A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System
<p>Integer quantization CNN accelerator architecture diagram.</p> "> Figure 2
<p>Quantization operation unit structure diagram.</p> "> Figure 3
<p>Processing of a classical CNN accelerator.</p> "> Figure 4
<p>Dual configuration register group structure diagram.</p> "> Figure 5
<p>Processing of dual configuration register group structure.</p> "> Figure 6
<p>Cell Division Network (CSnet) structure.</p> "> Figure 7
<p>Comparison results: (<b>a</b>) original image (<b>b</b>) result of CSnet (<b>c</b>) result of Unet (<b>d</b>) result of the self-adaptive threshold algorithm.</p> "> Figure 8
<p>White blood cell (WBC) classification network structure.</p> "> Figure 9
<p>Processing of the silicon wafer positive die.</p> "> Figure 10
<p>Fabrication of the PDMS microfluidic chip by the pouring process. (<b>a</b>) Surface modification on positive die. (<b>b</b>) Pouring PDMS without bubbles on to the positive die. (<b>c</b>) Curing and separation. (<b>d</b>) Bonding glass to PDMS.</p> "> Figure 11
<p>Comparison between the microfluidic chip and a renminbi (RMB) coin.</p> "> Figure 12
<p>The microfluidic acquisition device (<b>a</b>) vertical view (<b>b</b>) side view.</p> "> Figure 13
<p>The accuracy of different quantization bits in the WBC classification network. (<b>a</b>) lymphocytes, (<b>b</b>) monocytes, (<b>c</b>) neutrophilic.</p> "> Figure 14
<p>Mobile CNN microfluidic blood-acquisition and analysis prototype system.</p> "> Figure 15
<p>Touch panel display illustration.</p> ">
Abstract
:1. Introduction
- A quantization algorithm for mobile hardware implementation, which supports different kernels with different quantization parameters, and has an optimal tradeoff between classification accuracy and hardware cost. (Section 2)
- A quantization circuit architecture for the quantization scheme. (Section 3)
- A dual register group structure to allow for pipelining of a quantized CNN architecture, thereby increase its throughput. (Section 4)
- A microfluidic chip and mobile lensless blood cell image acquisition device to build an entire mobile lensless microfluidic blood image acquisition and analysis system. (Section 5)
- Implementation of the quantization architecture in FPGA, and application of the cell segmentation and cell classification CNN in the system to demonstrate a blood cell segmentation and classification analysis task. (Section 6)
- The first miniaturization of a quantization CNN-based microfluidic lensless-sensing white blood cell (WBC) analysis system. This system has a significant tradeoff that enables miniaturization while retaining accuracy, and this promotes the research on mobile artificial intelligence (AI) diagnosis equipment.
2. Quantization Algorithm
2.1. Quantization Scheme
2.2. Feature Quantization Parameter od sd nd Calculation
2.3. Weight Quantization Parameter sw nw Calculation
2.4. Convolution Calculation
2.5. Unify Weight Cubes Convolution Result
2.6. Bias Operation Quantization
2.7. Batch-Normalization Multiplication Quantization
2.8. Layer Output Quantization
3. Quantization CNN Circuit Architecture
4. Dual Register Group Structure
- (1)
- Configure the parameters of the first layer and the second layer into Reg_Grp_A and Reg_Grp_B, respectively.
- (2)
- The parameters in Reg_Grp_A are applied to perform the current layer operation, and a completion signal will be sent to RSU when the operation is accomplished.
- (3)
- After the RSU receives the first layer operation completion signal, the parameters in the Reg_Grp_B are loaded for the second layer calculation and the parameters of the third layer are configured into the Reg_Grp_A.
- (4)
- When the operation of the second layer is completed, the operation completion signal is also sent to the RSU again.
- (5)
- After the RSU receives the second layer operation completion signal, the parameters in the Reg_Grp_A are loaded for the third layer calculation.
- (6)
- After the calculation of the third layer is completed, it is also the end of three-layer network calculation.
5. Cell Segmentation and Classification CNN
6. Mobile Microfluidic Acquisition Device
- (1)
- Place a microfluidic chip in the lensless image sensing device.
- (2)
- A group of micropumps is used to control the flow rate to ensure that the lensless imaging device can acquire appropriate images.
- (3)
- The detected samples are injected into the microfluidic chip, and the data are collected by the lensless image sensing module.
6.1. Process Flow of the Microfluidic Chip
- (1)
- Using trimethylchlorosilane to perform surface modification on the positive die.
- (2)
- Pouring polydimethylsiloxane (PDMS) without bubbles onto the positive die.
- (3)
- The positive die from step 2 is put into a baking oven for 0.5 h to cure, then the positive die and PDMS are stripped.
- (4)
- Cleaning the thin glass and bonding it to PDMS.
6.2. Design of the Lensless Image-Sensing Module
7. Experimental Results and Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zabzdyre, J.L.; Lillard, S.J. New approaches to single-cell analysis by capillary electrophoresis. Phys. Chem. Earth Sci. 2001, 20, 467–476. [Google Scholar] [CrossRef]
- Lee, S.J.; Seo, Y.T.; Koh, Y.; Ji, C.H.; Kim, Y.K. A particle counting system using the photodetector array of a CMOS image sensor. J. Micromech. Microeng. 2012, 22, 95015–95022. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Heng, X.; Erickson, D.; Baugh, L.R.; Yaqoob, Z.; Sternberg, P.W.; Psaltis, D.; Yang, C. Optofluidic microscopy-a method for implementing a high resolution optical microscope on a chip. Lab Chip 2006, 6, 1274–1276. [Google Scholar] [CrossRef] [PubMed]
- Isikman, S.O.; Bishara, W.; Mudanyali, O.; Sencan, I.; Su, T.-W.; Tseng, D.K.; Yaglidere, O.; Sikora, U.; Ozcan, A. Lensfree On-Chip Microscopy and Tomography for Bio-Medical Applications. IEEE J. Sel. Top. Quantum Electron. 2011, 18, 1059. [Google Scholar] [CrossRef]
- Weidling, J.; Isikman, S.O.; Greenbaum, A.; Ozcan, A.; Botvinick, E.L. Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates. J. Biomed. Opt. 2012, 17, 126018. [Google Scholar] [CrossRef]
- Oh, C.; Isikman, S.O.; Khademhosseinieh, B.; Ozcan, A. On-chip differential interference contrast microscopy using lensless digital holography. Opt. Express 2010, 18, 4717–4726. [Google Scholar] [CrossRef]
- Roy, M.; Jin, G.; Seo, D.; Nam, M.-H.; Seo, S. A simple and low-cost device performing blood cell counting based on lens-free shadow imaging technique. Sens. Actuators B Chem. 2014, 201, 321–328. [Google Scholar] [CrossRef]
- Lee, J.; Kwak, Y.H.; Paek, S.-H.; Han, S.; Seo, S. CMOS image sensor-based ELISA detector using lens-free shadow imaging platform. Sens. Actuators B Chem. 2014, 196, 511–517. [Google Scholar] [CrossRef]
- Jin, G.; Yoo, I.-H.; Pack, S.P.; Yang, J.-W.; Ha, U.-H.; Paek, S.-H.; Seo, S. Lens-free shadow image based highthroughput continuous cell monitoring technique. Biosens. Bioelectron. 2012, 38, 126–131. [Google Scholar] [CrossRef]
- Seo, D.; Oh, S.; Lee, M.; Hwang, Y.; Seo, S. A Field-Portable Cell Analyzer without a Microscope and Reagents. Sensors 2017, 18, 85. [Google Scholar] [CrossRef]
- Gorocs, Z.; Tamamitsu, M.; Bianco, V.; Wolf, P.; Roy, S.; Shindo, K.; Yanny, K.S.; Wu, Y.; Koydemir, H.C.; Rivenson, Y.; et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light Sci. Appl. 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Calis, A.; Luo, Y.; Chen, C.; Lutton, M.; Rivenson, Y.; Lin, X.; Koydemir, H.C.; Zhang, Y.; Wang, H.; et al. Label-free bioaerosol sensing using mobile microscopy and deep learning. ACS Photonics 2018, 5, 4617–4627. [Google Scholar] [CrossRef]
- Nan, L.; Mei, Y.N.; Hejiu, Z. Nonlinear CMOS image sensor applied to lensless cell imaging system. J. Xi’an Univ. Technol. 2016, 32, 253–258. [Google Scholar]
- Fang, Y.; Yu, N.; Wang, R.; Su, D. An on-chip instrument for white blood cells classification based on a lens-less shadow imaging technique. PLoS ONE 2016, 12, e0174580. [Google Scholar] [CrossRef] [PubMed]
- Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnornet: Imagenet classification using binary convolutional neural networks. arXiv 2016, arXiv:1603.05279. [Google Scholar]
- Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks. In Advances in Neural Information Processing Systems; NIPS: Barcelona, Spain, 2016; pp. 4107–4115. [Google Scholar]
- Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. arXiv 2015, arXiv:1510.00149. [Google Scholar]
- Leng, C.; Li, H.; Zhu, S.; Jin, R. Extremely low bit neural network: Squeeze the last bit out with admm. arXiv 2017, arXiv:1707.09870. [Google Scholar]
- Mellempudi, N.; Kundu, A.; Mudigere, D.; Das, D.; Kaul, B.; Dubey, P. Ternary neural networks with fine-grained quantization. arXiv 2017, arXiv:1705.01462. [Google Scholar]
- Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental network quantization: Towards lossless cnns with lowprecision weights. arXiv 2017, arXiv:1702.03044. [Google Scholar]
- Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv 2016, arXiv:1606.06160. [Google Scholar]
- Zhu, C.; Han, S.; Mao, H.; Dally, W.J. Trained ternary quantization. arXiv 2016, arXiv:1612.01064. [Google Scholar]
- Chen, W.; Wilson, J.T.; Tyree, S.; Weinberger, K.Q.; Chen, Y. Compressing neural networks with the hashing trick. arXiv 2015, arXiv:1504.04788. [Google Scholar]
- Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014, arXiv:1412.6115. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Liu, Y.; Yu, N.; Fang, Y.; Wang, D. Low Resolution Cell Image Edge Segmentation Based on Convolutional Neural Network. In Proceedings of the 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 321–325. [Google Scholar]
- Fang, Y.; Yu, N.; Liu, Y. Classification of White Blood Cells by Convolution Neural Network in Lens-free Imaging System. In Proceedings of the 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 13–15 October 2018; pp. 1–5. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Lei, C.; Xin, W.; Wenchao, L.; He, C.; Liang, C. Hardware Implementation of Convolutional Neural Network Based Remote Sensing Image Classification Method. In Proceedings of the 7th International Conference on Communications, Signal Processing, and Systems (CSPS), Dalian, China, 14–16 July 2018. [Google Scholar]
- Wei, X.; Liu, W.; Chen, L.; Ma, L.; Chen, H.; Zhuang, Y. FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks for Remote Sensing Applications. Sensors 2019, 19, 924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Algorithm | Evaluation Standard of Image Segmentation | |||
---|---|---|---|---|
Jaccard | Confirm_Index | Precision | Recall | |
ostu | 0.9161 | 0.9084 | 0.9465 | 0.9494 |
Unet | 0.9245 | 0.9099 | 0.9551 | 0.9881 |
CSnet | 0.9465 | 0.9434 | 0.9631 | 1 |
Precision | Float32 | Int8 | Int7 | Int6 | Int5 | Int4 |
---|---|---|---|---|---|---|
Accuracy | 99.00% | 98.44% | 97.67% | 96.68% | 78.89% | 47.67% |
Accuracy Drop | - | –0.56% | –1.33% | –2.22% | –19.11% | –51.33% |
Precision | Float32 | Int16 | Int8 | Int7 | Int6 | Int5 | Int4 |
---|---|---|---|---|---|---|---|
Accuracy | 99.00% | 98.51% | 98.44% | 97.67% | 96.68% | 78.89% | 47.67% |
Accuracy Drop | - | −0.49% | −0.56% | −1.33% | −2.22% | −19.11% | −51.33% |
Area Drop | - | −32.98% | −44.86% | −45.07 | −47.12 | −49.09 | −50.81% |
FoM | 3.045 | 3.239 | 1.376 | 0.852 | 0.103 | 0.039 |
Config | Data Fetch | Calculation | Overlap | Common Mode Summary | Dual-Reg Mode Summary | Operation Time Saved | |
---|---|---|---|---|---|---|---|
Operation time (us) | 1342 | 10,977 | 3949 | 4596 | 16,268 | 11,672 | 28.25% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Yu, N.; Tian, D.; Li, S.; Li, Z. A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System. Sensors 2019, 19, 5103. https://doi.org/10.3390/s19235103
Liao Y, Yu N, Tian D, Li S, Li Z. A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System. Sensors. 2019; 19(23):5103. https://doi.org/10.3390/s19235103
Chicago/Turabian StyleLiao, Yumin, Ningmei Yu, Dian Tian, Shuaijun Li, and Zhengpeng Li. 2019. "A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System" Sensors 19, no. 23: 5103. https://doi.org/10.3390/s19235103
APA StyleLiao, Y., Yu, N., Tian, D., Li, S., & Li, Z. (2019). A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System. Sensors, 19(23), 5103. https://doi.org/10.3390/s19235103