Deep Learning Algorithms for Single Image Super-Resolution: A Systematic Review
<p>PRISMA flowchart of the paper selection process. (CNN stands for convolutional neural network, RNN stands for recurrent neural network, CT stands for computed tomography, MRI stands for magnetic resonance imaging, PET stands for positron emission computed tomography).</p> "> Figure 2
<p>SRCNN network structure (LR stands for low-resolution, HR stands for high-resolution).</p> "> Figure 3
<p>FSRCNN network structure.</p> "> Figure 4
<p>ESPCN network structure.</p> "> Figure 5
<p>VDSR network structure (ReLU stands for Rectifier Linear Unit).</p> "> Figure 6
<p>EDSR network structure.</p> "> Figure 7
<p>MCSR network structure.</p> "> Figure 8
<p>CRN network structure.</p> "> Figure 9
<p>ERN network structure.</p> "> Figure 10
<p>DRCN network structure.</p> "> Figure 11
<p>(<b>a</b>) DRRN network structure; (<b>b</b>) Network structure of recursive block in DRRN.</p> "> Figure 12
<p>GLRL network structure (PReLU stands for Parametric Rectifier Linear Unit).</p> "> Figure 13
<p>FGLRL network structure.</p> "> Figure 14
<p>DRDN network structure.</p> "> Figure 15
<p>SRDenseNet network structure.</p> "> Figure 16
<p>RDN network structure.</p> "> Figure 17
<p>Dilated-RDN network structure (OUnit stands for optimized unit).</p> "> Figure 18
<p>DSAN network structure (DSAB stands for dense space attention block).</p> "> Figure 19
<p>DBCN network structure.</p> "> Figure 20
<p>SICNN network structure.</p> "> Figure 21
<p>Network design strategies: (<b>a</b>) Linear network; (<b>b</b>) Residual learning; (<b>c</b>) Recursive learning; (<b>d</b>) Dense connections; (<b>e</b>) Dual-branch learning.</p> ">
Abstract
:1. Introduction
- (1)
- A brief introduction to each proposed network
- (2)
- Pros and cons of each proposed network
- (3)
- Advantages and disadvantages for each upsampling module used
- (4)
- Pros and cons of each network design strategy deployed
2. Methodology
2.1. Search Strategy
2.2. Study Selection
3. Results
3.1. Datasets
3.2. Loss Function
3.3. Evaluation Metrics
3.4. Algorithms
3.4.1. Super-Resolution Convolutional Neural Network (SRCNN)
3.4.2. Fast Super-Resolution Convolutional Neural Network (FSRCNN)
3.4.3. Efficient Sub-Pixel Convolutional Neural Network (ESPCN)
3.4.4. Very Deep Super Resolution (VDSR)
3.4.5. Enhanced Deep Residual Network (EDSR)
3.4.6. Multi-Connected Convolutional Network for Super-Resolution (MCSR)
3.4.7. Cascading Residual Network (CRN)
3.4.8. Enhanced Residual Network (ERN)
3.4.9. Deep-Recursive Convolutional Network (DRCN)
3.4.10. Deep-Recursive Residual Network (DRRN)
3.4.11. Global Learning Residual Learning Network (GLRL)
3.4.12. Fast Global Learning Residual Learning Network (FGLRL)
3.4.13. Deep Residual Dense Network (DRDN)
3.4.14. Super Resolution Dense Connected Convolutional Network (SRDenseNet)
3.4.15. Residual Dense Network (RDN)
3.4.16. Dilated Residual Dense Network (Dilated-RDN)
3.4.17. Dense Space Attention Network (DSAN)
3.4.18. Dual-Branch Convolutional Neural Network (DBCN)
3.4.19. Single Image Convolutional Neural Network (SICNN)
3.4.20. Summary
4. Discussion
4.1. Upsampling Modules
4.2. Network Design Strategies
4.3. Number of Filter Channel, Number of Filter Sizes, Depth of Network
4.4. Domain-Specific Applications
4.4.1. Medical
4.4.2. Surveillance
4.4.3. Biometric Information Identification
4.5. Benefit of CNN-Based Method over Traditional Method
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, K.; Yang, S.; Dong, R.; Wang, X.; Huang, J. Survey of single image super-resolution reconstruction. IET Image Process. 2020, 14, 2273–2290. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.; Barnes, N. A deep journey into super-resolution: A survey. arXiv 2019, arXiv:1904.07523. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hoi, S.C. Deep Learning for Image Super-resolution: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Hu, Y.; Luo, Y.; Zhang, T. Brief Survey of Single Image Super-Resolution Reconstruction Based on Deep Learning Approaches. Sens. Imaging: Int. J. 2020, 21, 1–20. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Zhang, W.; Wang, R.; Hou, F. Deep learning methods in real-time image super-resolution: A survey. J. Real-Time Image Process. 2020, 17, 1885–1909. [Google Scholar] [CrossRef]
- Nasrollahi, K.; Moeslund, T.B. Super-resolution: A comprehensive survey. Mach. Vis. Appl. 2014, 25, 1423–1468. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.S.; Leung, K.T. Super-resolution reconstruction based on linear interpolation of wavelet coefficients. Multidimens. Syst. Signal Process. 2007, 18, 153–171. [Google Scholar] [CrossRef]
- Sun, N.; Li, H. Super Resolution Reconstruction of Images Based on Interpolation and Full Convolutional Neural Network and Application in Medical Fields. IEEE Access 2019, 7, 186470–186479. [Google Scholar] [CrossRef]
- Liu, J.; Gan, Z.; Zhu, X. Directional Bicubic Interpolation—A New Method of Image Super-Resolution. In 3rd International Conference on Multimedia Technology(ICMT-13); Atlantis Press: Paris, France, 2013; pp. 470–477. [Google Scholar]
- Kumar, G.; Singh, K. Image Super Resolution on the Basis of DWT and Bicubic Interpolation. Int. J. Comput. Appl. 2013, 65, 1–6. [Google Scholar]
- Dai, S.; Han, M.; Xu, W.; Wu, Y.; Gong, Y. Soft Edge Smoothness Prior for Alpha Channel Super Resolution. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Chang, K.; Ding, P.L.K.; Li, B. Single Image Super Resolution Using Joint Regularization. IEEE Signal Process. Lett. 2018, 25, 596–600. [Google Scholar] [CrossRef]
- Yu, L.; Cao, S.; He, J.; Sun, B.; Dai, F. Single-image super-resolution based on regularization with stationary gradient fidelity. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–5. [Google Scholar]
- Shan, Q.; Li, Z.; Jia, J.; Tang, C.-K. Fast image/video upsampling. ACM Trans. Graph. 2008, 27, 1–7. [Google Scholar] [CrossRef]
- Chang, H.; Yeung, D.-Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004. [Google Scholar]
- Gao, X.; Zhang, K.; Tao, D.; Li, X. Image Super-Resolution with Sparse Neighbor Embedding. IEEE Trans. Image Process. 2012, 21, 3194–3205. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, X.; Wang, J.; Jin, P.; Liu, L.; Mei, D. Image Super-Resolution Based on Sparse Representation via Direction and Edge Dictionaries. Math. Probl. Eng. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image super-resolution as sparse representation of raw image patches. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Agrawal, P.; Chaudhary, D.; Madaan, V.; Zabrovskiy, A.; Prodan, R.; Kimovski, D.; Timmerer, C. Automated bank cheque verification using image processing and deep learning methods. Multimedia Tools Appl. 2021, 80, 5319–5350. [Google Scholar] [CrossRef]
- Maier, A.; Syben, C.; Lasser, T.; Riess, C. A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 2019, 29, 86–101. [Google Scholar] [CrossRef]
- Khan, M.A.; Dharejo, F.A.; Deeba, F.; Ashraf, S.; Kim, J.; Kim, H. Toward developing tangling noise removal and blind inpainting mechanism based on total variation in image processing. Electron. Lett. 2021. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Nakashima, S.; Serikawa, S. Single image dehazing through improved atmospheric light estimation. Multimed. Tools Appl. 2016, 75, 17081–17096. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 184–199. [Google Scholar]
- Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.-H.; Liao, Q. Deep Learning for Single Image Super-Resolution: A Brief Review. IEEE Trans. Multimed. 2019, 21, 3106–3121. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 391–407. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X. Image Super-Resolution via Deep Recursive Residual Network. In Proceedings of the IEEE Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Hou, J.; Si, Y.; Li, L. Image Super-Resolution Reconstruction Method Based on Global and Local Residual Learning. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; pp. 341–348. [Google Scholar] [CrossRef]
- Wei, W.; Yongbin, J.; Yanhong, L.; Ji, L.; Xin, W.; Tong, Z. An Advanced Deep Residual Dense Network (DRDN) Approach for Image Super-Resolution. Int. J. Comput. Intell. Syst. 2019, 12, 1592–1601. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Si, Y.; Yu, X. A Novel and Effective Image Super-Resolution Reconstruction Technique via Fast Global and Local Residual Learning Model. Appl. Sci. 2020, 10, 1856. [Google Scholar] [CrossRef] [Green Version]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour Detection and Hierarchical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamsolmoali, P.; Li, X.; Wang, R. Single image resolution enhancement by efficient dilated densely connected residual network. Signal Process. Image Commun. 2019, 79, 13–23. [Google Scholar] [CrossRef]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1122–1131. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.; Zhang, J.; Lu, W.; Huang, X. A Novel Multiconnected Convolutional Network for Super-Resolution. IEEE Signal Process. Lett. 2018, 25, 946–950. [Google Scholar] [CrossRef]
- Lan, R.; Sun, L.; Liu, Z.; Lu, H.; Su, Z.; Pang, C.; Luo, X. Cascading and Enhanced Residual Networks for Accurate Single-Image Super-Resolution. IEEE Trans. Cybern. 2021, 51, 115–125. [Google Scholar] [CrossRef]
- Xu, J.; Chae, Y.; Stenger, B.; Datta, A. Dense Bynet: Residual Dense Network for Image Super Resolution. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 71–75. [Google Scholar]
- Duanmu, C.; Zhu, J. The Image Super-Resolution Algorithm Based on the Dense Space Attention Network. IEEE Access 2020, 8, 140599–140606. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, L.; Mou, X. Single Image Super-Resolution Using Dual-Branch Convolutional Neural Network. IEEE Access 2019, 7, 15767–15778. [Google Scholar] [CrossRef]
- Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Tong, T.; Li, G.; Liu, X.; Gao, Q. Image Super-Resolution Using Dense Skip Connections. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4809–4817. [Google Scholar] [CrossRef]
- Fei-Fei, L.; Deng, J.; Li, K. ImageNet: Constructing a large-scale image database. J. Vis. 2010, 9, 1037. [Google Scholar] [CrossRef]
- Huang, J.-B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 2017, 76, 21811–21838. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Barron, J.T. A General and Adaptive Robust Loss Function. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4326–4334. [Google Scholar]
- Liu, J.; Xue, Y.; Zhao, S.; Li, S.; Zhang, X. A Convolutional Neural Network for Image Super-Resolution Using Internal Dataset. IEEE Access 2020, 8, 201055–201070. [Google Scholar] [CrossRef]
- Hung, K.-W.; Zhang, Z.; Jiang, J. Real-Time Image Super-Resolution Using Recursive Depthwise Separable Convolution Network. IEEE Access 2019, 7, 99804–99816. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image super-resolution: The techniques, applications, and future. Signal Process. 2016, 128, 389–408. [Google Scholar] [CrossRef]
- Ren, S.; Jain, D.K.; Guo, K.; Xu, T.; Chi, T. Towards efficient medical lesion image super-resolution based on deep residual networks. Signal Process. Image Commun. 2019, 75, 1–10. [Google Scholar] [CrossRef]
- Umehara, K.; Ota, J.; Ishida, T. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT. J. Digit. Imaging 2018, 31, 441–450. [Google Scholar] [CrossRef]
- Park, J.; Hwang, D.; Kim, K.Y.; Kang, S.K.; Kim, Y.K.; Lee, J.S. Computed tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 2018, 63, 145011. [Google Scholar] [CrossRef]
- Shi, J.; Liu, Q.; Wang, C.; Zhang, Q.; Ying, S.; Xu, H. Super-resolution reconstruction of MR image with a novel residual learning network algorithm. Phys. Med. Biol. 2018, 63, 085011. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Zhang, T.; Zou, X. Channel Splitting Network for Single MR Image Super-Resolution. IEEE Trans. Image Process. 2019, 28, 5649–5662. [Google Scholar] [CrossRef] [Green Version]
- Shamsolmoali, P.; Zareapoor, M.; Jain, D.K.; Jain, V.K.; Yang, J. Deep convolution network for surveillance records super-resolution. Multimed. Tools Appl. 2018, 78, 23815–23829. [Google Scholar] [CrossRef]
- Rasti, P.; Uiboupin, T.; Escalera, S.; Anbarjafari, G. Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring. In Articulated Motion and Deformable Objects; Springer: Cham, Switzerland, 2016; pp. 175–184. [Google Scholar]
- Deshmukh, A.B.; Rani, N.U. Face video Super Resolution using Deep Convolutional Neural Network. In Proceedings of the 2019 5th International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 19–21 September 2019; pp. 1–6. [Google Scholar]
- Shen, Z.; Xu, Y.; Lu, G. CNN-based High-Resolution Fingerprint Image Enhancement for Pore Detection and Matching. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 426–432. [Google Scholar] [CrossRef]
- Ribeiro, E.; Uhl, A.; Alonso-Fernandez, F.; Farrugia, R.A. Exploring deep learning image super-resolution for iris recognition. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 2176–2180. [Google Scholar]
Datasets | Amount | Avg. Resolution | Avg Pixels | Format | Key Contents |
---|---|---|---|---|---|
T91 | 91 | 264 × 204 | (58,853) | PNG | car, flower, fruit, human face, etc. |
Set5 | 5 | 313 × 336 | (113,491) | PNG | baby, bird, butterfly, head, woman |
Set14 | 14 | 492 × 446 | (230,203) | PNG | humans, animals, insects, flowers, vegetables, comic, slides, etc. |
DIV2K | 1000 | 1972 × 1437 | (2,793,250) | PNG | environment, flora, fauna, handmade object, people, scenery, etc. |
BSDS100 | 100 | 432 × 370 | (154,401) | JPG | animal, building, food, landscape, people, plant, etc. |
BSDS200 | 200 | 435 × 367 | (154,401) | JPG | animal, building, food, landscape, people, plant, etc. |
Manga109 | 109 | 826 × 1169 | (966,111) | PNG | manga volume |
Urban100 | 100 | 984 × 797 | (774,314) | PNG | architecture, city, structure, urban, etc. |
ImageNet | >3.2 million | - | - | JPG | mammal, bird, fish, reptile, amphibian, vehicle, furniture, musical instrument, geological formation, tool, flower, fruit |
Algorithms | T91 | Set5 | Set14 | DIV2K | BSDS100 | BSDS200 | Manga109 | Urban100 | ImageNet |
---|---|---|---|---|---|---|---|---|---|
SRCNN | T | E | E | ||||||
FSRCNN | T | E | E | E | |||||
ESPCN | E | E | E | T | |||||
VDSR | T | E | E | E | T | E | |||
EDSR | E | E | T/E | E | E | ||||
MCSR | T/E | ||||||||
CRN | E | E | T/E | E | E | ||||
ERN | E | E | T/E | E | E | ||||
DRCN | T | E | E | E | E | ||||
DRRN | T | E | E | E | T | ||||
GLRL | T | E | E | E | T | ||||
DRDN | T/E | T/E | |||||||
FGLRL | T | E | E | E | T | E | |||
SRDenseNet | E | E | E | E | T | ||||
RDN | E | E | T/E | E | E | E | |||
Dilated-RDN | E | E | T | E | T | E | |||
DSAN | E | E | T | ||||||
DBCN | E | E | T | E | E | ||||
SICNN | E | E | E | E | E |
Algorithms | Loss Functions | Evaluation Metrics | |||
---|---|---|---|---|---|
MSE (L2) | MAE (L1) | Custom Loss | PSNR | SSIM | |
SRCNN | √ | √ | √ | ||
FSRCNN | √ | √ | √ | ||
ESPCN | √ | √ | |||
VDSR | √ | √ | √ | ||
EDSR | √ | √ | √ | ||
MCSR | √ | √ | √ | ||
CRN | √ | √ | √ | ||
ERN | √ | √ | √ | ||
DRCN | √ | √ | √ | ||
DRRN | √ | √ | √ | ||
GLRL | √ | √ | √ | ||
DRDN | √ | √ | √ | ||
FGLRL | √ | √ | √ | ||
SRDenseNet | √ | √ | √ | ||
RDN | √ | √ | √ | ||
Dilated-RDN | √ | √ | √ | ||
DSAN | √ | √ | |||
DBCN | √ | √ | √ | ||
SICNN | √ | √ | √ |
Scale | Algorithms | Set5 | Set14 | BSD100 | BSD200 | Urban100 | DIV2K | Manga109 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
2 | SRCNN | 36.66 | 0.9542 | 32.45 | 0.9067 | - | - | - | - | - | - | - | - | - | - |
FSRCNN | 37.00 | 0.9558 | 32.63 | 0.9088 | - | - | 31.80 | 0.9074 | - | - | - | - | - | - | |
ESPCN | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
VDSR | 37.53 | 0.9587 | 33.03 | 0.9124 | 31.90 | 0.8960 | - | - | 30.76 | 0.9140 | - | - | - | - | |
EDSR | 38.11 | 0.9601 | 33.92 | 0.9195 | 32.32 | 0.9013 | - | - | 32.93 | 0.9351 | 35.03 | 0.9695 | - | - | |
MCSR | - | - | - | - | - | - | - | - | - | - | 35.09 | 0.9702 | - | - | |
CRN | 38.17 | 0.9610 | 33.84 | 0.9203 | 32.30 | 0.9012 | - | - | 32.69 | 0.9334 | - | - | - | - | |
ERN | 38.18 | 0.9610 | 33.88 | 0.9195 | 32.30 | 0.9011 | - | - | 32.66 | 0.9332 | - | - | - | - | |
DRCN | 37.63 | 0.9588 | 33.04 | 0.9118 | 31.85 | 0.8942 | - | - | 30.75 | 0.9133 | - | - | - | - | |
DRRN | 37.74 | 0.9591 | 33.23 | 0.9136 | 32.05 | 0.8973 | - | - | 31.23 | 0.9188 | - | - | - | - | |
GLRL | 36.54 | 0.9550 | 32.56 | 0.9102 | 31.41 | 0.8890 | - | - | - | - | - | - | - | - | |
FGLRL | 37.75 | 0.9633 | 33.11 | 0.9133 | 32.30 | 0.8842 | - | - | 29.99 | 0.9102 | - | - | - | - | |
DRDN | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
SRDenseNet | 32.02 | 0.8934 | 28.50 | 0.7782 | 27.53 | 0.7337 | - | - | 26.05 | 0.7819 | - | - | - | - | |
RDN | 38.30 | 0.9616 | 34.10 | 0.9218 | 32.40 | 0.9022 | - | - | 33.09 | 0.9368 | - | - | 39.38 | 0.9784 | |
Dilated-RDN | 38.33 | 0.9619 | 34.15 | 0.8223 | 32.44 | 0.9026 | - | - | 33.13 | 0.9372 | - | - | - | - | |
DSAN | - | - | - | - | - | - | - | - | - | - | - | - | |||
DBCN | 37.66 | 0.9586 | 33.15 | 0.9135 | 31.94 | 0.8961 | - | - | 31.10 | 0.9169 | - | - | - | - | |
SICNN | 33.76 | 0.9017 | 33.23 | 0.8524 | 33.21 | 0.8309 | - | - | 32.65 | 0.8301 | - | - | 32.91 | 0.8164 | |
3 | SRCNN | 32.75 | 0.9090 | 29.30 | 0.8215 | - | - | - | - | - | - | - | - | - | - |
FSRCNN | 33.16 | 0.9140 | 29.43 | 0.8242 | - | - | 28.60 | 0.8137 | - | - | - | - | - | - | |
ESPCN | 33.13 | - | 29.49 | - | - | - | - | - | - | - | - | - | - | - | |
VDSR | 33.66 | 0.9213 | 29.77 | 0.8314 | 28.82 | 0.7976 | - | - | 27.14 | 0.8279 | - | - | - | - | |
EDSR | 34.65 | 0.9282 | 30.52 | 0.8462 | 29.25 | 0.8093 | - | - | 28.80 | 0.8653 | 31.26 | 0.9340 | - | - | |
MCSR | - | - | - | - | - | - | - | - | - | - | 31.36 | 0.9359 | - | - | |
CRN | 34.60 | 0.9286 | 30.48 | 0.8455 | 29.20 | 0.8081 | - | - | 28.62 | 0.8620 | - | - | - | - | |
ERN | 34.62 | 0.9285 | 30.51 | 0.8450 | 29.21 | 0.8080 | - | - | 28.61 | 0.8614 | - | - | - | - | |
DRCN | 33.82 | 0.9226 | 29.76 | 0.8311 | 28.80 | 0.7963 | - | - | 27.15 | 0.8276 | - | - | - | - | |
DRRN | 34.03 | 0.9244 | 29.96 | 0.8349 | 28.95 | 0.8004 | - | - | 27.53 | 0.8378 | - | - | - | - | |
GLRL | 33.09 | 0.9124 | 29.59 | 0.8705 | 28.59 | 0.7891 | - | - | - | - | - | - | - | - | |
FGLRL | 32.95 | 0.9105 | 29.51 | 0.8325 | 28.66 | 0.7870 | - | - | 27.30 | 0.8280 | - | - | - | - | |
DRDN | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
SRDenseNet | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
RDN | 34.78 | 0.9300 | 30.67 | 0.8482 | 29.33 | 0.8105 | - | - | 29.00 | 0.8683 | - | - | 34.43 | 0.9498 | |
Dilated-RDN | 34.83 | 0.9304 | 30.68 | 0.8481 | 29.35 | 0.8109 | - | - | 29.06 | 0.8686 | - | - | - | - | |
DSAN | 34.39 | - | 30.28 | - | - | - | - | - | - | - | - | - | - | - | |
DBCN | 33.97 | 0.9232 | 29.95 | 0.8345 | 28.91 | 0.7993 | - | - | 27.45 | 0.8350 | - | - | - | - | |
SICNN | 31.25 | 0.7869 | 30.97 | 0.7792 | 32.62 | 0.7902 | - | - | 31.87 | 0.8133 | - | - | 31.98 | 0.7902 | |
4 | SRCNN | 30.49 | 0.8628 | 27.50 | 0.7513 | - | - | - | - | - | - | - | - | - | - |
FSRCNN | 30.71 | 0.8657 | 27.59 | 0.7535 | - | - | 26.98 | 0.7398 | - | - | - | - | - | - | |
ESPCN | 30.90 | - | 27.73 | - | - | - | - | - | - | - | - | - | - | - | |
VDSR | 31.35 | 0.8838 | 29.77 | 0.8314 | 27.29 | 0.7251 | - | - | 25.18 | 0.7524 | - | - | - | - | |
EDSR | 32.46 | 0.8968 | 28.80 | 0.7876 | 27.71 | 0.7420 | - | - | 26.64 | 0.8033 | 29.25 | 0.9017 | - | - | |
MCSR | - | - | - | - | - | - | - | - | - | - | 29.44 | 0.9020 | - | - | |
CRN | 32.34 | 0.8971 | 28.74 | 0.7855 | 27.66 | 0.7395 | - | - | 26.44 | 0.7967 | - | - | - | - | |
ERN | 32.39 | 0.8975 | 28.75 | 0.7853 | 27.70 | 0.7398 | - | - | 26.43 | 0.7966 | - | - | - | - | |
DRCN | 31.53 | 0.8854 | 28.02 | 0.7670 | 27.23 | 0.7233 | - | - | 25.14 | 0.7510 | - | - | - | - | |
DRRN | 31.68 | 0.8888 | 28.21 | 0.7720 | 27.38 | 0.7284 | - | - | 25.44 | 0.7638 | - | - | - | - | |
GLRL | 30.37 | 0.8635 | 27.53 | 0.8102 | 26.97 | 0.7190 | - | - | - | - | - | - | |||
FGLRL | 31.44 | 0.8846 | 28.05 | 0.7688 | 27.26 | 0.7244 | - | - | 25.13 | 0.7501 | - | - | - | - | |
DRDN | - | - | - | - | 26.92 | - | - | - | 24.53 | - | - | - | - | - | |
SRDenseNet | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
RDN | 32.61 | 0.9003 | 28.92 | 0.7893 | 27.80 | 0.7434 | - | - | 26.82 | 0.8069 | - | - | 31.39 | 0.9184 | |
Dilated-RDN | 32.64 | 0.9008 | 28.91 | 0.7892 | 27.84 | 0.7436 | - | - | 26.87 | 0.8073 | - | - | - | - | |
DSAN | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
DBCN | 31.78 | 0.8885 | 28.27 | 0.7733 | 27.40 | 0.7291 | - | - | 25.55 | 0.7656 | - | - | - | - | |
SICNN | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Year | Algorithms | Upsampling Module | Linear Network | Residual Learning | Recursive Learning | Dense Connection | Dual-branch Learning |
---|---|---|---|---|---|---|---|
2014 | SRCNN [24] | Bicubic | √ | ||||
2016 | FSRCNN [27] | Deconvolution | √ | ||||
2016 | ESPCN [43] | Sub-pixel | √ | ||||
2016 | VDSR [28] | Bicubic | √ | ||||
2017 | EDSR [37] | Sub-pixel | √ | ||||
2018 | MCSR [38] | Sub-pixel | √ | ||||
2021 | CRN [39] | Sub-pixel | √ | ||||
2021 | ERN [39] | Sub-pixel | √ | ||||
2016 | DRCN [29] | Bicubic | √ | √ | |||
2017 | DRRN [30] | Bicubic | √ | √ | |||
2019 | GLRL [31] | Bicubic | √ | √ | |||
2019 | DRDN [32] | Bicubic | √ | √ | |||
2020 | FGLRL [33] | Deconvolution | √ | √ | |||
2017 | SRDenseNet [44] | Deconvolution | √ | ||||
2018 | RDN [40] | Sub-pixel | √ | √ | |||
2019 | Dilated-RDN [35] | Bicubic | √ | √ | |||
2020 | DSAN [41] | Sub-pixel | √ | √ | |||
2019 | DBCN [42] | Bicubic + Deconvolution | √ | √ | |||
2020 | SICNN [50] | Bicubic + Deconvolution | √ | √ |
Algorithms | Advantages | Disadvantages |
---|---|---|
SRCNN [24] |
|
|
FSRCNN [27] |
|
|
ESPCN [43] |
|
|
VDSR [28] |
|
|
EDSR [37] |
|
|
MCSR [38] |
| - |
CRN [39] |
| - |
ERN [39] |
| - |
DRCN [29] |
|
|
DRRN [30] |
|
|
GLRL [31] |
| - |
DRDN [32] |
| - |
FGLRL [33] |
| - |
SRDenseNet [44] |
|
|
RDN [40] |
|
|
Dilated-RDN [35] |
| - |
DSAN [41] |
| - |
DBCN [42] |
| - |
SICNN [50] |
| - |
Type | Methods | Advantages | Disadvantages |
---|---|---|---|
Upsampling Modules | Bicubic Interpolation |
|
|
Deconvolution |
| - | |
Sub-pixel Convolution |
| - | |
Network Design Strategies | Linear Network |
|
|
Residual Learning |
| - | |
Recursive Learning |
|
| |
Dense Connections |
| - | |
Dual-branch Learning |
| - |
Hyperparameters | Description |
---|---|
Epochs | The number of iterations required for model training. |
Batch size | The number of training image used per training step. |
Number of filters | Refers to channel quantity of the filter in a layer. |
Filter sizes | Refers to the two-dimensional (2D) matrix size of the filter. |
Filter strides | Defines the number moving steps of filter in the horizontal and vertical directions. |
Network depth | The number of layers in a model. |
Loss functions | Learning strategies used in machine learning to measure prediction error or reconstruction error. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ooi, Y.K.; Ibrahim, H. Deep Learning Algorithms for Single Image Super-Resolution: A Systematic Review. Electronics 2021, 10, 867. https://doi.org/10.3390/electronics10070867
Ooi YK, Ibrahim H. Deep Learning Algorithms for Single Image Super-Resolution: A Systematic Review. Electronics. 2021; 10(7):867. https://doi.org/10.3390/electronics10070867
Chicago/Turabian StyleOoi, Yoong Khang, and Haidi Ibrahim. 2021. "Deep Learning Algorithms for Single Image Super-Resolution: A Systematic Review" Electronics 10, no. 7: 867. https://doi.org/10.3390/electronics10070867
APA StyleOoi, Y. K., & Ibrahim, H. (2021). Deep Learning Algorithms for Single Image Super-Resolution: A Systematic Review. Electronics, 10(7), 867. https://doi.org/10.3390/electronics10070867