A Patient-Ready Wearable Transcutaneous CO2 Sensor
<p>(<b>a</b>) Wearable device and <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </semantics></math>-sensing film for continuous transcutaneous monitoring of <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. The film emission is excited via two (405 nm and 470 nm) high-intensity LED’s and sampled via a 500 nm long-pass filter and a PIN photodiode. (<b>b</b>) Optical spectra of the two different excitation LEDs and the <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </semantics></math>-sensing dye emission, as shown in the inset. The addition of a 500 nm long-pass filter removes the LED emission.</p> "> Figure 2
<p>(<b>a</b>) Chemical structures of ion pairs and polymer matrices: (HPTS)/(CTA)<sub>3</sub>, (HPTS)/(TOA)<sub>4</sub>, poly(methyl methacrylate)(PMMA), and poly(propyl methacrylate)(PPMA). The pH sensitivity of the ion pairs arises from the highlighted functional groups. (<b>b</b>) Emission spectra of (HPTS)/(CTA)<sub>3</sub> in PPMA and (HPTS)/(TOA)<sub>4</sub> in PPMA and PMMA under CO<sub>2</sub> and N<sub>2</sub> conditions. (<b>c</b>) Excitation spectra (collected at 570nm) of (HPTS)/(CTA)<sub>3</sub> in PPMA and (HPTS)/(TOA)<sub>4</sub> in PPMA and PMMA under CO<sub>2</sub> and N<sub>2</sub> conditions. (<b>d</b>) Moisture sensitivity of (HPTS)/(TOA)<sub>4</sub> in PPMA and PMMA under CO<sub>2</sub> and N<sub>2</sub> conditions. (<b>e</b>) Photostability comparison of (HPTS)/(TOA)<sub>4</sub> in PPMA and PMMA under air condition.</p> "> Figure 3
<p>(<b>a</b>) Sensitivity of materials made of 240 μM or 480 μM (HPTS)/(TOA)<sub>4</sub> in PPMA with the addition of 0%, 5%, 10%, 20%, and 40% (<span class="html-italic">v</span>/<span class="html-italic">v</span>) methanolic solution of TOAOH. (<b>b</b>) Photostability comparison of sensing films prepared from 240 μM (HPTS)/(TOA)<sub>4</sub> in PPMA containing 5%, 10%, and 20% (<span class="html-italic">v</span>/<span class="html-italic">v</span>) TOAOH solution and 480 μM (HPTS)/(TOA)<sub>4</sub> in PPMA with 20% (<span class="html-italic">v</span>/<span class="html-italic">v</span>) TOAOH solution under the air condition. (<b>c</b>) Moisture sensitivity of the material prepared from 240 μM (HPTS)/(TOA)<sub>4</sub> in PPMA with 10% (<span class="html-italic">v</span>/<span class="html-italic">v</span>) TOAOH solution under CO<sub>2</sub> and N<sub>2</sub> conditions.</p> "> Figure 4
<p>(<b>a</b>) Excitation spectra measured at 570 nm of the (HPTS)/(TOA)<sub>4</sub> in the PPMA formulation exposed to different CO<sub>2</sub> partial pressures. (<b>b</b>) Normalized <span class="html-italic">R</span> (between [0,1]) vs. CO<sub>2</sub> partial pressure of a PPMA/white coating sample, showing a delayed diffusion of CO<sub>2</sub> through the white coating (CO<sub>2</sub> → white), which disappears at temperatures over 40 °C. The fluorescence ratio <span class="html-italic">R</span> measured with the wearable is highly sensitive to changes in CO<sub>2</sub>, with our prototypes showing a delayed response with respect to the reference <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </semantics></math> sensor at (<b>c</b>) T = 25 °C, attributed to CO<sub>2</sub> diffusion through the white scattering layer, vanishing when heating up to (<b>d</b>) T = 44 °C. (<b>e</b>) Normalized <span class="html-italic">R</span> vs. CO<sub>2</sub> for the wearable at different temperatures, with the delayed response vanishing at higher temperatures. (<b>f</b>) Time delay (lag) between our prototype’s signal and the reference CO<sub>2</sub> sensor as a function of temperature.</p> "> Figure 5
<p>(<b>a</b>) Response of the film to changes in CO<sub>2</sub>, plotted along with a reference sensor’s CO<sub>2</sub> readings. (<b>b</b>) Fit of two different calibration algorithms to the fluorescence ratio <span class="html-italic">R</span>, plotted as a function of the reference CO<sub>2</sub>. <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>i</mi> <mi>t</mi> <mn>1</mn> </mrow> </semantics></math> considers a quadratic dependence on CO<sub>2</sub>, while <math display="inline"><semantics> <mrow> <mi>F</mi> <mi>i</mi> <mi>t</mi> <mn>2</mn> </mrow> </semantics></math> also considers a quadratic dependence on CO<sub>2</sub>, but with different coefficients depending on whether <span class="html-italic">R</span> (and hence, CO<sub>2</sub>) is increasing or decreasing. (<b>c</b>) Reference and estimated CO<sub>2</sub> from our prototype, obtained with both algorithms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ion Pairs
2.2.1. Synthesis of (HPTS)/(CTA)3
2.2.2. Synthesis of (HPTS)/(TOA)4
2.3. CO2-Sensing Film Preparation
2.3.1. Films for Spectral Characterization
2.3.2. Multilayer CO2 Sensing Film for the Wearable
2.4. Principle of Operation
2.5. Fluorescence Spectral Measurements
2.6. Wearable Optical Device
3. Results and Discussion
3.1. Optimization of Sensing Film Compositions
3.2. The Effect of TOAOH Ratios on Sensitivity, Photostability, and Dark Stability
3.3. Response and Calibration of the Wearable
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, S.; Miao, J.H.; Yetiskul, E.; Anokhin, A.; Majmundar, S.H. Physiology, Carbon Dioxide Retention. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Casati, A.; Squicciarini, G.; Malagutti, G.; Baciarello, M.; Putzu, M.; Fanelli, A. Transcutaneous monitoring of partial pressure of carbon dioxide in the elderly patient: A prospective, clinical comparison with end-tidal monitoring. J. Clin. Anesth. 2006, 18, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Umeda, A.; Ishizaka, M.; Ikeda, A.; Miyagawa, K.; Mochida, A.; Takeda, H.; Takeda, K.; Fukushi, I.; Okada, Y.; Gozal, D. Recent Insights into the Measurement of Carbon Dioxide Concentrations for Clinical Practice in Respiratory Medicine. Sensors 2021, 21, 5636. [Google Scholar] [CrossRef] [PubMed]
- Huttmann, S.E.; Windisch, W.; Storre, J.H. Techniques for the measurement and monitoring of carbon dioxide in the blood. Ann. Am. Thorac. Soc. 2014, 11, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Tipparaju, V.V.; Mora, S.J.; Yu, J.; Tsow, F.; Xian, X. Wearable Transcutaneous CO2 Monitor Based on Miniaturized Nondispersive Infrared Sensor. IEEE Sens. J. 2021, 21, 17327–17334. [Google Scholar] [CrossRef]
- Berkenbosch, J.W.; Lam, J.; Burd, R.S.; Tobias, J.D. Noninvasive monitoring of carbon dioxide during mechanical ventilation in older children: End-tidal versus transcutaneous techniques. Anesth. Analg. 2001, 92, 1427–1431. [Google Scholar] [CrossRef]
- Casati, A.; Salvo, I.; Torri, G.; Calderini, E. Arterial to end-tidal carbon dioxide gradient and physiological dead space monitoring during general anaesthesia: Effects of patients’ position. Minerva Anestesiol. 1997, 63, 177–182. [Google Scholar]
- Wyatt, J.; Edwards, A.; Cope, M.; Delpy, D.; McCormick, D.; Potter, A.; Reynolds, E. Response of cerebral blood volume to changes in arterial carbon dioxide tension in preterm and term infants. Pediatr. Res. 1991, 29, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Senn, O.; Clarenbach, C.F.; Kaplan, V.; Maggiorini, M.; Bloch, K.E. Monitoring carbon dioxide tension and arterial oxygen saturation by a single earlobe sensor in patients with critical illness or sleep apnea. Chest 2005, 128, 1291–1296. [Google Scholar] [CrossRef] [Green Version]
- Bendjelid, K.; Schütz, N.; Stotz, M.; Gerard, I.; Suter, P.M.; Romand, J.A. Transcutaneous PCO2 monitoring in critically ill adults: Clinical evaluation of a new sensor. Crit. Care Med. 2005, 33, 2203–2206. [Google Scholar] [CrossRef]
- Nishiyama, T.; Nakamura, S.; Yamashita, K. Comparison of the transcutaneous oxygen and carbon dioxide tension in different electrode locations during general anaesthesia. Eur. J. Anaesthesiol. 2006, 23, 1049–1054. [Google Scholar] [CrossRef]
- Palmisano, B.W.; Severinghaus, J.W. Transcutaneous PCO2 and PO2: A multicenter study of accuracy. J. Clin. Monit. 1990, 6, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Finžgar, M.; Frangež, H.B.; Cankar, K.; Frangež, I. Transcutaneous application of the gaseous CO2 for improvement of the microvascular function in patients with diabetic foot ulcers. Microvasc. Res. 2021, 133, 104100. [Google Scholar] [CrossRef]
- Dervieux, E.; Theron, M.; Uhring, W. Carbon Dioxide Sensing-Biomedical Applications to Human Subjects. Sensors 2021, 22, 188. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, P.; Fernández-Ramos, M.; López-Ruiz, N.; Moyano-Rodríguez, O.; Martínez-Olmos, A.; Pérez de Vargas-Sansalvador, I.; Carvajal, M.; Capitán-Vallvey, L.; Palma, A. Smart facemask for wireless CO2 monitoring. Nat. Commun. 2022, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Malins, C.; MacCraith, B.D. Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection. Analyst 1998, 123, 2373–2376. [Google Scholar] [CrossRef]
- Wolfbeis, O.S.; Kovács, B.; Goswami, K.; Klainer, S.M. Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring. Microchim. Acta 1998, 129, 181–188. [Google Scholar] [CrossRef]
- Mills, A.; Chang, Q. Fluorescence plastic thin-film sensor for carbon dioxide. Analyst 1993, 118, 839–843. [Google Scholar] [CrossRef]
- Mills, A.; Yusufu, D. Highly CO2 sensitive extruded fluorescent plastic indicator film based on HPTS. Analyst 2016, 141, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.S.; Syu, J.J. Optical sensor for dual sensing of oxygen and carbon dioxide based on sensing films coated on filter paper. Appl. Opt. 2017, 56, 1225–1231. [Google Scholar] [CrossRef]
- Roussakis, E.; Cascales, J.P.; Marks, H.L.; Li, X.; Grinstaff, M.; Evans, C.L. Humidity-Insensitive Tissue Oxygen Tension Sensing for Wearable Devices. Photochem. Photobiol. 2020, 96, 373–379. [Google Scholar] [CrossRef]
- Li, X.; Roussakis, E.; Cascales, J.P.; Marks, H.L.; Witthauer, L.; Evers, M.; Manstein, D.; Evans, C.L. Optimization of bright, highly flexible, and humidity insensitive porphyrin-based oxygen-sensing materials. J. Mater. Chem. C 2021, 9, 7555–7567. [Google Scholar] [CrossRef]
- Wang, X.d.; Wolfbeis, O.S. Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications. Chem. Soc. Rev. 2014, 43, 3666–3761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, C.S.; Markey, A.; Nooney, R.I.; Byrne, P.; McDonagh, C. Development of an optical sensor probe for the detection of dissolved carbon dioxide. Sens. Actuators B Chem. 2006, 119, 288–294. [Google Scholar] [CrossRef]
- Zhu, Q.; Aller, R.C.; Fan, Y. A new ratiometric, planar fluorosensor for measuring high resolution, two-dimensional pCO2 distributions in marine sediments. Mar. Chem. 2006, 101, 40–53. [Google Scholar] [CrossRef]
- Cascales, J.P.; Roussakis, E.; Witthauer, L.; Goss, A.; Li, X.; Chen, Y.; Marks, H.L.; Evans, C.L. Wearable device for remote monitoring of transcutaneous tissue oxygenation. Biomed. Opt. Express 2020, 11, 6989–7002. [Google Scholar] [CrossRef]
- Witthauer, L.; Cascales, J.P.; Roussakis, E.; Li, X.; Goss, A.; Chen, Y.; Evans, C.L. Portable oxygen-sensing device for the improved assessment of compartment syndrome and other hypoxia-related conditions. ACS Sens. 2020, 6, 43–53. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Pinnau, I.; Morisato, A.; He, Z. Influence of Side-Chain Length on the Gas Permeation Properties of Poly(2-alkylacetylenes). Macromolecules 2004, 37, 2823–2828. [Google Scholar] [CrossRef]
- Chu, C.S.; Lo, Y.L. Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS. Sens. Actuators B Chem. 2009, 143, 205–210. [Google Scholar] [CrossRef]
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 3.8.1 Manual: A High-Level Interactive Language for Numerical Computations; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2014; ISBN 1441413006. [Google Scholar]
- Préfol, T.; Gain, O.; Sudre, G.; Gouanvé, F.; Espuche, E. Development of Breathable Pebax®/PEG Films for Optimization of the Shelf-Life of Fresh Agri-Food Products. Membranes 2021, 11, 692. [Google Scholar] [CrossRef]
- Marks, H.; Bucknor, A.; Roussakis, E.; Nowell, N.; Kamali, P.; Cascales, J.P.; Kazei, D.; Lin, S.J.; Evans, C.L. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Sci. Adv. 2020, 6, eabd1061. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascales, J.P.; Li, X.; Roussakis, E.; Evans, C.L. A Patient-Ready Wearable Transcutaneous CO2 Sensor. Biosensors 2022, 12, 333. https://doi.org/10.3390/bios12050333
Cascales JP, Li X, Roussakis E, Evans CL. A Patient-Ready Wearable Transcutaneous CO2 Sensor. Biosensors. 2022; 12(5):333. https://doi.org/10.3390/bios12050333
Chicago/Turabian StyleCascales, Juan Pedro, Xiaolei Li, Emmanuel Roussakis, and Conor L. Evans. 2022. "A Patient-Ready Wearable Transcutaneous CO2 Sensor" Biosensors 12, no. 5: 333. https://doi.org/10.3390/bios12050333
APA StyleCascales, J. P., Li, X., Roussakis, E., & Evans, C. L. (2022). A Patient-Ready Wearable Transcutaneous CO2 Sensor. Biosensors, 12(5), 333. https://doi.org/10.3390/bios12050333