Multibody Model with Foot-Deformation Approach for Estimating Ground Reaction Forces and Moments and Joint Torques during Level Walking through Optical Motion Capture without Optimization Techniques
"> Figure 1
<p>Locations of the contact points. The cross marks represent the contact points, and the circle symbols represent the reflective markers used in the optical motion capture. A total of 20 contact points, 10 per foot, were placed in the calcaneus and toe segments. The horizontal locations of the contact points were derived from the marker positions based on the marker set of the musculoskeletal model employed in this study, and the vertical locations of the contact points were set to have an offset of 30 mm toward the ground during static standing. Unit: mm.</p> "> Figure 2
<p>Ground reaction forces (GRFs) in the (<b>a</b>) antero−posterior axis with the anterior direction as positive, (<b>b</b>) medio−lateral axis with the lateral direction as positive, and (<b>c</b>) vertical axis with the upward direction as positive, and ground reaction moments (GRMs) in the (<b>d</b>) frontal plane around the anterior axis, (<b>e</b>) sagittal plane around the lateral axis, and (<b>f</b>) transverse plane around the vertical upward axis during normal-speed walking. The solid and dashed curves represent the average and standard deviation of the predictions, respectively, while the gray shading represents the average and standard deviation of the measurements. The upper right text of each graph shows Pearson’s correlation coefficient (<math display="inline"><semantics> <mrow> <mi>ρ</mi> </mrow> </semantics></math>), the root-mean-square error (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">E</mi> </mrow> </semantics></math>), and the relative <math display="inline"><semantics> <mrow> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">E</mi> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">E</mi> </mrow> </semantics></math>). The magnitudes of the curves are normalized to the body mass of participants.</p> "> Figure 3
<p>Joint torques in the frontal plane at the (<b>a</b>) hip, (<b>b</b>) knee, and (<b>c</b>) ankle with abduction/eversion torque as positive; in the transverse plane at the (<b>d</b>) hip, (<b>e</b>) knee, and (<b>f</b>) ankle with external rotation torque as positive; and in the sagittal plane at the (<b>g</b>) hip, (<b>h</b>) knee, and (<b>i</b>) ankle with flexion/dorsiflexion torque as positive. All joint torques are expressed in the proximal coordinate system during normal-speed walking. The solid and dashed curves represent the average and standard deviation of the predictions, respectively, while the gray shading represents the average and standard deviation of the measurements. The upper right text of each graph shows Pearson’s correlation coefficient (<math display="inline"><semantics> <mrow> <mi>ρ</mi> </mrow> </semantics></math>), the root-mean-square error (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">E</mi> </mrow> </semantics></math>), and the relative <math display="inline"><semantics> <mrow> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">E</mi> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">E</mi> </mrow> </semantics></math>). The magnitudes of the curves are normalized to the body mass of participants.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Conditions
2.3. Measurements
2.4. Data Analysis
2.4.1. Kinematics
2.4.2. Ground Reaction Forces and Moments
2.4.3. Joint Torques
2.5. Accuracy and Sensitivity Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadpoor, A.A.; Nikooyan, A.A. The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clin. Biomech. 2011, 26, 23–28. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Xu, Y.; Liang, M.; Baker, J.S.; Gu, Y. The relationship between ground reaction forces, foot positions and type of clubs used in golf: A systematic review and meta-analysis. Appl. Sci. 2023, 13, 7209. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavic, A. Measurement of walking ground reactions in real-life environments: A systematic review of techniques and technologies. Sensors 2017, 17, 2085. [Google Scholar] [CrossRef] [PubMed]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’Flynn, B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: A systematic review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef]
- Johnson, W.R.; Mian, A.; Donnelly, C.J.; Lloyd, D.; Alderson, J. Predicting athlete ground reaction forces and moments from motion capture. Med. Biol. Eng. Comput. 2018, 56, 1781–1792. [Google Scholar] [CrossRef] [PubMed]
- Mundt, M.; Koeppe, A.; David, S.; Bamer, F.; Potthast, W.; Markert, B. Prediction of ground reaction force and joint moments based on optical motion capture data during gait. Med. Eng. Phys. 2020, 86, 29–34. [Google Scholar] [CrossRef]
- Karatsidis, A.; Bellusci, G.; Schepers, H.M.; de Zee, M.; Andersen, M.S.; Veltink, P.H. Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors 2017, 17, 75. [Google Scholar] [CrossRef]
- Lam, S.K.; Vujaklija, I. Joint torque prediction via hybrid neuromusculoskeletal modelling during gait using statistical ground reaction estimates: An exploratory study. Sensors 2021, 21, 6597. [Google Scholar] [CrossRef]
- Zhang, L.; Soselia, D.; Wang, R.; Gutierrez-Farewik, E.M. Lower-limb joint torque prediction using LSTM neural networks and transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 600–609. [Google Scholar] [CrossRef]
- Mundt, M.; Thomsen, W.; Witter, T.; Koeppe, A.; David, S.; Bamer, F.; Potthast, W.; Markert, B. Prediction of lower limb joint angles and moments during gait using artificial neural networks. Med. Biol. Eng. Comput. 2020, 58, 211–225. [Google Scholar] [CrossRef]
- Sakamoto, S.I.; Hutabarat, Y.; Owaki, D.; Hayashibe, M. Ground reaction force and moment estimation through EMG sensing using long short-term memory network during posture coordination. Cyborg Bionic Syst. 2023, 4, 0016. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.E.; Choi, A.; Mun, J.H. Prediction of ground reaction forces during gait based on kinematics and a neural network model. J. Biomech. 2013, 46, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Jones, R.K.; Howard, D. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 2008, 41, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Dorschky, E.; Nitschke, M.; Seifer, A.K.; van den Bogert, A.J.; Eskofier, B.M. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models. J. Biomech. 2019, 95, 109278. [Google Scholar] [CrossRef] [PubMed]
- Karatsidis, A.; Jung, M.; Schepers, H.M.; Bellusci, G.; de Zee, M.; Veltink, P.H.; Andersen, M.S. Musculoskeletal model-based inverse dynamics analysis under ambulatory conditions using inertial motion capture. Med. Eng. Phys. 2019, 65, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Fluit, R.; Andersen, M.S.; Kolk, S.; Verdonschot, N.; Koopman, H.F.J.M. Prediction of ground reaction forces and moments during various activities of daily living. J. Biomech. 2014, 47, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Skals, S.; Jung, M.K.; Damsgaard, M.; Andersen, M.S. Prediction of ground reaction forces and moments during sports-related movements. Multibody Syst. Dyn. 2017, 39, 175–195. [Google Scholar] [CrossRef]
- Haraguchi, N.; Hase, K. Prediction of ground reaction forces and moments and joint kinematics and kinetics by inertial measurement units using 3D forward dynamics model. J. Biomech. Sci. Eng. 2024, 19, 23-00130. [Google Scholar] [CrossRef]
- Xiang, Y.; Arora, J.S.; Rahmatalla, S.; Abdel-Malek, K. Optimization-based dynamic human walking prediction: One step formulation. Int. J. Numer. Methods Eng. 2009, 79, 667–695. [Google Scholar] [CrossRef]
- Audu, M.L.; Kirsch, R.F.; Triolo, R.J. Experimental verification of a computational technique for determining ground reactions in human bipedal stance. J. Biomech. 2007, 40, 1115–1124. [Google Scholar] [CrossRef]
- Kouchi, M.; Kimura, M.; Mochimaru, M. Deformation of foot cross-section shapes during walking. Gait Posture 2009, 30, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Goonetilleke, R.S.; Zhao, J.; Li, W.; Witana, C.P. Foot deformations under different load-bearing conditions and their relationships to stature and body weight. Anthropol. Sci. 2009, 117, 77–88. [Google Scholar] [CrossRef]
- Delp, S.L.; Loan, J.P.; Hoy, M.G.; Zajac, F.E.; Topp, E.L.; Rosen, J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, G.T.; Zajac, F.E. A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 1989, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Anderson, F.C.; Pandy, M.G. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 1999, 2, 201–231. [Google Scholar] [CrossRef] [PubMed]
- Anderson, F.C.; Pandy, M.G. Dynamic optimization of human walking. J. Biomech. Eng. 2001, 123, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analysis dynamics simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- Maus, H.M.; Lipfert, S.W.; Gross, M.; Rummel, J.; Seyfarth, A. Upright human gait did not provide a major mechanical challenge for our ancestors. Nat. Commun. 2010, 1, 70. [Google Scholar] [CrossRef]
- Taylor, R. Interpretation of the correlation coefficient: A basic review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Villeger, D.; Costes, A.; Watier, B.; Moretto, P. An algorithm to decompose ground reaction forces and moments from a single force platform in walking gait. Med. Eng. Phys. 2014, 36, 1530–1535. [Google Scholar] [CrossRef]
- Choi, A.; Lee, J.M.; Mun, J.H. Ground reaction forces predicted by using artificial neural network during asymmetric movements. Int. J. Precis. Eng. Manuf. 2013, 14, 475–483. [Google Scholar] [CrossRef]
Method | Artificial Neural Network [12] | Smooth Transition Assumption [13] | Optimization Approach [16] | Foot Deformation Approach (This Study) | ||||
---|---|---|---|---|---|---|---|---|
Participants | N = 5 | N = 3 | N = 9 | N = 18 | ||||
RMSE (SD) (N/kg or N·m/kg) | rRMSE (SD) (%) | RMSE (SD) (N/kg or N·m/kg) | rRMSE (SD) (%) | RMSE (SD) (N/kg or N·m/kg) | rRMSE (SD) (%) | RMSE (SD) (N/kg or N·m/kg) | rRMSE (SD) (%) | |
Anterior GRF | 0.154 (0.057) | 7.3 (0.8) | 0.473 (0.068) | 10.9 (0.8) | 0.38 (0.07) | 9.3 (2.0) | 0.427 (0.135) | 11.4 (3.9) |
Medial GRF | 0.040 (0.022) | 10.9 (1.8) | 0.191 (0.034) | 20.0 (2.7) | 0.17 (0.04) | 14.9 (3.4) | 0.164 (0.029) | 17.0 (3.6) |
Vertical GRF | 0.649 (0.182) | 5.8 (1.0) | 0.710 (0.190) | 5.6 (1.5) | 0.74 (0.13) | 6.6 (1.1) | 1.422 (0.678) | 11.6 (5.4) |
Frontal GRM | 0.052 (0.029) | 22.8 (4.9) | 0.148 (0.013) | 32.5 (4.3) | 0.11 (0.02) | 22.9 (5.9) | 0.066 (0.028) | 19.5 (7.1) |
Sagittal GRM | 0.081 (0.045) | 9.9 (1.9) | 0.199 (0.106) | 12.2 (4.8) | 0.18 (0.05) | 12.4 (3.5) | 0.211 (0.080) | 13.9 (7.9) |
Transverse GRM | 0.032 (0.018) | 25.5 (4.5) | 0.039 (0.015) | 26.2 (9.4) | 0.22 (0.06) | 40.6 (11.3) | 0.018 (0.007) | 13.5 (5.4) |
Method | Artificial Neural Network [12] | Smooth Transition Assumption [13] | Foot Deformation Approach (This Study) | |||
---|---|---|---|---|---|---|
Participants | N = 5 | N = 3 | N = 18 | |||
RMSE (SD) (N·m/kg) | rRMSE (SD) (%) | RMSE (SD) (N·m/kg) | rRMSE (SD) (%) | RMSE (SD) (N·m/kg) | rRMSE (SD) (%) | |
Hip | ||||||
Frontal | 0.052 (0.006) | 5.1 (0.9) | 0.106 (0.008) | 9.9 (0.9) | 0.168 (0.046) | 14.5 (3.4) |
Transverse | 0.029 (0.040) | 12.0 (1.0) | 0.051 (0.006) | 15.0 (1.2) | 0.032 (0.007) | 11.3 (2.6) |
Sagittal | 0.056 (0.041) | 9.7 (2.0) | 0.469 (0.067) | 20.9 (2.1) | 0.307 (0.095) | 15.0 (2.5) |
Knee | ||||||
Frontal | 0.033 (0.019) | 6.4 (1.6) | 0.100 (0.017) | 15.3 (2.8) | 0.054 (0.023) | 16.3 (6.4) |
Transverse | 0.043 (0.036) | 13.8 (2.7) | 0.042 (0.012) | 25.4 (5.1) | 0.040 (0.016) | 18.4 (7.0) |
Sagittal | 0.020 (0.007) | 8.1 (1.8) | 0.307 (0.056) | 18.7 (2.9) | 0.187 (0.053) | 18.3 (3.7) |
Ankle | ||||||
Frontal | 0.053 (0.028) | 22.7 (5.0) | 0.134 (0.012) | 35.8 (4.6) | 0.039 (0.016) | 22.1 (7.2) |
Transverse | 0.033 (0.022) | 25.0 (4.4) | 0.039 (0.015) | 26.1 (9.3) | 0.053 (0.024) | 17.9 (6.9) |
Sagittal | 0.091 (0.052) | 10.5 (4.8) | 0.190 (0.112) | 9.7 (4.8) | 0.186 (0.096) | 10.8 (8.5) |
Noise Level | ±1 mm | ±10 mm | ±100 mm | |||
---|---|---|---|---|---|---|
RMSE (SD) (N/kg or N·m/kg) | rRMSE (SD) (%) | RMSE (SD) (N/kg or N·m/kg) | rRMSE (SD) (%) | RMSE (SD) (N/kg or N·m/kg) | rRMSE (SD) (%) | |
Anterior GRF | 0.426 (0.134) | 11.4 (3.9) | 0.432 (0.138) | 11.6 (4.1) | 0.739 (0.098) | 24.1 (2.1) |
Medial GRF | 0.165 (0.029) | 17.1 (3.6) | 0.178 (0.029) | 18.3 (4.3) | 0.213 (0.045) | 22.7 (3.5) |
Vertical GRF | 1.414 (0.678) | 11.5 (5.4) | 1.384 (0.680) | 11.2 (5.4) | 3.587 (0.397) | 31.6 (4.1) |
Frontal GRM | 0.068 (0.029) | 19.7 (7.4) | 0.105 (0.036) | 27.3 (10.8) | 0.397 (0.085) | 46.6 (9.3) |
Sagittal GRM | 0.213 (0.080) | 14.0 (7.8) | 0.245 (0.075) | 15.6 (7.2) | 0.420 (0.105) | 25.8 (6.2) |
Transverse GRM | 0.019 (0.007) | 13.7 (5.5) | 0.026 (0.009) | 16.9 (6.3) | 0.036 (0.009) | 19.5 (4.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haraguchi, N.; Hase, K. Multibody Model with Foot-Deformation Approach for Estimating Ground Reaction Forces and Moments and Joint Torques during Level Walking through Optical Motion Capture without Optimization Techniques. Sensors 2024, 24, 2792. https://doi.org/10.3390/s24092792
Haraguchi N, Hase K. Multibody Model with Foot-Deformation Approach for Estimating Ground Reaction Forces and Moments and Joint Torques during Level Walking through Optical Motion Capture without Optimization Techniques. Sensors. 2024; 24(9):2792. https://doi.org/10.3390/s24092792
Chicago/Turabian StyleHaraguchi, Naoto, and Kazunori Hase. 2024. "Multibody Model with Foot-Deformation Approach for Estimating Ground Reaction Forces and Moments and Joint Torques during Level Walking through Optical Motion Capture without Optimization Techniques" Sensors 24, no. 9: 2792. https://doi.org/10.3390/s24092792
APA StyleHaraguchi, N., & Hase, K. (2024). Multibody Model with Foot-Deformation Approach for Estimating Ground Reaction Forces and Moments and Joint Torques during Level Walking through Optical Motion Capture without Optimization Techniques. Sensors, 24(9), 2792. https://doi.org/10.3390/s24092792