Development of an Imaging Spectrometer with a High Signal-to-Noise Ratio Based on High Energy Transmission Efficiency for Soil Organic Matter Detection
<p>The method of improving the SNR of a hyperspectral instrument for SOM detection.</p> "> Figure 2
<p>Rowland circle in the meridional plane.</p> "> Figure 3
<p>Telescope’s optical structure (<b>a</b>); ray trace of TMA (<b>b</b>).</p> "> Figure 4
<p>Spectrometer’s optical structure (<b>a</b>) and ray trace (<b>b</b>).</p> "> Figure 5
<p>Optical system’s ray trace (<b>a</b>) and structure (<b>b</b>).</p> "> Figure 6
<p>The MTF curves of the optical structure: 360 nm (<b>a</b>); 600 nm (<b>b</b>); and 850 nm (<b>c</b>).</p> "> Figure 7
<p>The RMS of the optical structure: 360 nm (<b>a</b>); 600 nm (<b>b</b>); and 850 nm (<b>c</b>).</p> "> Figure 8
<p>Smile curves (<b>a</b>) and keystone curves (<b>b</b>) of the spectrometer.</p> "> Figure 9
<p>TOL MTF with grating surface RMS of 1/10 λ (<b>a</b>), 1/15 λ (<b>b</b>), and 1/20 λ (<b>c</b>).</p> "> Figure 10
<p>Structure of the instrument used to analyze the +2nd-order stray light. Positions of the filters in the structure (<b>a</b>). Positions of the light-blocking components within the instrument (<b>b</b>).</p> "> Figure 11
<p>Spectrum position (<b>a</b>); comparison curve of imaging signals vs. non-imaging signals (<b>b</b>).</p> "> Figure 12
<p>Window film (<b>a</b>); transmittance curve (<b>b</b>); stray light suppression effect curve (<b>c</b>).</p> "> Figure 13
<p>High diffraction efficiency of convex grating (<b>a</b>); surface RMS (<b>b</b>); surface profile (<b>c</b>).</p> "> Figure 14
<p>The diffraction efficiency curves (<b>a</b>); roughness testing with a laser microscope (<b>b</b>).</p> "> Figure 15
<p>Efficiency of TMA mirrors (<b>a</b>); efficiency of Offner mirrors (<b>b</b>).</p> "> Figure 16
<p>Slit filter transmission (<b>a</b>); total radiance and spectral response of detector (<b>b</b>).</p> "> Figure 17
<p>Whole machine integration process diagram.</p> "> Figure 18
<p>Optical path (<b>a</b>); interferogram (<b>b</b>); result of the assembled structure (<b>c</b>).</p> "> Figure 19
<p>Slit (<b>a</b>); detector (<b>b</b>); and the positions of the grating and imaging plane (<b>c</b>).</p> "> Figure 20
<p>Optical path (<b>a</b>); spectral line in one row of pixels (<b>b</b>); and magnified view (<b>c</b>).</p> "> Figure 21
<p>Optical path (<b>a</b>); the results of fine adjustment (<b>b</b>).</p> "> Figure 22
<p>Assembling scene (<b>a</b>); spectral imaging (<b>b</b>).</p> "> Figure 23
<p>Testing path (<b>a</b>); detector image (<b>b</b>).</p> "> Figure 24
<p>Grayscale response and Gaussian fitting curves of pixels: left edge (<b>a</b>); right edge (<b>b</b>).</p> "> Figure 25
<p>The 1951 USAF resolution test plane (<b>a</b>); MTF testing and fitting curve (<b>b</b>).</p> "> Figure 26
<p>Test of spectral response and resolution.</p> "> Figure 27
<p>The test result of response at 356 nm (<b>a</b>). The test result of response at 865 nm (<b>b</b>). The test result of FWHM at 510 nm (<b>c</b>). The test result of FWHM at 610 nm (<b>d</b>).</p> "> Figure 28
<p>Test equipment (<b>a</b>); SNR curve (<b>b</b>).</p> "> Figure 29
<p>The trend curves of SNR for each instrument.</p> ">
Abstract
:1. Introduction
2. Theory and Methods
2.1. SNR of Slit Imaging Spectrometer with CMOS
2.2. Offner Spectrometer Based on Rowland Circle
3. Design and Analyses
3.1. Optical Design
3.2. Optical Imaging Quality and Tolerance
3.3. Stray Light Analysis
3.4. Grating, Coating Mirrors, and Detector
3.4.1. Manufacture of Grating
3.4.2. Manufacture of Coated Mirrors
3.4.3. Slit Filter and Detector Performance
4. Assembly and Tests
4.1. Assembling Imaging Spectrometer
4.2. Lab Test
4.2.1. Focal and Spatial Resolution
4.2.2. Spectral Response and Resolution
4.2.3. SNR
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bouasria, A.; Ibno Namr, K.; Rahimi, A.; Ettachfini, E.M.; Rerhou, B. Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks. Geo-Spat. Inf. Sci. 2022, 25, 353–364. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Gardin, L.; Chiesi, M.; Fibbi, L.; Maselli, F. Mapping soil organic carbon in Tuscany through the statistical combination of ground observations with ancillary and remote sensing data. Geoderma 2021, 404, 115386. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, M.; Yang, H.; Jin, Y.; Zhang, X.; Liu, H. Mapping Regional Soil Organic Matter Based on Sentinel-2A and MODIS Imagery Using Machine Learning Algorithms and Google Earth Engine. Remote Sens. 2021, 13, 2934. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, X.; Meng, X.; Zhu, H.; Ni, C.; Chen, M.; Liu, H. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine. CATENA 2022, 209, 105842. [Google Scholar] [CrossRef]
- Yu, B.; Yuan, J.; Yan, C.; Xu, J.; Ma, C.; Dai, H. Impact of Spectral Resolution and Signal-to-Noise Ratio in Vis–NIR Spectrometry on Soil Organic Matter Estimation. Remote Sens. 2023, 15, 4623. [Google Scholar] [CrossRef]
- Li, T.; Mu, T.; Liu, G.; Yang, X.; Zhu, G.; Shang, C. A Method of Soil Moisture Content Estimation at Various Soil Organic Matter Conditions Based on Soil Reflectance. Remote Sens. 2022, 14, 2411. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, T.; Liu, J.; Lin, Z.; Li, S.; Wang, R.; Ge, Y. Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy. Comput. Electron. Agric. 2015, 111, 69–77. [Google Scholar] [CrossRef]
- Tan, Y. Analysis of Soil Organic Matter Predicton Accuracy and Model Optimization Based on Vis-NIR Spectra. Ph.D. Dissertation, JiLin University, Changchun, China, 2023. [Google Scholar] [CrossRef]
- Tan, Y.; Jiang, Q.; Yu, L.; Liu, H.; Zhang, B. Reducing the Moisture Effect and Improving the Prediction of Soil Organic Matter With VIS-NIR Spectroscopy in Black Soil Area. IEEE Access 2021, 9, 5895–5905. [Google Scholar] [CrossRef]
- Thuillier, G.; Zhu, P.; Snow, M.; Zhang, P.; Ye, X. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach. Light Sci. Appl. 2022, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Yi, X.; Lin, C.; Fang, W.; Wang, K.; Xia, Z.; Ji, Z.; Zheng, Y.; Sun, D.; Quan, J. Instrument Development: Chinese Radiometric Benchmark of Reflected Solar Band Based on Space Cryogenic Absolute Radiometer. Remote Sens. 2020, 12, 2856. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Hu, X.; Liu, S.; Cao, K.; Chai, M.; Liao, Q.; Zuo, Z.; Hao, Z.; Duan, W. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite. J. Remote Sens. 2020, 24, 333–344. [Google Scholar] [CrossRef]
- Jun, T.; Hitomi, I.; Tetsushi, T.; Osamu, K.; Akira, I.; Yoshiyuki, I.; Ritsuko, I.; Koji, I. On-orbit performance of hyperspectral imager suite (HISUI). In Proceedings of the SPIE Remote Sensing, Berlin, Germany, 5–8 September 2022; p. 122640C. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Tang, S. A Spaceborne Calibration Spectrometer. In Proceedings of the 6th International Symposium of Space Optical Instruments and Applications, Delft, The Netherlands, 24–25 September 2021; pp. 323–334. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, Z.; Liu, Q.; Chen, X.; Li, H.; Tang, S.; Shen, W. Geostationary Full-Spectrum Wide-Swath High-Fidelity Imaging Spectrometer: Optical Design and Prototype Development. Remote Sens. 2023, 15, 396. [Google Scholar] [CrossRef]
- Benoït, B.; Vincent, M.; Stefano, S.; Jorg, V.; Arnuad, B. The challenges of broadband performances within a compact imaging spectrometer: The ELOIS solution. Proc. SPIE 2021, 11852, 118521E. [Google Scholar] [CrossRef]
- Sander, R.Z.; Riley, D.; Paul, G.; Robert, O.G.; Justin, M.H.; Lori, B.M.; Lucas, S.; Pantazis, M. Optical design of the Carbon Plume Mapper (CPM) imaging spectrometer. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 21–26 August 2022; p. 1223505. [Google Scholar] [CrossRef]
- Yu, L.; Zheng, S.; Feng, H.-s.; Wang, T.; Lin, J.; Wu, S. Solar-induced chlorophyll fluorescence imaging spectrometer: Design, manufacture, and evaluation. Opt. Express 2022, 30, 41422–41436. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chang, J.; Ji, Z.; Chen, W.; Li, Y.; Li, D. Construction method for designing a spectrometer with variable spectral resolution and wide bandwidth using multiple off-axis convex gratings. Opt. Express 2022, 30, 2472–2486. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-Y.; Wang, Y.-M. A broadband spherical prism imaging spectrometer based on a single integrated module. Opt. Quantum Electron. 2021, 53, 289. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Li, H.; Gu, G.; Wang, X. Signal-to-Noise Ratio Analysis Based on Different Space Remote Sensing Instruments. IEEE Photonics J. 2024, 16, 1–9. [Google Scholar] [CrossRef]
Parameter | Index |
---|---|
Spectral resolution | 10 nm at 0.36–0.85 μm |
GSD | 100 m |
Pixel size | 22 μm × 22 μm |
F number | 3 |
Numerical aperture (NA) | 0.1667 |
Focal length | 141.42 mm |
Entrance pupil diameter | 47.14 mm |
Swath at orbit | 100 km at 648.2 km |
FOV angle | ±4.41° |
Slit length | 21.8 mm |
Surface | Component | Radius/mm | Thickness/mm | k |
---|---|---|---|---|
1 | Primary Mirror | −388.20 | 80.02 | −3.671 |
2 | Secondary Mirror | −155.94 | 80.02 | / |
3 | Tertiary Mirror | −164.47 | 138.17 | 0.182 |
4 | Filter 1: Front | infinity | 0.50 | / |
5 | Filter 1: Rear | infinity | 2.00 | / |
6 | Slit | infinity | 2.00 | / |
7 | Filter 2: Front | infinity | 0.50 | / |
8 | Filter 2: Rear | infinity | 157.43 | / |
9 | Offner Mirror 1 | 156.90 | 75.82 | / |
10 | Offner Grating | 78.29 | 75.82 | / |
11 | Offner Mirror 3 | 156.90 | 157.74 | / |
12 | Window Filter: Front | infinity | 1.00 | / |
13 | Window Filter: Rear | infinity | 0.615 | / |
14 | Image Surface | infinity | 0 | / |
Component | Radius TOL (mm) | Thickness TOL (mm) | Eccentricity TOL (mm) | Tilt TOL (′) | Wedge TOL (′) |
---|---|---|---|---|---|
Primary Mirror | 0.08 | 0.1 | 0.04 | 0.3 | / |
Secondary Mirror | 0.08 | 0.3 | 0.08 | 0.3 | / |
Tertiary Mirror | 0.08 | 0.5 | 0.02 | 1 | / |
Filter 1 | / | 0.5 | / | 0.3 | 11.4 |
Filter 2 | / | 0.5 | / | 0.3 | 11.4 |
Offner Mirror 1 | 0.08 | 0.06 | 0.02 | 1 | / |
Offner Grating | 0.1 | 0.06 | 0.1 | 0.3 | / |
Offner Mirror 3 | 0.1 | 0.5 | 0.02 | 1 | / |
Window Filter | / | 0.5 | / | 0.3 | 10.9 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Wave band | 0.36–0.85 μm | Groove density | 58 lines/mm |
Kind | Blazed | Coating | Aluminum |
Radius | 78.28 mm | RMS | 0.096λ |
Efficiency | >50% | Work order | +1 |
Parameter | Value |
---|---|
Wave band | 0.36–0.85 μm |
Efficiency | >95% at 550 nm |
Coating | Silver |
RMS | 0.02λ |
Instruments | Ground Resolution | Spectral Resolution |
---|---|---|
GF5 | 30 m | 5 nm |
HISUI | 20 m | 10 nm |
ELOIS | 35 m | 2.5 nm |
ENMAP | 30 m | 6.5 nm |
This paper | 100 m | 10 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Wang, Y.; Gu, G.; Li, Z.; Wang, X.; Li, H.; Li, B.; Hu, D. Development of an Imaging Spectrometer with a High Signal-to-Noise Ratio Based on High Energy Transmission Efficiency for Soil Organic Matter Detection. Sensors 2024, 24, 4385. https://doi.org/10.3390/s24134385
Fan J, Wang Y, Gu G, Li Z, Wang X, Li H, Li B, Hu D. Development of an Imaging Spectrometer with a High Signal-to-Noise Ratio Based on High Energy Transmission Efficiency for Soil Organic Matter Detection. Sensors. 2024; 24(13):4385. https://doi.org/10.3390/s24134385
Chicago/Turabian StyleFan, Jize, Yuwei Wang, Guochao Gu, Zhe Li, Xiaoxu Wang, Hanshuang Li, Bo Li, and Denghui Hu. 2024. "Development of an Imaging Spectrometer with a High Signal-to-Noise Ratio Based on High Energy Transmission Efficiency for Soil Organic Matter Detection" Sensors 24, no. 13: 4385. https://doi.org/10.3390/s24134385
APA StyleFan, J., Wang, Y., Gu, G., Li, Z., Wang, X., Li, H., Li, B., & Hu, D. (2024). Development of an Imaging Spectrometer with a High Signal-to-Noise Ratio Based on High Energy Transmission Efficiency for Soil Organic Matter Detection. Sensors, 24(13), 4385. https://doi.org/10.3390/s24134385