Beard, R.L.; Greenhall, C.A.; Vernotte, F.; Riley, W.J.; Peppler, T.K. Enhancements to GPS operations and clock evaluations using a “total” Hadamard deviation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Shi, S.; Li, X. An Algorithm for the Rubidium Atomic Clock Control Based on the Kalman Filter. J. Astronaut. 2015, 36, 90–95. [Google Scholar]
- Akhlaghi, S.; Zhou, N.; Huang, Z. Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Odelson, B.J.; Rajamani, M.R.; Rawlings, J.B. A new autocovariance least-squares method for estimating noise covariances. Automatica 2006, 42, 303–308. [Google Scholar] [CrossRef]
- Åkesson, B.M.; Jørgensen, J.B.; Poulsen, N.K.; Jørgensen, S.B. A generalized autocovariance least-squares method for Kalman filter tuning. J. Process Control 2008, 18, 769–779. [Google Scholar] [CrossRef]
- Rutman, J. Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress. Proc. IEEE 1978, 66, 1048–1075. [Google Scholar] [CrossRef]
- Lin, X.; Luo, Z.C. A new noise covariance matrix estimation method of Kalman filter for satellite clock errors. Acta Phys. Sin. 2015, 64, 080201. [Google Scholar] [CrossRef]
- Updegraff, R. Precise time and frequency control using the Navstar GPS and a disciplined rubidium oscillator. In Proceedings of the 1989 Second International Conference on Frequency Control and Synthesis, Leicester, UK, 10–13 April 1989; pp. 92–96. [Google Scholar]
Parameters | Notation | Value |
---|---|---|
White Phase Noise | ||
White Frequency Noise | ||
Random Walk Frequency Noise | ||
Measurement Noise |
Undisciplined Rubidium Atomic Clock | Disciplined Rubidium Atomic Clock | |
---|---|---|
1 | ||
2 | ||
4 | ||
8 | ||
10 | ||
20 | ||
40 | ||
80 | ||
100 | ||
200 | ||
1000 | ||
2000 | ||
10,000 | ||
20,000 | ||
86,400 | ||
100,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Guan, X.; Ren, X.; Wu, J. Disciplining a Rubidium Atomic Clock Based on Adaptive Kalman Filter. Sensors 2024, 24, 4495. https://doi.org/10.3390/s24144495
Liu K, Guan X, Ren X, Wu J. Disciplining a Rubidium Atomic Clock Based on Adaptive Kalman Filter. Sensors. 2024; 24(14):4495. https://doi.org/10.3390/s24144495
Chicago/Turabian StyleLiu, Kun, Xiaolong Guan, Xiaoqian Ren, and Jianfeng Wu. 2024. "Disciplining a Rubidium Atomic Clock Based on Adaptive Kalman Filter" Sensors 24, no. 14: 4495. https://doi.org/10.3390/s24144495
APA StyleLiu, K., Guan, X., Ren, X., & Wu, J. (2024). Disciplining a Rubidium Atomic Clock Based on Adaptive Kalman Filter. Sensors, 24(14), 4495. https://doi.org/10.3390/s24144495