A Field-Portable Cell Analyzer without a Microscope and Reagents
"> Figure 1
<p>Lens-free cell analyzer, NaviCell. (<b>a</b>) The optical part consists of a blue LED, a 300 μm pinhole for coherent illumination to a sample chip and a CMOS image sensor for acquiring images from the sample; (<b>b</b>) For convenient usability, a 5-in. touch display is mounted at the top of the device, which allows for the reporting of quantitative results and for viewing images of the samples without additional equipment. The NaviCell is operated by a proprietary program based on an Android system. Samples for analysis are prepared on a disposable chip which was developed to increase the shadow intensity of the cell.</p> "> Figure 2
<p>Concise workflow of the algorithm for the processing of the lens-free shadow image. The algorithm consists of binarized image, clustering, counting and viability analysis. Bottom pictures show how the original image is transformed at critical steps.</p> "> Figure 3
<p>Advantages of the NaviCell platform. (<b>a</b>) FOVs of the three different measurement methods used in the experiment are superimposed for easy comparison. Blue box shows the FOV of a hemocytometer, red box shows the FOV of the commercial cell counter and green box shows the FOV of the NaviCell; (<b>b</b>) To measure 10 μm beads with various concentrations, the average standard deviation of the hemocytometer (blue line), the commercial cell counter (red line) and the NaviCell (green line) are 2.3 × 10<sup>4</sup>, 2.1 × 10<sup>4</sup> and 1.1 × 10<sup>4</sup> beads/mL, respectively.</p> "> Figure 4
<p>Comparison of cell counting performance using 13 cell lines. (<b>a</b>) Cell counting results of the NaviCell and the conventional methods are analyzed for the A549, BT474, CHO, COS7, HELA, HL60, HT29, L929, MDA-MB-231, PC3, SK-BR-3, SWRC-GRO and U87 cell lines. Improved counting precision of the NaviCell is demonstrated in terms of (<b>b</b>) average ER values and (<b>c</b>) average CV values.</p> "> Figure 5
<p>Principle of viability analysis without reagent. (<b>a</b>) Lens-free shadow image of stained Raji cells; (<b>b</b>) Corresponding microscope image of (<b>a</b>); (<b>c</b>) Live and dead cell shadow images of six cell lines (BT474, L929, MDA-MB-231, THP-1, SWRC-G-R-O and U87) without staining; (<b>d</b>) The PPD is defined as a difference between the highest and lowest intensity of all pixels in a specific square area, enabling the analysis of cell viability without reagent. Note that the analysis with the NaviCell does not require any staining procedure intrinsically; however, <a href="#sensors-18-00085-f005" class="html-fig">Figure 5</a>a was inevitably acquired after the staining procedure in order to analyze the identical sample both with a microscope and the Navicell.</p> "> Figure 6
<p>Comparison of cell viability performance using six cell lines. (<b>a</b>–<b>f</b>) Concentrations of BT474, L929, MDA-MB-231, THP-1, SWRC-G-R-O and U87 cell lines, respectively, by dividing into total number of cells, number of dead cells and number of live cells; (<b>g</b>) Average ER of the total cell count, dead cell count and live cell count; (<b>h</b>) Average CV of the total cell count, dead cell count and live cell count.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.2.1. Measurement Procedure Using the Hemocytometer
2.2.2. Measurement Procedure Using the Commercial Cell Counter
2.2.3. Measurement Procedure Using the NaviCell
2.3. Preparation of Cell Lines for Experiment
2.3.1. Cell Counting
2.3.2. Cell Viability
2.3.3. Cell Harvesting
3. Results and Discussion
3.1. Analysis Algorithm
3.2. Cell Counting
3.3. Cell Viability
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cadena-Herrera, D.; Esparza-De Lara, J.E.; Ramírez-Ibañez, N.D.; López-Morales, C.A.; Pérez, N.O.; Flores-Ortiz, L.F.; Medina-Rivero, E. Validation of three viable-cell counting methods: Manual, semi-automated and automated. Biotechnol. Rep. 2015, 7, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Joeris, K.; Frerichs, J.G.; Konstantinov, K.; Scheper, T. In-situ microscopy: Online process monitoring of mammalian cell cultures. Cytotechnology 2002, 38, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.K., Jr. Measurement of growth and viability of cells in culture. Methods Enzymol. 1979, 58, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Kim, H.J.; Lee, H.J.; Lee, K.; Hong, D.; Lim, H.; Cho, K.; Jung, N.; Yi, Y.W. Application of a non-hazardous vital dye for cell counting with automated cell counters. Anal. Biochem. 2016, 492, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Stoddart, M.J. Cell Viability Assays: Introduction. In Mammalian Cell Viability: Methods and Protocols; Stoddart, M.J., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 1–6. ISBN 978-1-61779-108-6. [Google Scholar]
- Nemati, S.; Abbasalizadeh, S.; Baharvand, H. Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition. In Bioreactors in Stem Cell Biology: Methods and Protocols; Turksen, K., Ed.; Springer: New York, NY, USA, 2016; pp. 143–158. ISBN 978-1-4939-6478-9. [Google Scholar]
- Shah, D.; Naciri, M.; Clee, P.; Al-Rubeai, M. NucleoCounter—An efficient technique for the determination of cell number and viability in animal cell culture processes. Cytotechnology 2006, 51, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Nielson, L.K.; Smyth, G.K.; Grrenfield, P.F. Hemacytometer cell count distributions: Implication of nonpoisson behaviour. Biotechnol. Prog. 1991, 7, 560–563. [Google Scholar] [CrossRef]
- Aparna, B.; Jilani, S.A.K. Development of Image Processing Based White Blood Cell Counting System. Int. Innov. Res. Stud. 2014, 3, 468–479. [Google Scholar]
- Tucker, K.G.; Chalder, S.; Al-Rubeai, M.; Thomas, C.R. Measurement of hybridoma cell number, viability and morphology using fully automated image analysis. Enzyme Microb. Technol. 1994, 16, 29–35. [Google Scholar] [CrossRef]
- Johnston, G. Automated handheld instrument improves counting precision across multiple cell lines. BioTechniques 2010, 48, 325–327. [Google Scholar] [CrossRef]
- Ongena, K.; Das, C.; Smith, J.L.; Gil, S.; Johnston, G. Determining cell number during cell culture using the Scepter cell counter. J. Vis. Exp. 2010, 2204. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.F. Big data in biomedicine. Drug Discov. Today 2014, 19, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Howe, D.; Yon, S. The future of biocuration. Nature 2008, 455, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Tholudur, A.; Giron, L.; Alam, K.; Thomas, T.; Garr, E.; Weatherly, G.; Kulowiec, K.; Quick, M.; Shepard, S. Comparing automated and manual cell counts for cell culture applications. Bioprocess Int. 2006, 4, 28–34. [Google Scholar]
- Research and Markets. Cell Counting Market by Product, End User-Global Forecast to 2020; Research and Markets: Dublin, Ireland, 2015; pp. 1–189. [Google Scholar]
- Yang, S.Y.; Lien, K.Y.; Huang, K.J.; Lei, H.Y.; Lee, G.B. Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection. Biosens. Bioelectron. 2008, 24, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Gawad, S.; Schild, L.; Renaud, P. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 2001, 1, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Cucci, T.; Shumway, S.; Newell, R.; Selvin, R.; Guillard, R.; Yentsch, C. Flow cytometry: A new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar. Ecol. Prog. Ser. 1985, 24, 201–204. [Google Scholar] [CrossRef]
- Emaminejad, S.; Paik, K.H.; Tabard-Cossa, V.; Javanmard, M. Portable cytometry using microscale electronic sensing. Sens. Actuators B Chem. 2016, 224, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Hsieh, W.H. Absorbent-force-driven microflow cytometer. Sens. Actuators B Chem. 2014, 202, 1078–1087. [Google Scholar] [CrossRef]
- Zhu, H.; Isikman, S.O.; Mudanyali, O.; Greenbaum, A.; Ozcan, A.; Wang, J.; Myers, F.B.; Lee, L.P. Optical imaging techniques for point-of-care diagnostics. Lab Chip 2013, 13, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Grishagin, I.V. Automatic cell counting with Image. Anal. Biochem. 2015, 473, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jin, S.I.; Kim, H.M.; Ahn, J.; Kim, Y.G.; Lee, E.G.; Kim, M.G.; Shin, Y.B. Monitoring change in refractive index of cytosol of animal cells on affinity surface under osmotic stimulus for label-free measurement of viability. Biosens. Bioelectron. 2014, 64, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Göröcs, Z.; Ozcan, A. On-chip biomedical imaging. IEEE Rev. Biomed. Eng. 2013, 6, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, A.; Demirci, U. Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 2008, 8, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Momey, F.; Coutard, J.G.; Bordy, T.; Navarro, F.; Menneteau, M.; Dinten, J.M.; Allier, C. Dynamics of cell and tissue growth acquired by means of extended field of view lensfree microscopy. Biomed. Opt. Express 2016, 7, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Feizi, A.; Zhang, Y.; Greenbaum, A.; Guziak, A.; Luong, M.; Chan, R.Y.L.; Berg, B.; Ozkan, H.; Luo, W.; Wu, M.; et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab Chip 2016, 16, 4350–4358. [Google Scholar] [CrossRef] [PubMed]
- Tran, S.L.; Puhar, A.; Ngo-Camus, M.; Ramarao, N. Trypan blue dye enters viable cells incubated with the pore-forming toxin HlyII of Bacillus cereus. PLoS ONE 2011, 6, e22876. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.H.; Senft, J. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem. 1985, 33, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Tolnai, S. A method for viable cell count. Methods Cell Sci. 1975, 1, 37–38. [Google Scholar] [CrossRef]
Gyrozen * (NaviCell) | Invitrogen (Countess I) | Invitrogen ** (Countess II) | Bio-Rad (TC-20) | Logos (Luna) | Logos (Luna II) | Nexcelom (Cellometer Auto T4) | Coulter’s Vi-CELL | |
---|---|---|---|---|---|---|---|---|
Operating Power | 100–240 V | 100–240 V | 100–240 V | 90–240 V | 110-240 V | 100–240 V | 100–240 V | 100, 120, 220, 240 V |
Cell Diameter (µm) | 5 to 80 | 5 to 60 | 4 to 60 (count) 7 to 60 (viability) | 6 to 50 | 3 to 60 | 3 to 60 | 5 to 60 | 5 to 70 |
Detection range (cells/mL) | 104–106 | 104–107 | 104–107 | 5 × 104–107 | 5 × 104–107 | 5 × 104–107 | 105–107 | 5 × 104–107 |
Processing Time (second) | 13 | 60 | 15 | 30 | 7 | 22 (autofocusing) | 30 | 210 |
Dimensions (W × D × H) (mm) | 162 135 138 | 270 200 190 | 228.6 139.7 228.6 | 190 150 254 | 220 210 90 | 160 180 280 | 89 107 320 | 380 410 445 |
Weight (Kg) | 1 | 2.1 | 3.6 | 2.2 | 1.2 | 1.6 | 4.7 | 11.3 |
Camera | 5 Mega Pixel | 3.1 Mega Pixel (2.3× obj) | 5 Mega Pixel (2.5× obj) | - | 5 Mega Pixel | 5 Mega Pixel | - | Manual-focus CCD array (1.4 Mega Pixel) |
Field of View | 5.70 mm 4.28 mm (24.396 mm2) | 2 mm 2 mm (4 mm2) | 2.15 mm 1.62 mm (3.5 mm2) | 2 mm 2 mm (4 mm2) | - | - | - | - |
Working principle | Lens-free | Microscopy | Microscopy | Microscopy | Microscopy | Microscopy | Microscopy | Microscopy |
Reagent | Free | Required | Required | Required | Required | Required | Required | Required |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, D.; Oh, S.; Lee, M.; Hwang, Y.; Seo, S. A Field-Portable Cell Analyzer without a Microscope and Reagents. Sensors 2018, 18, 85. https://doi.org/10.3390/s18010085
Seo D, Oh S, Lee M, Hwang Y, Seo S. A Field-Portable Cell Analyzer without a Microscope and Reagents. Sensors. 2018; 18(1):85. https://doi.org/10.3390/s18010085
Chicago/Turabian StyleSeo, Dongmin, Sangwoo Oh, Moonjin Lee, Yongha Hwang, and Sungkyu Seo. 2018. "A Field-Portable Cell Analyzer without a Microscope and Reagents" Sensors 18, no. 1: 85. https://doi.org/10.3390/s18010085
APA StyleSeo, D., Oh, S., Lee, M., Hwang, Y., & Seo, S. (2018). A Field-Portable Cell Analyzer without a Microscope and Reagents. Sensors, 18(1), 85. https://doi.org/10.3390/s18010085