A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning
<p>Schematic of the filter-based spectrometer.</p> "> Figure 2
<p>The experimental optical system.</p> "> Figure 3
<p>Transmission functions of (<b>a</b>) some filters and (<b>b</b>) the cut-off filter.</p> "> Figure 4
<p>The ground truth spectra (red) and the reconstructed narrowband spectra (blue) with the crest centering at (<b>a</b>) 466.5 nm, (<b>b</b>) 501.5 nm, (<b>c</b>) 558.5 nm and (<b>d</b>) 668.5 nm. The passband and the crest of the reconstructed spectra can be accurately determined.</p> "> Figure 5
<p>The ground truth spectra (red) and the reconstructed spectra (blue) of (<b>a</b>) the halogen lamp, (<b>b</b>–<b>d</b>) the halogen lamp with different additional filters. We combine the <span class="html-italic">l</span><sub>1</sub>-norm minimization with the dictionary learning to reconstruct the spectra.</p> "> Figure 6
<p>The ground truth spectra (red) and the reconstructed spectra (blue) of (<b>a</b>) LED, (<b>b</b>–<b>d</b>) LED with different additional filters. We combine the <span class="html-italic">l</span><sub>1</sub>-norm minimization with the dictionary learning to reconstruct the spectra.</p> "> Figure 7
<p>The ground truth (red) and the reconstructed spectra of (<b>a</b>) the halogen lamp and (<b>b</b>) LED using the learned dictionary (blue) and Gaussian kernels (green).</p> "> Figure 8
<p>The effect of the number of filters on the reconstruction quality of (<b>a</b>) the halogen lamp and (<b>b</b>) LED.</p> "> Figure 9
<p>(<b>a</b>) All of the eigenvalues and (<b>b</b>) the ten largest eigenvalues of PCA.</p> "> Figure A1
<p>The transmission functions of the 210 filters used in the experiments. The horizontal axis is the wavelength (nm) ranging from 300 nm to 800 nm, the vertical axis represents the transmittance.</p> ">
Abstract
:1. Introduction
2. Modeling and Implementation of the Prototype
2.1. System Model and Problem Formulation
2.2. Design and Implementation of the Prototype
3. Proposed Algorithm of Spectral Reconstruction
3.1. Sparse Optimization
3.2. Dictionary Learning
- Sparse Approximation Stage: keep the dictionary fixed, and then use sparse optimization above to calculate the sparse representation of in the dictionary . That is to say, solve the inverse problem by sparse optimization;
4. Results
4.1. Directly Sparse Spectra
4.2. Non-Directly Sparse Spectra
4.2.1. Halogen Lamp as the Source
4.2.2. Light-Emitting Diode as the Source
4.3. Comparison between Dictionary Learning and Gaussian Kernels
4.4. Further Exploration
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix B
References
- Bacon, C.P.; Mattley, Y.; DeFrece, R. Miniature spectroscopic instrumentation: Applications to biology and chemistry. Rev. Sci. Instrum. 2004, 75, 1–16. [Google Scholar] [CrossRef]
- Wolffenbuttel, R.F. State-of-the-art in integrated optical microspectrometers. IEEE Trans. Instrum. Meas. 2004, 53, 197–202. [Google Scholar] [CrossRef]
- Mini-Spectrometers. Available online: http://www.hamamatsu.com/resources/pdf/ssd/mini-spectro_kacc0002e.pdf (accessed on 23 November 2017).
- Miniature Spectrometers. Available online: http://www.oceanoptics.cn/products/spectrometers (accessed on 23 November 2017).
- Xu, Z.C.; Wang, Z.L.; Sullivan, M.E.; Brady, D.J.; Foulger, S.H.; Adibi, A. Multimodal multiplex spectroscopy using photonic crystals. Opt. Express 2003, 11, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
- Emadi, A.; Wu, H.; de Graaf, G.; Wolffenbuttel, R. Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter. Opt. Express 2012, 20, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Redding, B.; Liew, S.F.; Sarma, R.; Cao, H. Compact spectrometer based on a disordered photonic chip. Nat. Photonics 2013, 7, 746–751. [Google Scholar] [CrossRef]
- Yang, T.; Li, W.; Huang, W.; Ho, H.P. Novel high resolution miniature spectrometer using an integrated diffraction hole array. In Proceedings of the Opto-Electronics and Communications Conference, Busan, Korea, 2–6 July 2012; pp. 865–866. [Google Scholar]
- Yang, T.; Xu, C.; Ho, H.-P.; Zhu, Y.-Y.; Hong, X.-H.; Wang, Q.-J.; Chen, Y.-C.; Li, X.-A.; Zhou, X.-H.; Yi, M.-D.; et al. Miniature spectrometer based on diffraction in a dispersive hole array. Opt. Lett. 2015, 40, 3217–3220. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, C.; Wang, Z.; Ho, H. An ultra compact spectrometer based on the optical transmission through a micro interferometer array. Optik 2013, 124, 1377–1385. [Google Scholar] [CrossRef]
- August, Y.; Stern, A. Compressive sensing spectrometry based on liquid crystal devices. Opt. Lett. 2013, 38, 4996–4999. [Google Scholar] [CrossRef] [PubMed]
- Redding, B.; Popoff, S.M.; Cao, H. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express 2013, 21, 6584–6600. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.F.; Redding, B.; Choma, M.A.; Tagare, H.D.; Cao, H. Broadband multimode fiber spectrometer. Opt. Lett. 2016, 41, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Piels, M.; Zibar, D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth. Sci. Rep. 2017, 7, 43454. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.W.; Chen, X.S.; Lu, W.; Wang, L.; Wu, Y.G.; Wang, Z.S. Integrated optical filter arrays fabricated by using the combinatorial etching technique. Opt. Lett. 2006, 31, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-W.; Xia, C.; Chen, X.; Lu, W.; Li, M.; Wang, H.; Zheng, W.; Zhang, T. Concept of a high-resolution miniature spectrometer using an integrated filter array. Opt. Lett. 2007, 32, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lee, H.-N. On the estimation of target spectrum for filter-array based spectrometers. Opt. Express 2008, 16, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, U.; Il Choi, B.; Chang, C.-C. Filter-based miniature spectrometers: Spectrum reconstruction using adaptive regularization. IEEE Sens. J. 2011, 11, 1556–1563. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, N.-T.; Kurokawa, U.; Il Choi, B. Spectrum reconstruction for filter-array spectrum sensor from sparse template selection. Opt. Eng. 2011, 50, 114402. [Google Scholar] [CrossRef]
- Oliver, J.; Lee, W.; Park, S.; Lee, H.-N. Improving resolution of miniature spectrometers by exploiting sparse nature of signals. Opt. Express 2012, 20, 2613–2625. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Menon, R. Computational spectrometer based on a broadband diffractive optic. Opt. Express 2014, 22, 14575–14587. [Google Scholar] [CrossRef] [PubMed]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Baraniuk, R.G. Compressive sensing. IEEE Signal Process. Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Tropp, J.A.; Wright, S.J. Computational methods for sparse solution of linear inverse problems. Proc. IEEE 2010, 98, 948–958. [Google Scholar] [CrossRef]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Engan, K.; Skretting, K.; Husoy, J.H. Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation. Digit. Signal Process. 2007, 17, 32–49. [Google Scholar] [CrossRef]
- Skretting, K.; Engan, K. Recursive least squares dictionary learning algorithm. IEEE Trans. Signal Process. 2010, 58, 2121–2130. [Google Scholar] [CrossRef]
- Tosic, I.; Frossard, P. Dictionary learning. IEEE Signal Process. Mag. 2011, 28, 27–38. [Google Scholar] [CrossRef]
- Figueiredo, M.A.T.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [Google Scholar] [CrossRef]
- Spectra Database Hosted at the University of Arizona. Available online: http://spectra.arizona.edu/ (accessed on 7 May 2016).
- Aharon, M.; Elad, M.; Bruckstein, A.M. K-SVD and its non-negative variant for dictionary design. Proc. SPIE 2005, 5914. [Google Scholar] [CrossRef]
- CVX: Matlab Software for Disciplined Convex Programming. Available online: http://cvxr.com/cvx/ (accessed on 25 October 2015).
- Kim, S.-J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An interior-point method for large-scale l1-regularized least squares. IEEE J. Sel. Top. Signal Process. 2007, 1, 606–617. [Google Scholar] [CrossRef]
- Becker, S.R.; Candès, E.J.; Grant, M.C. Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 2011, 3, 165–218. [Google Scholar] [CrossRef]
- TFOCS: Templates for First-Order Conic Solvers. Available online: http://cvxr.com/tfocs/ (accessed on 1 January 2017).
- Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [Google Scholar] [CrossRef] [PubMed]
- A Tutorial on Principal Components Analysis. Available online: http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf (accessed on 23 November 2017).
- A Tutorial on Principal Component Analysis. Available online: https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf (accessed on 23 November 2017).
- Principal Component Analysis. Available online: http://www.stat.columbia.edu/~fwood/Teaching/w4315/Fall2009/pca.pdf (accessed on 23 November 2017).
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Dong, Y.; Fu, H.; Huang, S.-L.; Zhang, L. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning. Sensors 2018, 18, 644. https://doi.org/10.3390/s18020644
Zhang S, Dong Y, Fu H, Huang S-L, Zhang L. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning. Sensors. 2018; 18(2):644. https://doi.org/10.3390/s18020644
Chicago/Turabian StyleZhang, Shang, Yuhan Dong, Hongyan Fu, Shao-Lun Huang, and Lin Zhang. 2018. "A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning" Sensors 18, no. 2: 644. https://doi.org/10.3390/s18020644