A Sensitive Carbon Dioxide Sensor Based on Photoacoustic Spectroscopy with a Fixed Wavelength Quantum Cascade Laser
<p>Absorption lines for 3% CO<sub>2</sub> and 2% H<sub>2</sub>O in the ~4.4 μm spectral region based on the HITRAN 2016 database.</p> "> Figure 2
<p>(<b>a</b>) The fixed wavelength quantum cascade laser (FW-QCL) output power as a function of at injection current. (<b>b</b>) The emission spectrum of the FW-QCL with a 35.2 mW optical power.</p> "> Figure 3
<p>The Schematic of the photoacoustic spectroscopy (PAS) based CO<sub>2</sub> sensor system with a FW-QCL.</p> "> Figure 4
<p>Signal stability of the reported FW-QCL based CO<sub>2</sub> sensor system.</p> "> Figure 5
<p>(<b>a</b>) System noise and PAS signal for different CO<sub>2</sub> concentration levels. (<b>b</b>) PAS signal as a function of CO<sub>2</sub> concentration.</p> "> Figure 6
<p>Allan deviation analysis for the FW-QCL based CO<sub>2</sub> sensor system.</p> "> Figure 7
<p>CO<sub>2</sub> detection from several sources with the reported QCL based CO<sub>2</sub> sensor system on the HIT campus, Harbin, China (Latitude and longitude are: 45°43′N/126°37′E).</p> ">
Abstract
:1. Introduction
2. Experimental Setup
2.1. CO2 Absorption Line Selection
2.2. QCL Performance Characteristics
2.3. Sensor System Configuration
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hashimoto, K. Global temperature and atmospheric carbon dioxide concentration. In Global Carbon Dioxide Recycling; Springer: Singapore, 2019; pp. 5–17. [Google Scholar]
- Hoel, M.; Kverndokk, S. Depletion of fossil fuels and the impacts of global warming. Resour. Energy Econ. 1996, 18, 115–136. [Google Scholar] [CrossRef]
- Schneider, S.H. The greenhouse effect: Science and policy. Science 1989, 243, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Johnson, D.; Lacis, A.; Lebedeff, S.; Lee, P.; Rind, D.; Russell, G. Climate impact of increasing atmospheric carbon dioxide. Science 1981, 213, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef]
- Chakraborty, S.; Tiedemann, A.V.; Teng, P.S. Climate change: Potential impact on plant diseases. Environ. Pollut. 2000, 108, 317–326. [Google Scholar] [CrossRef]
- Tam, A.C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 1986, 58, 381. [Google Scholar] [CrossRef]
- Harren, F.J.M.; Mandon, J.; Cristescu, S.M. Photoacoustic Spectroscopy in Trace Gas Monitoring; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 2203–2226. [Google Scholar]
- Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Ivanov, R. Photoacoustic spectroscopy in the optical characterization of foodstuff: A review. J. Spectrosc. 2019, 2019, 34. [Google Scholar] [CrossRef]
- Popa, C. Breathing disorders using photoacoustics gas analyzer. J. Med. Imaging Health Inf. 2016, 6, 1893–1895. [Google Scholar] [CrossRef]
- Ma, Y.F. Review of recent advances in QEPAS-based trace gas sensing. Appl. Sci. 2018, 8, 1822. [Google Scholar] [CrossRef]
- Wu, H.P.; Dong, L.; Yin, X.K.; Sampaolo, A.; Patimisco, P.; Ma, W.G.; Zhang, L.; Yin, W.B.; Xiao, L.T.; Spagnolo, V.; et al. Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration. Sens. Actuators B Chem. 2019, 297, 126753. [Google Scholar] [CrossRef]
- Patimisco, P.; Sampaolo, A.; Dong, L.; Tittel, F.K.; Spagnolo, V. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev. 2018, 5, 011106. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.P.; Zheng, H.D.; Ma, W.G.; Zhang, L.; Yin, W.B.; Jia, S.T.; Tittel, F.K. Sub-Ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser. Sens. Actuators B Chem. 2017, 247, 329–335. [Google Scholar] [CrossRef]
- Liu, K.; Mei, J.X.; Zhang, W.J.; Chen, W.D.; Gao, X.M. Multi-resonator photoacoustic spectroscopy. Sens. Actuators B Chem. 2017, 251, 632–636. [Google Scholar] [CrossRef]
- Erfanzadeh, M.; Kumavor, P.D.; Zhu, Q. Laser scanning laser diode photoacoustic microscopy system. Photoacoustics 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Popa, C. Detection of ethylene traces by infrared spectroscopy in mental disorders. Rom. Rep. Phys. 2015, 67, 1565–1569. [Google Scholar]
- Popa, C. Infrared spectroscopy study of the influence of inhaled vapors/smoke produced by cigarettes of active smokers. J. Biomed. Opt. 2014, 20, 051003. [Google Scholar] [CrossRef]
- Elia, A.; Lugarà, P.M.; Di Franco, C.; Spagnolo, V. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 2009, 9, 9616–9628. [Google Scholar] [CrossRef]
- Ma, Y.F.; Qiao, S.D.; He, Y.; Li, Y.; Zhang, Z.H.; Yu, X.; Tittel, F.K. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser. Opt. Express 2019, 27, 14163–14172. [Google Scholar] [CrossRef]
- He, Y.; Ma, Y.F.; Tong, Y.; Yu, X.; Peng, Z.F.; Gao, J.; Tittel, F.K. Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy. Appl. Phys. Lett. 2017, 111, 24110. [Google Scholar] [CrossRef]
- Yi, H.M.; Maamary, R.; Gao, X.M.; Sigrist, M.W.; Fertein, E.; Chen, W.D. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy. Appl. Phys. Lett. 2015, 106, 101109. [Google Scholar] [CrossRef]
- Ma, Y.F.; He, Y.; Zhang, L.G.; Yu, X.; Zhang, J.B.; Sun, R.; Tittel, F.K. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork. Appl. Phys. Lett. 2017, 110, 031107. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.D.; Ma, Y.F.; He, Y.; Yu, X.; Zhang, Z.H. A sensitive carbon monoxide sensor based on photoacoustic spectroscopy with a 2.3 μm mid-infrared high-power laser and enhanced gas absorption. Sensors 2019, 19, 3202. [Google Scholar] [CrossRef]
- Liu, K.; Cao, Y.; Wang, G.S.; Zhang, W.J.; Chen, W.D.; Gao, X.M. A novel photoacoustic spectroscopy gas sensor using a low cost polyvinylidene fluoride film. Sens. Actuators B Chem. 2018, 277, 571–575. [Google Scholar] [CrossRef]
- Karpf, A.; Qiao, Y.H.; Rao, G.N. Ultrasensitive, real-time trace gas detection using a high-power, multimode diode laser and cavity ringdown spectroscopy. Appl. Opt. 2016, 55, 4497–4504. [Google Scholar] [CrossRef]
- Tomberg, T.; Vainio, M.; Hieta, T.; Halonen, L. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci. Rep. 2018, 8, 1848. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Tittel, F.K. Chemical sensors based on quantum cascade lasers. IEEE J. Quantum Elect. 2002, 38, 582–591. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 5158, 553–556. [Google Scholar] [CrossRef]
- Gmachl, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 2001, 64, 1533. [Google Scholar] [CrossRef]
- Schjolberg-Henriksen, K.; Schulz, O.; Ferber, A.; Moe, S.; Lloyd, M.; Muller, G.; Suphan, K.; Wang, D.T.; Bernstein, R.W. Sensitive and selective photoacoustic gas sensor suitable for high-volume manufacturing. IEEE Sens. J. 2008, 8, 1539–1545. [Google Scholar] [CrossRef]
- Schulz, O.; Legner, W.; Müller, G.; Schjølberg-Henriksen, K.; Ferber, A.; Moe, S.; Lloyd, M.H.; Suphan, K.H. Photoacoustic Gas Sensing Microsystems. In Proceedings of the 13th International SENSOR Conference 2007, Nürnberg, Germany, 22–24 May 2007. [Google Scholar]
- Spannhake, J.; Helwig, A.; Schulz, O.; Müller, G. Micro-fabrication of gas sensors. In Solid State Gas Sensing; Comini, E., Faglia, G., Sberveglieri, G., Eds.; Springer: Boston, MA, USA, 2009; pp. 1–46. [Google Scholar]
- Scholz, L.; Perez, A.O.; Knobelspies, S.; Wöllenstein, J.; Palzer, S. MID-IR LED-based, Photoacoustic CO2 Sensor. Procedia Eng. 2015, 120, 1233–1236. [Google Scholar] [CrossRef]
- Eberl, M.; Jost, F.; Kolb, S.; Schaller, R.; Dettmann, W.; Gassner, S.; Skorupa, F. Miniaturized photoacoustic CO2 gas sensors-A new approach for the automotive sector. In Proceedings of the AmE 2019-Automotive meets Electronics, 10th GMM-Symposium, Dortmund, Germany, 12–13 March 2019; pp. 1–5. [Google Scholar]
- Ma, Y.F.; Lewicki, R.; Razeghi, M.; Tittel, F.K. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express 2013, 21, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN 2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, S.; Qu, Y.; Ma, Y.; He, Y.; Wang, Y.; Hu, Y.; Yu, X.; Zhang, Z.; Tittel, F.K. A Sensitive Carbon Dioxide Sensor Based on Photoacoustic Spectroscopy with a Fixed Wavelength Quantum Cascade Laser. Sensors 2019, 19, 4187. https://doi.org/10.3390/s19194187
Qiao S, Qu Y, Ma Y, He Y, Wang Y, Hu Y, Yu X, Zhang Z, Tittel FK. A Sensitive Carbon Dioxide Sensor Based on Photoacoustic Spectroscopy with a Fixed Wavelength Quantum Cascade Laser. Sensors. 2019; 19(19):4187. https://doi.org/10.3390/s19194187
Chicago/Turabian StyleQiao, Shunda, Yanchen Qu, Yufei Ma, Ying He, Yao Wang, Yinqiu Hu, Xin Yu, Zhonghua Zhang, and Frank K. Tittel. 2019. "A Sensitive Carbon Dioxide Sensor Based on Photoacoustic Spectroscopy with a Fixed Wavelength Quantum Cascade Laser" Sensors 19, no. 19: 4187. https://doi.org/10.3390/s19194187
APA StyleQiao, S., Qu, Y., Ma, Y., He, Y., Wang, Y., Hu, Y., Yu, X., Zhang, Z., & Tittel, F. K. (2019). A Sensitive Carbon Dioxide Sensor Based on Photoacoustic Spectroscopy with a Fixed Wavelength Quantum Cascade Laser. Sensors, 19(19), 4187. https://doi.org/10.3390/s19194187