A Lightweight Image Super-Resolution Reconstruction Algorithm Based on the Residual Feature Distillation Mechanism
<p>The architecture of a single-image super-resolution network based on the residual feature distillation mechanism.</p> "> Figure 2
<p>Residual feature distillation block.</p> "> Figure 3
<p>Spatial attention module.</p> "> Figure 4
<p>Effect of RFDB module structure on the model.</p> "> Figure 5
<p>Results of ablation experiments on GFF and SA (validation set).</p> "> Figure 6
<p>Image visual effects of different algorithms with scale factor ×2.</p> "> Figure 7
<p>Image visual effects of different algorithms with scale factor ×3.</p> "> Figure 8
<p>Image visual effects of different algorithms with scale factor ×4.</p> "> Figure 9
<p>Comparison of network parameters and the PSNR correspondence for different algorithms.</p> ">
Abstract
:1. Introduction
- We propose a single-image super-resolution network (SISR-RFDM) based on the residual feature distillation mechanism. It achieves fast and accurate image super-resolution, demonstrating competitive results with a moderate number of parameters in the SISR task.
- We design an attention module (SA) that focuses on spatial regions, treating areas containing abundant information such as boundaries and textures differently. This allows the network to concentrate more on these regions, providing more useful information for image detail recovery.
- We introduce the global feature fusion (GFF) structure, which globally fuses the output features of each residual block. Using hierarchical feature fusion, we reduce feature redundancy and enhance inter-layer information flow and feature reuse.
2. Related Work
2.1. Single-Image Super-Resolution Based on Deep Learning
2.2. Attention Mechanism
3. Methods
3.1. Network Overview
3.2. Residual Feature Distillation Block
3.2.1. Residual Feature Distillation Mechanism
3.2.2. Spatial Attention Mechanism
3.3. Loss Function
4. Experimental Results and Analysis
4.1. Datasets and Metrics
4.2. Implementation Details
4.3. Ablation Study
4.3.1. Impact of the Residual Feature Distillation Module on the Network
4.3.2. Impact of Global Feature Fusion and Spatial Attention on the Network
4.4. Comparison with State-of-the-Art Methods
4.4.1. Objective Quantitative Analysis
4.4.2. Comparison of Additional Performance Metrics
4.4.3. Subjective Visual Perception
4.5. Network Parameter Quantity Visualization
4.6. Comparison with Transformer-Based Algorithms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Liu, X.; Li, N.; Zhang, Y. A High-precision Water Segmentation Algorithm for SAR Image and its Application. J. Electron. Inf. Technol. 2021, 43, 700–707. [Google Scholar]
- Chen, S.; Cao, S.; Cui, M.; Lian, Q. Image blind deblurring algorithm based on deep multi-level wavelet transform. J. Electron. Inf. Technol. 2021, 43, 154–161. [Google Scholar]
- Ying, Y.U.; Chaoyue, X.U. Image super-resolution reconstruction network based on dynamic pyramid and subspace attention. Comput. Sci. 2022, 49, 210900202. [Google Scholar]
- Zijie, M.; Xijun, Z.; Guoqiang, R.; Tao, L.; Hu, Y.; Dun, L. Gauss-Lorenz hybrid prior super resolution reconstruction with mixed sparse representation. Opto-Electron. Eng. 2021, 48, 210299-1. [Google Scholar]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Hwang, J.W.; Lee, H.S. Adaptive image interpolation based on local gradient features. IEEE Signal Process. Lett. 2004, 11, 359–362. [Google Scholar] [CrossRef]
- Ni, K.S.; Nguyen, T.Q. An adaptable $ k $-nearest neighbors algorithm for MMSE image interpolation. IEEE Trans. Image Process. 2009, 18, 1976–1987. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhou, B. Image super-resolution reconstruction network with dual attention and structural similarity measure. Chin. J. Liq. Cryst. Disp. 2022, 37, 367–375. [Google Scholar]
- Wei, S.; Zhou, X.; Wu, W.; Pu, Q.; Wang, Q.; Yang, X. Medical image super-resolution by using multi-dictionary and random forest. Sustain. Cities Soc. 2018, 37, 358–370. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Chanussot, J.; Wei, Z. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution. IEEE Trans. Image Process. 2019, 28, 3034–3047. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, J.; Li, T.; Hao, L.; Duan, H. Super-resolution geomagnetic reference map reconstruction based on dictionary learning and sparse representation. IEEE Access 2020, 8, 84316–84325. [Google Scholar] [CrossRef]
- Ooi, Y.K.; Ibrahim, H. Deep learning algorithms for single image super-resolution: A systematic review. Electronics 2021, 10, 867. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-trained image processing transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12299–12310. [Google Scholar]
- Wang, X.; Yi, J.; Guo, J.; Song, Y.; Lyu, J.; Xu, J.; Min, H. A review of image super-resolution approaches based on deep learning and applications in remote sensing. Remote Sens. 2022, 14, 5423. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part IV 13. Springer International Publishing: New York, NY, USA, 2014; pp. 184–199. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14. Springer International Publishing: New York, NY, USA, 2016; pp. 391–407. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3147–3155. [Google Scholar]
- Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4799–4807. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar]
- Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale residual network for image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 517–532. [Google Scholar]
- Kong, X.; Zhao, H.; Qiao, Y.; Dong, C. Classsr: A general framework to accelerate super-resolution networks by data characteristic. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12016–12025. [Google Scholar]
- Song, D.; Wang, Y.; Chen, H.; Xu, C.; Xu, C.; Tao, D. Addersr: Towards energy efficient image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15648–15657. [Google Scholar]
- Hui, Z.; Wang, X.; Gao, X. Fast and accurate single image super-resolution via information distillation network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 723–731. [Google Scholar]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight image super-resolution with information multi-distillation network. In Proceedings of the 27th Acm International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2024–2032. [Google Scholar]
- Cheng, D.Q.; Guo, X.; Chen, L.L.; Kou, Q.Q.; Zhao, K.; Gao, R. Image super-resolution reconstruction from multi-channel recursive residual network. J. Image Graph. 2021, 26, 605–618. [Google Scholar]
- He, X.; Mo, Z.; Wang, P.; Liu, Y.; Yang, M.; Cheng, J. Ode-inspired network design for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1732–1741. [Google Scholar]
- Li, L.; Feng, H.; Zheng, B.; Ma, L.; Tian, J. DID: A nested dense in dense structure with variable local dense blocks for super-resolution image reconstruction. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 2582–2589. [Google Scholar]
- Gao, G.; Wang, Z.; Li, J.; Li, W.; Yu, Y.; Zeng, T. Lightweight bimodal network for single-image super-resolution via symmetric cnn and recursive transformer. arXiv 2022, arXiv:2204.13286. [Google Scholar]
- Choi, H.; Lee, J.; Yang, J. N-gram in swin transformers for efficient lightweight image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 2071–2081. [Google Scholar]
- Luo, X.; Xie, Y.; Zhang, Y.; Qu, Y.; Li, C.; Fu, Y. Latticenet: Towards lightweight image super-resolution with lattice block. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXII 16. Springer International Publishing: New York, NY, USA, 2020; pp. 272–289. [Google Scholar]
- Liu, J.; Tang, J.; Wu, G. Residual feature distillation network for lightweight image super-resolution. In Proceedings of the Computer Vision–ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; Proceedings, Part III 16. Springer: Cham, Switzerland, 2020; pp. 41–55. [Google Scholar]
- Huang, H.; Shen, L.; He, C.; Dong, W.; Huang, H.; Shi, G. Lightweight image super-resolution with hierarchical and differentiable neural architecture search. arXiv 2021, arXiv:2105.03939. [Google Scholar]
- Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 2014, 27, 2204–2212. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [PubMed]
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 126–135. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the 23rd British Machine Vision Conference (BMVC), Surrey, UK, 3–7 September 2012. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the Curves and Surfaces: 7th International Conference, Avignon, France, 24–30 June 2010; Revised Selected Papers 7. Springer: Berlin/Heidelberg, Germany, 2012; pp. 711–730. [Google Scholar]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
Scale | Base | GFF | SA | Set5 | Set14 | BSD100 | Urban100 |
---|---|---|---|---|---|---|---|
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | ||||
×4 | √ | × | × | 32.2029/0.8927 | 28.6432/0.7826 | 27.5460/0.7341 | 26.1329/0.7842 |
√ | × | √ | 32.2160/0.8943 | 28.6571/0.7840 | 27.5622/0.7357 | 26.1523/0.7858 | |
√ | √ | × | 32.2190/0.8946 | 28.6590/0.7841 | 27.5631/0.7360 | 26.1541/0.7861 | |
√ | √ | √ | 32.2341/0.8958 | 28.6729/0.7843 | 27.5913/0.7362 | 26.1842/0.7864 |
Algotithm | Scale | Set5 | Set14 | BSD100 | Urban100 |
---|---|---|---|---|---|
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | ||
Bicubic | ×2 | 33.69/0.9284 | 30.34/0.8675 | 29.57/0.8438 | 26.88/0.8438 |
SRCNN [13] | ×2 | 36.31/0.9535 | 32.26/0.9053 | 31.13/0.8859 | 29.30/0.8939 |
FSRCNN [14] | ×2 | 36.78/0.9561 | 32.57/0.9089 | 31.38/0.8894 | 29.74/0.9009 |
ESPCN [16] | ×2 | 36.47/0.9544 | 32.32/0.9067 | 31.17/0.8867 | 29.21/0.8924 |
VDSR [18] | ×2 | 37.16/0.9582 | 32.87/0.9126 | 31.75/0.8951 | 30.74/0.9146 |
DRRN [20] | ×2 | 37.74/0.9591 | 33.23/0.9136 | 32.05/0.8973 | 31.23/0.9188 |
IMDN [28] | ×2 | 37.91/0.9594 | 33.59/0.9169 | 32.15/0.8987 | 32.12/0.9278 |
RFDN [30] | ×2 | 38.05/0.9606 | 33.68/0.9184 | 32.25/0.9005 | 32.19/0.9283 |
LBNet [33] | ×2 | - | - | - | - |
NGswin [34] | ×2 | 38.05/0.9610 | 33.79/0.9199 | 32.27/0.9008 | 32.53/0.9324 |
SISR-RFDM (ours) | ×2 | 38.11/0.9613 | 33.80/0.9193 | 32.26/0.9006 | 32.48/0.9317 |
Bicubic | ×3 | 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 |
SRCNN [13] | ×3 | 32.60/0.9088 | 29. 21/0.8198 | 28.30/0.7840 | 26.04/0.7955 |
FSRCNN [14] | ×3 | 32.51/0.9054 | 29. 17/0.8181 | 28.24/0.7821 | 25.97/0.7917 |
ESPCN [16] | ×3 | 32.56/0.9073 | 29. 19/0.8195 | 28.26/0.7834 | 25.98/0.7929 |
VDSR [18] | ×3 | 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 |
DRRN [20] | ×3 | 34.03/0.9244 | 29.96/0.8349 | 28.95/0.8004 | 27.53/0.8378 |
IMDN [28] | ×3 | 34.32/0.9259 | 30.31/0.8409 | 29.07/0.8036 | 28.15/0.8510 |
RFDN [30] | ×3 | 34.41/0.9273 | 30.34/0.8420 | 29.09/0.8050 | 28.21/0.8525 |
LBNet [33] | ×3 | 34.47/0.9277 | 30.38/0.8417 | 29.13/0.8061 | 28.42/0.8599 |
NGswin [34] | ×3 | 34.52/0.9282 | 30.53/0.8456 | 29.19/0.8089 | 28.52/0.8603 |
SISR-RFDM (ours) | ×3 | 34.55/0.9283 | 30.54/0.8463 | 29.20/0.8082 | 28.66/0.8624 |
Bicubic | ×4 | 28.42/0.8104 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 |
SRCNN [13] | ×4 | 30.22/0.8597 | 27.40/0.7489 | 26.78/0.7074 | 24.29/0.7141 |
FSRCNN [14] | ×4 | 30.44/0.8595 | 27.51/0.7507 | 26.85/0.7090 | 24.44/0.7188 |
ESPCN [16] | ×4 | 30.25/0.8566 | 27.37/0.7487 | 26.77/0.7072 | 24.26/0.7114 |
VDSR [18] | ×4 | 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 |
DRRN [20] | ×4 | 31.68/0.8888 | 28.21/0.7721 | 27.38/0.7284 | 25.44/0.7638 |
SRDenseNet [21] | ×4 | 32.02/0.8934 | 28.50/0.7782 | 27.53/0.7337 | 26.05/0.7819 |
IMDN [28] | ×4 | 32.21/0.8948 | 28.57/0.7803 | 27.54/0.7342 | 26.03/0.7829 |
RFDN [30] | ×4 | 32.26/0.8960 | 28.63/0.7836 | 27.61/0.7380 | 26.22/0.7911 |
LBNet [33] | ×4 | 32.29/0.8960 | 28.68/0.7832 | 27.62/0.7382 | 26.27/0.7906 |
NGswin [34] | ×4 | 32.33/0.8963 | 28.78/0.7859 | 27.66/0.7396 | 26.45/0.7963 |
SISR-RFDM (ours) | ×4 | 32.43/0.8972 | 28.77/0.7858 | 27.69/0.7406 | 26.47/0.7980 |
Method | Parameters (M) | LPIPS | FID | Time (s) |
---|---|---|---|---|
Bicubic | - | 0.602 | 56.89 | 0.005 |
SRCNN [15] | 0.02 | 0.444 | 35.12 | 0.007 |
FSRCNN [16] | 0.25 | 0.402 | 33.92 | 0.015 |
ESPCN [18] | 0.17 | 0.376 | 32.84 | 0.004 |
VDSR [20] | 0.66 | 0.362 | 31.92 | 0.027 |
DRRN [22] | 1.98 | 0.341 | 30.72 | 0.077 |
IMDN [29] | 0.63 | 0.315 | 29.67 | 0.027 |
RFDN [36] | 2.27 | 0.307 | 28.89 | 0.086 |
LBNet [33] | 11.8 | 0.298 | 28.41 | 0.161 |
NGswin [34] | 4.45 | 0.297 | 28.38 | 0.049 |
SwinIR-light [47] | 1.52 | 0.292 | 28.15 | 0.016 |
SISR-RFDM (ours) | 0.77 | 0.281 | 27.38 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Xie, K.; Wen, C.; He, J.; Zhang, W. A Lightweight Image Super-Resolution Reconstruction Algorithm Based on the Residual Feature Distillation Mechanism. Sensors 2024, 24, 1049. https://doi.org/10.3390/s24041049
Yu Z, Xie K, Wen C, He J, Zhang W. A Lightweight Image Super-Resolution Reconstruction Algorithm Based on the Residual Feature Distillation Mechanism. Sensors. 2024; 24(4):1049. https://doi.org/10.3390/s24041049
Chicago/Turabian StyleYu, Zihan, Kai Xie, Chang Wen, Jianbiao He, and Wei Zhang. 2024. "A Lightweight Image Super-Resolution Reconstruction Algorithm Based on the Residual Feature Distillation Mechanism" Sensors 24, no. 4: 1049. https://doi.org/10.3390/s24041049
APA StyleYu, Z., Xie, K., Wen, C., He, J., & Zhang, W. (2024). A Lightweight Image Super-Resolution Reconstruction Algorithm Based on the Residual Feature Distillation Mechanism. Sensors, 24(4), 1049. https://doi.org/10.3390/s24041049