Towards a Miniaturized Photoacoustic Sensor for Transcutaneous CO2 Monitoring
<p>Theoretical concept of a two-chamber-based photoacoustic (PA) CO<sub>2</sub> sensor. (<b>a</b>) Minimal microphone signal as light source is off. (<b>b</b>) Maximum microphone signal as light source is turned on and absorption path is not filled with the target gas, which results in the highest PA signal generation in the detection chamber. (<b>c</b>) Slightly reduced microphone signal—when compared to (<b>b</b>)—as the target gas (CO<sub>2</sub>) in the absorption path absorbs the light partially, resulting in a weaker acoustic wave generation in the detection chamber. (<b>d</b>) With increasing CO<sub>2</sub> concentration in the absorption path, the microphone signal decreases further, which is in direct relation to the target gas concentration. (<b>e</b>) Maximum microphone signal detected without CO<sub>2</sub> in the absorption chamber.</p> "> Figure 2
<p>The components of the laboratory setup of the sensor system. (<b>a</b>) From left to right: PA detection chamber mounted to the readout printed circuit board (PCB), aluminum measurement cell including mounting holes, and 4.3 µm LED with Ф<sub>e</sub> = 1 mW mounted to a PCB. (<b>b</b>) Evaluation board of the PA sensor system laboratory setup, in which the lock-in amplifier represents the core component.</p> "> Figure 3
<p>Miniaturized PA transcutaneous CO<sub>2</sub> sensor system. (<b>a</b>) Aluminum sensor housing including a 3D-printed skin fixation ring, the polyoxymethylene (POM) lid, and the aluminum measurement cell (absorption path). (<b>b</b>) Measurement cell integrated into the housing and mechanically positioned through a specifically designed key–lock principle. (<b>c</b>) Two miniaturized PCBs comprising the analysis electronics of the sensor system and read-out PCB with the 4.3 µm LED and PA detector placed on opposite sides of the measurement cell. (<b>d</b>) Complete transcutaneous sensor system after integrating the PCBs and fixing the POM lid to the sensor housing.</p> "> Figure 4
<p>Simulations of the PA detector signal (<b>a</b>) and the first derivative of the PA detector signal (detector signal change per vol. % CO<sub>2</sub>) (<b>b</b>) for a measurement cell with a set diameter of 3.0 mm and lengths varying between 1.0 and 4.0 mm.</p> "> Figure 5
<p>The miniaturized PA CO<sub>2</sub> sensor was fixed to the left lower arm (flexor carpi radialis) of a test person using medical waterproof tape. To assure an air-tight skin–sensor interface, a contact gel from the company Sentec AG (Therwil, Switzerland) was applied to the skin surface at the desired measurement location before fixing the sensor to the skin.</p> "> Figure 6
<p>CO<sub>2</sub> concentration dependency of the PA sensor signal at absorption path lengths L of 2.0 mm, 3.0 mm, and 4.0 mm. The diameter Ø of the absorption path was 4.0 mm.</p> "> Figure 7
<p>CO<sub>2</sub> concentration dependency of the PA sensor signal at absorption path lengths L of 1.0 mm, 1.5 mm, and 2.0 mm. The diameter Ø of the absorption path was 3.0 mm.</p> "> Figure 8
<p>CO<sub>2</sub> concentration dependency of the PA sensor signal at absorption path diameters Ø of 2.0 mm, 3.0 mm, and 4.0 mm. The absorption path length L was 2.0 mm.</p> "> Figure 9
<p>Comparison of the developed PA CO<sub>2</sub> sensor with the commercial NDIR sensor ExplorIR-W (Gas Sensing Solutions Ltd., UK) at 1 vol. % concentration variations between 0 and 19 vol. % CO<sub>2</sub>. The tested gas matrix is a mixture of dry N<sub>2</sub> and CO<sub>2</sub>. Each gas matrix variation was measured for 10 min.</p> "> Figure 10
<p>Comparison of the absolute (<b>a</b>) and normalized (<b>b</b>) signal values of the developed photoacoustic CO<sub>2</sub> sensor with the commercial NDIR sensor ExplorIR-W (Gas Sensing Solutions Ltd., UK) at 10 vol. % concentration variations between 30 and 70 vol. % r.H. The tested gas matrix is a mixture of dry N<sub>2</sub> and H<sub>2</sub>O at 8 vol. % CO<sub>2</sub>. Each gas matrix variation was measured for 10 min and repeated five times.</p> "> Figure 11
<p>Comparison of the absolute (<b>a</b>) and normalized (<b>b</b>) signal values of the developed PA CO<sub>2</sub> sensor with the commercial NDIR sensor ExplorIR-W (Gas Sensing Solutions Ltd., UK) at 5 vol. % concentration variations between 0 and 20 vol. % O<sub>2</sub>. The tested gas matrix is a mixture of dry N<sub>2</sub> and O<sub>2</sub> at 8 vol. % CO<sub>2</sub>. Each gas matrix variation was measured for 10 min and repeated five times.</p> "> Figure 12
<p>The slow detector signal change after fixing the miniaturized PA sensor to the skin surface of the test person. The decrease in the PA signal indicates the CO<sub>2</sub> diffusing out of the skin surface and into the measurement cell of the CO<sub>2</sub> sensor. The signal reaches its lowest measured value after 3 h (181 min), which represents the arterialization time of the developed sensor. After 202 min, the sensor is removed from the skin and the signal abruptly jumps to a value that corresponds to the surrounding CO<sub>2</sub> concentration in air.</p> ">
Abstract
:1. Introduction
2. Theoretical Background of the Photoacoustic Sensor System
3. Material and Methods
3.1. Laboratory Setup
3.2. Miniaturized Transcutaneous CO2 Sensor System Realization
3.3. Methods
3.3.1. Laboratory Setup
3.3.2. Miniaturized Sensor System
3.3.3. Transcutaneous Measurements on a Test Person
4. Results
4.1. Laboratory Setup
4.2. Miniaturized Sensor System
4.3. Transcutaneous Measurement on a Test Person
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonkman, A.H.; de Vries, H.J.; Heunks, L.M.A. Physiology of the Respiratory Drive in ICU Patients: Implications for Diagnosis and Treatment. Crit. Care 2020, 24, 104. [Google Scholar] [CrossRef] [PubMed]
- Mairbäurl, H.; Weber, R.E. Oxygen transport by hemoglobin. Compr. Physiol. 2012, 2, 1463–1489. [Google Scholar]
- Harvey, J.W. The Erythrocyte: Physiology, Metabolism, and Biochemical Disorders. In Clinical Biochemistry of Domestic Animals, 6th ed.; Kaneko, J., Harvey, J., Bruss, M., Eds.; Academic Press (Imprint of Elsevier): Cambridge, MA, USA, 2008; pp. 173–240. [Google Scholar]
- Feher, J. Oxygen and Carbon Dioxide Transport. In Quantitative Human Physiology: An Introduction, 1st ed.; Feher, J., Ed.; Academic Press (Imprint of Elsevier): Cambridge, MA, USA, 2017; pp. 586–594. [Google Scholar]
- Bromley, I. Transcutaneous monitoring–understanding the principles. Infant 2008, 4, 95–98. [Google Scholar]
- Nassar, B.S.; Schmidt, G.A. Estimating Arterial Partial Pressure of Carbon Dioxide in Ventilated Patients: How Valid Are Surrogate Measures? Ann. Am. Thorac. Soc. 2017, 14, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Baermann, A.; Grey, K.; Hein, U.; Schwabbauer, N.; Ullrich, L.; Vonier, R.; Wilpsbäumer, S. Atmung, Atemtherapie, Beatmung. In Intensivpflege und Anästhesie, 3rd ed.; Ullreich, L., Stolecki, D., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 2015; pp. 156–170. [Google Scholar]
- Heath, D.A.; Burri, P.H.; Weibel, E.R.; Klocke, R.A.; Elliott, D.H.; Cherniack, N.S.; Siebens, A.A.; Beers, M.F.; Human respiratory system. Encycl. Brit. 2023. Available online: https://www.britannica.com/science/human-respiratory-system (accessed on 5 January 2023).
- Prause, G.; Hetz, H.; Lauda, P.; Pojer, H.; Smolle-Juettner, F.; Smolle, J. A comparison of the end-tidal-CO2 documented by capnometry and the arterial pCO2 in emergency patients. Resuscitation 1997, 35, 145–148. [Google Scholar] [CrossRef]
- Von Rueden, K.T. Noninvasive assessment of gas exchange in the critically ill patient. AACN Clin. Issues Crit. Care Nurs. 1990, 1, 239–247. [Google Scholar] [CrossRef]
- Wahba, R.W.M.; Tessler, M.J. Misleading end-tidal CO2 tensions. Can. J. Anaesth. 1996, 43, 862–866. [Google Scholar] [CrossRef]
- Hoffman, R.A.; Krieger, B.P.; Kramer, M.R.; Segel, S.; Bizousky, F.; Gazeroglu, H.; Sackner, M.A. End-tidal carbon dioxide in critically ill patients during changes in mechanical ventilation. Am. Rev. Respir. Dis. 2012, 140, 1265–1268. [Google Scholar] [CrossRef]
- Yosefy, C.; Hay, E.; Nasri, Y.; Magen, E.; Reisin, L. End tidal carbon dioxide as a predictor of the arterial PCO2 in the emergency department setting. Emerg. Med. J. 2004, 21, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R. Smoking, age and the arterial-end-tidal PCO2 difference during anaesthesia and controlled ventilation. Acta Anaesthesiol. Scand. 1987, 31, 355–356. [Google Scholar] [CrossRef]
- Eberhard, P. The design, use, and results of transcutaneous carbon dioxide analysis: Current and future directions. Anesth. Anal. 2007, 105, S48–S52. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Xu, K.; Liu, K.; Xu, J.; Zhen, Z. Metal oxide resistive sensors for carbon dioxide detection. Coord. Chem. Rev. 2022, 472, 214758. [Google Scholar] [CrossRef]
- Cascales, J.P.; Li, X.; Roussakis, E.; Evans, C.L. A Patient-Ready Wearable Transcutaneous CO2 Sensor. Biosensors 2022, 12, 333. [Google Scholar] [CrossRef] [PubMed]
- Bozóki, Z.; Pogány, A.; Szabó, G. Photoacoustic instruments for practical applications: Present, potentials, and future challenges. Appl. Spectrosc. 2011, 46, 1–37. [Google Scholar] [CrossRef]
- Swart, H.C.; Motaung, D.E. LED-based gas sensors: A review. Curr. Opin. Environ. Sci. Technol. 2023, 36, 100506. [Google Scholar] [CrossRef]
- Swinehart, D.F. The Beer-Lambert Law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Sun, Y.W.; Liu, C.; Chan, K.L.; Xie, P.H.; Liu, W.Q.; Zeng, Y.; Wang, S.M.; Huang, S.H.; Chen, J.; Wang, Y.P. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm. Atmos. Meas. Technol. 2013, 6, 1993–2005. [Google Scholar] [CrossRef]
- Barritault, P.; Brun, M.; Gidon, S.; Nicoletti, S. Mid-IR source based on a free-standing microhotplate for autonomous CO2 sensing in indoor applications. Sens. Actuators A 2011, 172, 379–385. [Google Scholar] [CrossRef]
- Tezcan, D.S.; Eminoglu, S.; Akin, T. A low-cost uncooled infrared microbolometer detector in standard CMOS technology. IEEE Trans. Electron Devices 2003, 50, 494–502. [Google Scholar] [CrossRef]
- Gibson, D.; MacGregor, C. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment. Sensors 2013, 13, 7079–7103. [Google Scholar] [CrossRef] [PubMed]
- Kimmig, L. Method and Device for Measuring the Concentration of a Detector Gas in a Measuring Gas Containing an Interfering Gas. U.S. Patent 5,563,330, 8 October 1996. [Google Scholar]
- Luft, K.F. Über eine neue Methode der registrierenden Gasanalyse mit Hilfe der Absorption ultraroter Strahlen ohne spektrale Zerlegung. Z. Tech. Phys 1943, 24, 97–104. [Google Scholar]
- Jia, X.; Roels, J.; Baets, R.; Roelkens, G. A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip. Sensors 2021, 21, 5347. [Google Scholar] [CrossRef] [PubMed]
- Scholz, L.; Ortiz Perez, A.; Bierer, B.; Eaksen, P.; Wöllenstein, J.; Palzer, S. Miniature Low-Cost Carbon Dioxide Sensor for Mobile Devices. IEEE Sens. J. 2017, 17, 2889–2895. [Google Scholar] [CrossRef]
- Rouxel, J.; Coutard, J.-G.; Gidon, S.; Lartigue, O.; Nicoletti, S.; Parvitte, B.; Vallon, R.; Zéninari, V.; Glière, A. Development of a miniaturized differential photoacoustic gas sensor. Proc. Eng. 2015, 120, 396–399. [Google Scholar] [CrossRef]
- Ortiz Perez, A.; Bierer, B.; Scholz, L.; Wöllenstein, J.; Palzer, S. A Wireless Gas Sensor Network to Monitor Indoor Environmental Quality in Schools. Sensors 2018, 18, 4345. [Google Scholar] [CrossRef]
- Principles of Lock-in Detection. Available online: https://www.zhinst.com/europe/en/resources/principles-of-lock-in-detection (accessed on 8 January 2024).
- El-Safoury, M.; Dufner, M.; Weber, C.; Schmitt, K.; Pernau, H.-F.; Willing, B.; Wöllenstein, J. On-Board Monitoring of SO2 Ship Emissions Using Resonant Photoacoustic Gas Detection in the UV Range. Sensors 2021, 21, 4468. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Riecke, B.; Neuhaus, P.; Stockmann, M. Major Influence of Oxygen Supply on 13CO2: 12CO2 Ratio Measurement by Nondispersive Isotope-Selective Infrared Spectroscopy. Helicobacter 2005, 10, 620–622. [Google Scholar] [CrossRef]
Length L | Ø = 2.0 mm | Ø = 2.5 mm | Ø = 3.0 mm | Ø = 4.0 mm |
---|---|---|---|---|
1.0 mm | X | |||
1.5 mm | X | |||
2.0 mm | X | X | X | X |
3.0 mm | X | |||
4.0 mm | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Safoury, M.; Weber, C.; Yassine, H.; Wöllenstein, J.; Schmitt, K. Towards a Miniaturized Photoacoustic Sensor for Transcutaneous CO2 Monitoring. Sensors 2024, 24, 457. https://doi.org/10.3390/s24020457
El-Safoury M, Weber C, Yassine H, Wöllenstein J, Schmitt K. Towards a Miniaturized Photoacoustic Sensor for Transcutaneous CO2 Monitoring. Sensors. 2024; 24(2):457. https://doi.org/10.3390/s24020457
Chicago/Turabian StyleEl-Safoury, Mahmoud, Christian Weber, Hassan Yassine, Jürgen Wöllenstein, and Katrin Schmitt. 2024. "Towards a Miniaturized Photoacoustic Sensor for Transcutaneous CO2 Monitoring" Sensors 24, no. 2: 457. https://doi.org/10.3390/s24020457
APA StyleEl-Safoury, M., Weber, C., Yassine, H., Wöllenstein, J., & Schmitt, K. (2024). Towards a Miniaturized Photoacoustic Sensor for Transcutaneous CO2 Monitoring. Sensors, 24(2), 457. https://doi.org/10.3390/s24020457