A Triangular-Matrix-Based Spectral Encoding Method for Broadband Filtering and Reconstruction-Based Spectral Measurement
<p>The principle of BFRSM technique.</p> "> Figure 2
<p>The designed spectral transmittance. (<b>a</b>) The long-wavelength pass spectral transmittance corresponding to the designed triangular-matrix-based spectral encoding matrix; (<b>b</b>) the modified spectral transmittance with high optical throughput.</p> "> Figure 3
<p>The encoding scheme verification experiment layout: (<b>a</b>) shows the schematic diagram of the experiment and (<b>b</b>) shows the actual experiment equipment.</p> "> Figure 4
<p>The spectral transmittance of the actual encoding filters: (<b>a</b>) shows the all-longpass-filter transmittance and (<b>b</b>) shows the modified spectral transmittance of the longpass and shortpass filters.</p> "> Figure 5
<p>The comparison of the reference and reconstructed spectra: (<b>a</b>,<b>b</b>) shows two different reference spectra and the corresponding reconstructed spectrum using all-longpass filters and longpass–shortpass filters. The condition number and reconstruction RMSE are marked.</p> "> Figure 6
<p>Experiment configuration principle and equipment for BFRSM spectral imaging: (<b>a</b>) shows the configuration and accuracy verification principle of the BFRSM multi-spectral camera; (<b>b</b>) shows the actual experiment equipment; (<b>c</b>) shows the longpass encoding filters with non-ideal spectral transmittance property; and (<b>d</b>) shows the 16 arbitrarily selected filters for spectral transmittance.</p> "> Figure 7
<p>Spectral imaging experiment result: (<b>a</b>) shows the 550 nm spectral image of the target source; (<b>b</b>) shows the comparison between the reference and reconstructed spectra using arbitrary filter spectral encoding and (<b>c</b>) shows the relative deviation; (<b>d</b>) shows the comparison between the reference and reconstructed spectra using longpass filter spectral encoding and (<b>e</b>) shows the relative deviation.</p> ">
Abstract
:1. Introduction
2. Basic Principle
2.1. Basic BFRSM Measurement Model
2.2. Triangular-Matrix-Based Spectral Encoding
2.3. Ill-Posedness Estimation
3. Experimental Verification
3.1. Spectral Measurement under Precise Encoding Condition
3.2. Spectral Measurement under Imperfect Encoding Condition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of optical spectrometers. Science 2021, 371, eabe0722. [Google Scholar] [CrossRef]
- Li, A.; Yao, C.; Xia, J.; Wang, H.; Cheng, Q.; Penty, R.; Fainman, Y.; Pan, S. Advances in cost-effective integrated spectrometers. Light Sci. Appl. 2022, 11, 174. [Google Scholar] [CrossRef]
- Huang, L.; Luo, R.; Liu, X.; Hao, X. Spectral imaging with deep learning. Light Sci. Appl. 2022, 11, 61. [Google Scholar] [CrossRef]
- Chang, C.C.; Lee, H.N. On the estimation of target spectrum for filter array based spectrometers. Opt. Express 2008, 16, 1056–1061. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, C.C.; Kurokawa, U.; Choi, B.I. Accurate Sensing of LED Spectra via Low-Cost Spectrum Sensors. IEEE Sens. J. 2011, 11, 2869–2877. [Google Scholar] [CrossRef]
- Oliver, J.; Lee, W.; Lee, H.N. Filters with random transmittance for improving resolution in filter-array-based spectrometers. Opt. Express 2013, 21, 3969–3989. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Bawendi, M.G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Bian, L.; Fu, H.; Wang, L.; Zou, B.; Dai, Q.; Zhang, J.; Zhong, H. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci. Appl. 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bian, L.; Gu, K.; Fu, H.; Yang, G.; Zhong, H.; Zhang, J. A Near-Infrared Miniature Quantum Dot Spectrometer. Adv. Opt. Mater. 2021, 9, 2100376. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, Q.; Wang, H.; Guo, J.; Lu, H.; Hao, H.; Guo, S.; Tu, X.; Zhang, L.; Jia, X.; et al. Single-Detector Spectrometer Using a Superconducting Nanowire. Nano Lett. 2021, 21, 9625–9632. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Albrow-Owen, T.; Cui, H.; Alexander-Webber, J.; Gu, F.; Wang, X.; Wu, T.; Zhuge, M.; Williams, C.; Wang, P.; et al. Single-nanowire spectrometers. Science 2019, 365, 1017–1020. [Google Scholar] [CrossRef]
- Yao, C.; Chen, M.; Yan, T.; Ming, L.; Cheng, Q.; Penty, R. Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics. Light Sci. Appl. 2023, 12, 156. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, S.; Chen, A.; Zhou, M.; Luk, T.S.; James, A.; Nogan, J.; Ross, W.; Joe, G.; Shahsafi, A.; et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 2019, 10, 1020. [Google Scholar] [CrossRef]
- Xiong, J.; Cai, X.S.; Cui, K.Y.; Huang, Y.; Yang, J.W.; Zhu, H.B.; Li, W.Z.; Hong, B.; Rao, S.J.; Zheng, Z.K.; et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 2022, 9, 461–468. [Google Scholar] [CrossRef]
- Zhang, W.; Song, H.; He, X.; Huang, L.; Zhang, X.; Zheng, J.; Shen, W.; Hao, X.; Liu, X. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci. Appl. 2021, 10, 108. [Google Scholar] [CrossRef]
- August, I.; Oiknine, Y.; Abuleil, M.; Abdulhalim, I.; Stern, A. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder. Sci. Rep. 2016, 6, 23524. [Google Scholar] [CrossRef] [PubMed]
- Oiknine, Y.; August, I.; Blumberg, D.G.; Stern, A. NIR hyperspectral compressive imager based on a modified Fabry-Perot resonator. J. Opt. 2018, 20, 044011. [Google Scholar] [CrossRef]
- Shmilovich, S.; Oiknine, Y.; Abuleil, M.; Abdulhalim, I.; Blumberg, D.G.; Stern, A. Dual-camera design for hyperspectral and panchromatic imaging, using a wedge shaped liquid crystal as a spectral multiplexer. Sci. Rep. 2020, 10, 3455. [Google Scholar] [CrossRef] [PubMed]
- Thuillier, G.; Zhu, P.; Snow, M.; Zhang, P.; Ye, X. Characteristicistics of solar-irradiance spectra from measurements, modeling, and theoretical approach. Light Sci. Appl. 2022, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gao, D.; Chen, Q.; Chen, J. Multi-spectral imaging via nanostructured random broadband filtering. Opt. Express 2020, 28, 4859–4875. [Google Scholar] [CrossRef] [PubMed]
- August, Y.; Stern, A. Compressive sensing spectrometry based on liquid crystal devices. Opt. Lett. 2013, 38, 4996–4999. [Google Scholar] [CrossRef] [PubMed]
- Oiknine, Y.; August, I.; Blumberg, D.G.; Stern, A. Compressive sensing resonator spectroscopy. Opt. Lett. 2017, 42, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.; Lee, W.; Park, S.J.; Lee, H. Improving resolution of miniature spectrometers by exploiting sparse nature of signals. Opt. Express 2012, 20, 2613–2625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Dong, Y.; Fu, H.; Huang, S.L.; Zhang, L. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning. Sensors 2018, 18, 644. [Google Scholar] [CrossRef] [PubMed]
- Cerjan, B.; Halas, N.J. Towards a nanophotonic nose: A compressive sensing enhanced, optoelectronic mid-infrared spectrometer. ACS Photonics 2018, 6, 79–86. [Google Scholar] [CrossRef]
- Wan, Y.; Fan, X.; Xu, B.; He, Z. Reconstructive Spectrum Analyzer with High-Resolution and Large-Bandwidth Using Physical-Model and Data-Driven Model Combined Neural Network. Laser Photonics Rev. 2023, 17, 2201018. [Google Scholar] [CrossRef]
- Fellgett, P. Conclusions on multiplex methods. J. Phys. Colloq. 1967, 28, C2-165-C2-171. [Google Scholar] [CrossRef]
- Grifths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectrometry; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Wang, X.; Li, Z. A spectrally tunable calibration source using Ebert-Fastie configuration. Meas. Sci. Technol. 2018, 29, 035903. [Google Scholar] [CrossRef]
Uncertainty Source | Uncertainty Magnitude (k = 2) |
---|---|
Uniformity of the integrating sphere | 1.0% |
Uncertainty of the calibrated Gershun radiometer | 0.5% |
Stability of the laser source | 0.8% |
Uncertainty of the readout circuit | 0.2% |
Uncertainty of the spectral transmittance | 1.2% |
Calibration uncertainty of the reference spectrometer | 3.5% |
Combined uncertainty | 4.0% |
Uncertainty Source | Uncertainty Magnitude (k = 2) |
---|---|
Uniformity of the integrating sphere | 1.0% |
Uncertainty of the industrial camera response | 6.0% |
Noise of the industrial camera signal (repeatability) | 4.2% |
Stability of the laser source | 1.0% |
Uncertainty of the readout circuit | 0.2% |
Uncertainty of the spectral transmittance | 1.2% |
Calibration uncertainty of the reference spectrometer | 3.5% |
Combined uncertainty | 8.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, P.; Wang, X. A Triangular-Matrix-Based Spectral Encoding Method for Broadband Filtering and Reconstruction-Based Spectral Measurement. Sensors 2024, 24, 1215. https://doi.org/10.3390/s24041215
Yue P, Wang X. A Triangular-Matrix-Based Spectral Encoding Method for Broadband Filtering and Reconstruction-Based Spectral Measurement. Sensors. 2024; 24(4):1215. https://doi.org/10.3390/s24041215
Chicago/Turabian StyleYue, Pinliang, and Xiaoxu Wang. 2024. "A Triangular-Matrix-Based Spectral Encoding Method for Broadband Filtering and Reconstruction-Based Spectral Measurement" Sensors 24, no. 4: 1215. https://doi.org/10.3390/s24041215
APA StyleYue, P., & Wang, X. (2024). A Triangular-Matrix-Based Spectral Encoding Method for Broadband Filtering and Reconstruction-Based Spectral Measurement. Sensors, 24(4), 1215. https://doi.org/10.3390/s24041215