Fast Three-Dimensional Profilometry with Large Depth of Field
<p>Schematic diagram of determining the projector coordinate.</p> "> Figure 2
<p>Principle of computing peak positions of time-domain Gaussian curves with the neural network.</p> "> Figure 3
<p>Schematic diagram showing the circularly shifting of the time-domain Gaussian curves.</p> "> Figure 4
<p>Flow chart of computing peak positions with preprocessing procedures.</p> "> Figure 5
<p>The Gaussian fringes are generated by blurring the multi-line pattern (in one-dimensional space).</p> "> Figure 6
<p>Time-domain Gaussian curve is unaffected by a complex object surface. (<b>a</b>) The plaster statue with a complex surface. (<b>b</b>) A complex surface is illuminated with Gaussian fringes (12 multi-line patterns are used to generate time-domain Gaussian curves). (<b>c</b>) Intensity profile along the white line in (<b>b</b>). (<b>d</b>) Time-domain Gaussian curves extracted from image pixel.</p> "> Figure 7
<p>The influence of a complex surface on the time-domain Gaussian curves.</p> "> Figure 8
<p>Projector coordinates are calculated with time-domain Gaussian curves (four shifting steps) and the Levenberg–Marquardt algorithm. (<b>a</b>–<b>d</b>) Gaussian fringes with different shifting distance (0, 1, 2, and 3 columns in projector plane) are projected onto the plaster statue, respectively. (<b>e</b>) The 3D reconstruction results.</p> "> Figure 9
<p>Computing projector coordinates with neural network. (<b>a</b>) The input part of training data. (<b>b</b>) The output part of training data. (<b>c</b>) Computing result is achieved using circular shift. (<b>d</b>) Computing result is achieved without using circular shift. (<b>e</b>) The fluctuation of peak positions along the white lines in (<b>c</b>,<b>d</b>). (<b>f</b>–<b>h</b>) The 3D reconstruction results of the neural network model using circular shift, the neural network model without using circular shift, and the Levenberg–Marquardt algorithm, respectively (step distance being 2 column in projector plane).</p> "> Figure 10
<p>Testing the sensitivity of defocusing degree with multiple planar targets which are evenly placed from 0 mm to 750 mm. (<b>a</b>) Planar targets are illuminated with sinusoidal fringes. (<b>b</b>,<b>c</b>) Planar targets are illuminated with imitated sinusoidal fringes, which are generated using the SBM technique and dithering technique, respectively. (<b>d</b>) Planar targets are illuminated with Gaussian fringes.</p> "> Figure 11
<p>Comparison of the sensitivity to defocusing degree. (<b>a</b>–<b>d</b>) The 3D reconstruction results of sinusoidal pattern, SBM technique, dithering technique, and our proposed method. (<b>e</b>) The mean absolute errors in different depths.</p> ">
Abstract
:1. Introduction
2. Principle
2.1. Determining the Projector Coordinate with a Time-Domain Gaussian Curve
2.2. Polynomial 3D Reconstruction Model
3. Rapid Calculation Method
4. Characteristics Analysis
4.1. Formatting of Mathematical Components
4.2. Sensitivity to Complex Surface
5. Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, J.F.; Liu, D.M.; Chi, S.J.; Tu, Z.; Zhong, S.C. Vision-based fringe projection measurement system for radial vibration monitoring of rotating shafts. Mech. Syst. Signal Process. 2022, 181, 109467. [Google Scholar] [CrossRef]
- Juarez-Salazar, R.; Rodriguez-Reveles, G.A.; Esquivel-Hernandez, S.; Diaz-Ramirez, V.H. Three-dimensional spatial point computation in fringe projection profilometry. Opt. Laser Eng. 2023, 164, 107482. [Google Scholar] [CrossRef]
- Xu, S.Y.; Feng, T.Y.; Xing, F.F. Three-dimensional measurement method for high dynamic range surfaces based on adaptive fringe projection. IEEE Trans. Instrum. Meas. 2023, 72, 5013011. [Google Scholar] [CrossRef]
- Zheng, R.H.; Wan, M.S.; Zhang, W.; Yu, L.D. Fast and accurate 3D topography measurement based on a novel synthesis pattern method. Meas. Sci. Technol. 2023, 34, 045905. [Google Scholar] [CrossRef]
- Zhu, J.P.; Feng, X.Y.; Zhu, C.H.; Zhou, P. Optimal frequency selection for accuracy improvement in binary defocusing fringe projection profilometry. Appl. Opt. 2022, 61, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.J.; Cao, Y.P.; Zhang, Q.C.; Wang, Y.J. High-efficiency and robust binary fringe optimization for superfast 3D shape measurement. Opt. Express 2022, 30, 35539–35553. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.J.; Gao, J.; Zhuang, Y.Z.; Zhang, L.Y.; Chen, X. High dynamic defocus response method for binary defocusing fringe projection profilometry. Opt. Lett. 2021, 46, 3749–3752. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhang, S. Flexible 3-D shape measurement using projector defocusing. Opt. Lett. 2009, 34, 3080–3082. [Google Scholar] [CrossRef] [PubMed]
- Ayubi, G.A.; Ayubi, J.A.; Martino, J.M.D.; Ferrari, J.A. Pulse width modulation in defocused three dimensional fringe projection. Opt. Lett. 2010, 35, 3682–3684. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Zhang, S. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing. Opt. Lett. 2010, 35, 4121–4123. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S. Three-dimensional shape measurement with binary dithered patterns. Appl. Opt. 2012, 51, 6631–6636. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ekstrand, L.; Dai, J.; Zhang, S. Phase error compensation for three-dimensional shape measurement with projector defocusing. Appl. Opt. 2011, 50, 2572–2581. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.C.; Zhang, S.H.; Hu, Y.; Hao, Q. Defocused binary fringe phase error modeling and compensation using depth-discrete Fourier series fitting. Appl. Opt. 2021, 60, 10047–10054. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.T.; Chen, X.Y.; Zheng, Y.C.; Bai, L.F.; Zheng, D.L.; Han, J. Accurate defocusing fringe projection profilometry in a large depth-of-field. Opt. Laser Technol. 2023, 164, 109542. [Google Scholar] [CrossRef]
- Xu, X.B.; Fei, Z.W.; Yang, J.; Tan, Z.Y.; Luo, M.Z. Line structured light calibration method and center line extraction: A review. Results Phys. 2020, 19, 103637. [Google Scholar] [CrossRef]
- Yang, S.C.; Yang, T.; Wu, G.X.; Wua, Y.X.; Liu, F. Flexible and fast calibration method for uni-directional multi-line structured light system. Opt. Laser Eng. 2023, 164, 107525. [Google Scholar] [CrossRef]
- Steger, C. An unbiased detector of curvilinear structures. IEEE Trans. Pattern. Anal. Mach. Intell. 1998, 20, 113–125. [Google Scholar] [CrossRef]
- Jang, J.H.; Hong, K.S. Detection of curvilinear structures and reconstruction of their regions in gray-scale images. Pattern. Recogn. 2002, 35, 807–824. [Google Scholar] [CrossRef]
- Sun, Y.J.; Wang, P.P.; Zhang, T.T.; Liu, K. Principle and performance analysis of the Levenberg-Marquardt algorithm in WMS spectral line fitting. Photonics 2022, 9, 999. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Su, X.Y.; Xiang, L.Q.; Sun, X.Z. 3-D shape measurement based on complementary Gray-code light. Opt. Laser Eng. 2012, 50, 574–579. [Google Scholar] [CrossRef]
- Yu, L.D.; Zhang, W.; Li, W.S.; Pan, C.L.; Xia, H.J. Simplification of high order polynomial calibration model for fringe projection. Meas. Sci. Technol. 2016, 27, 105202. [Google Scholar] [CrossRef]
- Vo, M.; Wang, Z.; Pan, B.; Pan, T. Hyper-accurate flexible calibration technique for fringe-projection-based three dimensional imaging. Opt. Express 2012, 20, 16926–16941. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, L.; Li, Y.; Tu, D. Generic nonsinusoidal fringe model and gamma calibration in phase measuring profilometry. J. Opt. Soc. Amer. A 2012, 29, 1047–1058. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, L.D.; Li, W.S.; Xia, H.J.; Deng, H.X.; Zhang, J. Black-box phase error compensation for digital phase-shifting profilometry. IEEE Trans. Instrum. Meas. 2017, 66, 2755–2761. [Google Scholar] [CrossRef]
Relative Depth (ΔZ) | ||||||
---|---|---|---|---|---|---|
0 mm | 150 mm | 300 mm | 450 mm | 600 mm | 750 mm | |
Sinusoidal pattern | 0.177 | 0.187 | 0.158 | 0.165 | 0.213 | 0.177 |
SBM | 0.167 | 0.135 | 0.147 | 0.276 | 0.480 | 0.746 |
Dithering | 0.256 | 0.397 | 0.534 | 0.764 | 1.026 | 1.450 |
Our method | 0.145 | 0.142 | 0.130 | 0.161 | 0.190 | 0.201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhu, J.; Han, Y.; Zhang, M.; Li, J. Fast Three-Dimensional Profilometry with Large Depth of Field. Sensors 2024, 24, 4037. https://doi.org/10.3390/s24134037
Zhang W, Zhu J, Han Y, Zhang M, Li J. Fast Three-Dimensional Profilometry with Large Depth of Field. Sensors. 2024; 24(13):4037. https://doi.org/10.3390/s24134037
Chicago/Turabian StyleZhang, Wei, Jiongguang Zhu, Yu Han, Manru Zhang, and Jiangbo Li. 2024. "Fast Three-Dimensional Profilometry with Large Depth of Field" Sensors 24, no. 13: 4037. https://doi.org/10.3390/s24134037
APA StyleZhang, W., Zhu, J., Han, Y., Zhang, M., & Li, J. (2024). Fast Three-Dimensional Profilometry with Large Depth of Field. Sensors, 24(13), 4037. https://doi.org/10.3390/s24134037