A Phase-Preserving Focusing Technique for TOPS Mode SAR Raw Data Based on Conventional Processing Methods
<p>TOPS acquisition mode: the antenna beam has a virtual rotation center located above the platform acquisition track and an angular velocity <math display="inline"><semantics> <msub> <mi>ω</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> </semantics></math>. TOPS raw data are acquired in bursts of duration <math display="inline"><semantics> <msub> <mi>T</mi> <mi>b</mi> </msub> </semantics></math>, cyclically switching the antenna beam from swath to swath, referred to as sub-swaths, for wide-area coverage. Note also that <math display="inline"><semantics> <msub> <mi>v</mi> <mi>s</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> </semantics></math> represent the platform velocity and height, respectively.</p> "> Figure 2
<p>TOPS acquisition geometry for a single burst: <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>≡</mo> <mi>P</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>θ</mi> <mo>)</mo> </mrow> </semantics></math> represents the location of a generic target, <math display="inline"><semantics> <msub> <mi>v</mi> <mi>s</mi> </msub> </semantics></math> is the sensor velocity, <math display="inline"><semantics> <msub> <mi>v</mi> <mi>f</mi> </msub> </semantics></math> the antenna footprint velocity, <math display="inline"><semantics> <msub> <mi>ω</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> </semantics></math> the angular rotation velocity, <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> </semantics></math> the distance of the SAR sensor flight track from the virtual rotation center, <math display="inline"><semantics> <msub> <mi>T</mi> <mi>b</mi> </msub> </semantics></math> the acquisition burst time, <math display="inline"><semantics> <msub> <mi>X</mi> <mi>f</mi> </msub> </semantics></math> the illuminated area extension on the ground, <span class="html-italic">X</span> the azimuth antenna footprint.</p> "> Figure 3
<p>Raw data space/(spatial) frequency representation for the TOPS mode: <math display="inline"><semantics> <msub> <mi>B</mi> <mi>f</mi> </msub> </semantics></math> represents the bandwidth for a single point target, <math display="inline"><semantics> <msub> <mi>B</mi> <mi>b</mi> </msub> </semantics></math> is the overall bandwidth, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>R</mi> <mi>F</mi> <mo>/</mo> <msub> <mi>v</mi> <mi>s</mi> </msub> </mrow> </semantics></math> is the spatial azimuth pulse repetition frequency, <math display="inline"><semantics> <mrow> <msubsup> <mi>ζ</mi> <mrow> <mi>D</mi> <mi>o</mi> <mi>p</mi> <mi>p</mi> </mrow> <mo>′</mo> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is the Doppler Centroid (spatial) frequency considered here as a function of the azimuth coordinate x.</p> "> Figure 4
<p>Flow chart of the implemented azimuth interpolation. Please note that <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>R</mi> <mi>F</mi> </mrow> </semantics></math> is the pulse repetition frequency, <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>C</mi> </mrow> </semantics></math> is the Doppler Centroid, <span class="html-italic">M</span> is the length of the sliding window, and <span class="html-italic">N</span> is the oversampling factor.</p> "> Figure 5
<p>(<b>a</b>) Flow chart of a straightforward Stripmap-based TOPS raw data focusing algorithm; (<b>b</b>) Flow chart of the proposed TOPS raw data focusing algorithm.</p> "> Figure 6
<p>Flow chart of the proposed TOPS raw data focusing algorithm (see <a href="#sensors-19-03321-f005" class="html-fig">Figure 5</a>b), showing the effect of each processing step on the data, starting from raw up to focused data. Please note that the extra zeros shown in the central panel of the Figure have been added only to have an azimuth dimension as power of 2 to efficiently perform the FFT operations.</p> "> Figure 7
<p>Sentinel 1 Interferometric Wide-Swath TOPS Mode imaged area: the yellow rectangle represents the investigated zone located in Southern Germany.</p> "> Figure 8
<p>TOPS image focusing result: burst images sequence of the Sentinel-1B raw dataset acquired on 1 January 2019 on the area of interest.</p> "> Figure 9
<p>Impulse Response function and related parameters.</p> "> Figure 10
<p>Focused image of burst 8 relevant to sub-swath 1: the position of two corner reflectors, referred to as D39 and D40 (see [<a href="#B50-sensors-19-03321" class="html-bibr">50</a>]), has been highlighted by the red squares.</p> "> Figure 11
<p>Corner reflectors within the burst 8 of sub-swath 1: (<b>a</b>) image, (<b>b</b>) IRF central cross section along range direction expressed in dB, (<b>c</b>) IRF central cross section along azimuth direction expressed in dB, for the corner reflector D39. (<b>d</b>) image, (<b>e</b>) IRF central cross section along range direction expressed in dB, (<b>f</b>) IRF central cross section along azimuth direction expressed in dB, for the corner reflector D40.</p> "> Figure 12
<p>Burst interferogram (<b>a</b>) and the corresponding coherence (<b>b</b>) computed from the pair, focused through the presented approach, relevant to the S1B raw dataset acquired on August 23rd 2018 and the S1A raw dataset acquired six days later, over the DLR calibration site, shown in <a href="#sensors-19-03321-f010" class="html-fig">Figure 10</a></p> ">
Abstract
:1. Introduction
2. TOPS Acquisition Mode and System Transfer Function Analysis
3. Focusing Algorithm
4. Experimental Results from Sentinel-1 IWS Data
5. Conclusions and Further Developments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CSA | Chirp Scaling Algorithm |
DC | Doppler Centroid |
DLR | Deutsche Zentrum für Luft-und Raumfahrt |
HPC | High-Performance Computing |
IRF | Impulse Response Function |
IWS | Interferometric Wide-Swath |
PRF | Pulse Repetition Frequency |
PSLR | Peak Side Lobe Ratio |
RCM | Range Cell Migration |
RDA | Range-Doppler Algorithm |
SAR | Synthetic Aperture RADAR |
TOPS | Terrain Observation by Progressive Scans |
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar—Systems And Signal Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; Electronic Engineering Systems, Taylor & Francis: Boca Raton, FL, USA, 1999. [Google Scholar]
- Cumming, I.; Wong, F. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Number v. 1 in Artech House remote sensing library, Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Carrara, W.; Goodman, R.; Majewski, R. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms; Artech House signal processing library, Artech House: Norwood, MA, USA, 1995. [Google Scholar]
- Baker, D.P.B.C.J. High resolution processing of hybrid strip-map/spotlight mode SAR. IET J. Mag. 1996, 143, 366–374. [Google Scholar]
- De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 System capabilities and applications. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460. [Google Scholar] [CrossRef]
- Janoth, J.; Gantert, S.; Schrage, T.; Kaptein, A. Terrasar next generation—Mission capabilities. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium— IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 2297–2300. [Google Scholar] [CrossRef]
- Xu, W.; Huang, P.; Deng, Y.K. MIMO-TOPS mode for high-resolution ultra-wide-swath full polarimetric imaging. Progress Electromagn. Res. 2011, 121, 19–37. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, M. Tri-band Multi-Polarity Airborne SAR System. In Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 7–10 June 2010; pp. 1–3. [Google Scholar]
- Tomiyasu, K. Conceptual Performance of a Satellite Borne, Wide Swath Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 1981, GE-19, 108–116. [Google Scholar] [CrossRef]
- Bamler, R. Optimum look weighting for burst-mode and ScanSAR processing. IEEE Trans. Geosci. Remote Sens. 1995, 33, 722–725. [Google Scholar] [CrossRef]
- Shimada, M. A New Method for Correcting ScanSAR Scalloping Using Forests and Inter-SCAN Banding Employing Dynamic Filtering. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3933–3942. [Google Scholar] [CrossRef]
- Romeiser, R.; Horstmann, J.; Graber, H. A new scalloping filter algorithm for scansar images. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 4079–4082. [Google Scholar] [CrossRef]
- Cumming, I.; Bennett, J. Digital processing of Seasat SAR data. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’79), Washington, DC, USA, 2–4 April 1979; Volume 4, pp. 710–718. [Google Scholar] [CrossRef]
- Bamler, R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Hughes, W.; Gault, K.; Princz, G.J. A comparison of the Range-Doppler and Chirp Scaling algorithms with reference to RADARSAT. In Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (IGARSS’96), Lincoln, NE, USA, 31–31 May 1996; Volume 2, pp. 1221–1223. [Google Scholar] [CrossRef]
- Moreira, A.; Mittermayer, J.; Scheiber, R. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1123–1136. [Google Scholar] [CrossRef]
- Rocca, F.; Cafforio, C.; Prati, C. Synthetic Aperture Radar for wave application techniques. Geophys. Prospect. 1989, 37, 809–830. [Google Scholar] [CrossRef]
- Cafforio, C.; Prati, C.; Rocca, F. SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 194–207. [Google Scholar] [CrossRef]
- Franceschetti, G.; Schirinzi, G. A SAR processor based on two-dimensional FFT codes. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 356–366. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R.; Pascazio, V.; Schirinzi, G. WASAR: a wide-angle SAR processor. IEE Proc. F Radar Signal Process. 1992, 139, 107–114. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R.; Marzouk, E.S. Efficient and high precision space-variant processing of SAR data. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 227–237. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R.; Marzouk, E.S. A new two-dimensional squint mode SAR processor. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 854–863. [Google Scholar] [CrossRef]
- Lanari, R. A new method for the compensation of the SAR range cell migration based on the chirp z-transform. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1296–1299. [Google Scholar] [CrossRef]
- Lanari, R.; Fornaro, G. A short discussion on the exact compensation of the SAR range-dependent range cell migration effect. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1446–1452. [Google Scholar] [CrossRef]
- Mittermayer, J.; Lord, R.; Borner, E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 3, pp. 1462–1464. [Google Scholar] [CrossRef]
- Prats, P.; Scheiber, R.; Mittermayer, J.; Meta, A.; Moreira, A. Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling. IEEE Trans. Geosci. Remote Sens. 2010, 48, 770–780. [Google Scholar] [CrossRef]
- Xu, W.; Huang, P.; Deng, Y. TOPSAR data focusing based on azimuth scaling preprocessing. Adv. Space Res. 2011, 48, 270–277. [Google Scholar] [CrossRef]
- Huang, P.; Xu, W. An efficient imaging approach for TOPS SAR data focusing based on scaled fourier transform. Progress Electromagn. Res. 2013, 47, 297–313. [Google Scholar] [CrossRef]
- Sun, G.; Xing, M.; Wang, Y.; Wu, Y.; Wu, Y.; Bao, Z. Sliding Spotlight and TOPS SAR Data Processing Without Subaperture. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1036–1040. [Google Scholar] [CrossRef]
- Xu, W.; Huang, P.; Deng, Y.; Sun, J.; Shang, X. An Efficient Approach With Scaling Factors for TOPS-Mode SAR Data Focusing. IEEE Geosci. Remote Sens. Lett. 2011, 8, 929–933. [Google Scholar] [CrossRef]
- Xu, W.; Huang, P.; Wang, R.; Deng, Y.; Lu, Y. TOPS-Mode Raw Data Processing Using Chirp Scaling Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 235–246. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Zeng, H.C.; Wang, P.B.; Liu, W. A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform. Sensors 2016, 16, 2095. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, J.; Liu, W.; Wang, P.; Li, C. A Modified Three-Step Algorithm for TOPS and Sliding Spotlight SAR Data Processing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6910–6921. [Google Scholar] [CrossRef] [Green Version]
- Engen, G.; Larsen, Y. Efficient Full Aperture Processing of TOPS Mode Data Using the Moving Band Chirp Z-Transform. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3688–3693. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Bamler, R.; Schättler, B. Phase-Preservation in SAR Processing: Definition, Requirements and Tests; DLR Tech, Note Ver 1.0; DLR Publisher: Oberpfaffenhofen, Germany, 1995. [Google Scholar]
- ESA. RADAR and SAR Glossary; 2019; Available online: https://earth.esa.int/handbooks/asar/CNTR5-2.html (accessed on 28 July 2019).
- Sack, M.; Ito, M.R.; Cumming, I.G. Application of efficient linear FM matched filtering algorithms to synthetic aperture radar processing. IEE Proc. F (Commun. Radar Signal Process.) 1985, 132, 45–57. [Google Scholar] [CrossRef]
- Piantanida, R.; Hajduch, G.; Poullaouec, J. Sentinel-1 Level 1 Detailed Algorithm Definition; Technical Report; MDA: Chicago, IL, USA, 2017. [Google Scholar]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Lyons, R.G. Understanding Digital Signal Processing, 2nd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Stolt, R.H. Migration by Fourier Transform. Geophysics 1978, 43, 23–48. [Google Scholar] [CrossRef]
- Lanari, R.; Hensley, S.; Rosen, P.A. Chirp z-transform based SPECAN approach for phase-preserving ScanSAR image generation. IEE Proc. -Radar Sonar Navig. 1998, 145, 254–261. [Google Scholar] [CrossRef]
- Reimann, J.; Schwerdt, M.; Schmidt, K.; Ramon, N.T.; Castellanos, G.A.; Döring, B.; Rudolf, D.; Raab, S.; Antony, J.M.W.; Zink, M. The DLR SAR calibration center. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015; pp. 169–173. [Google Scholar] [CrossRef]
- ESA. In Copernicus Open Access Hub; 2019; Available online: https://scihub.copernicus.eu/ (accessed on 28 July 2019).
- di Bisceglie, M.; Di Santo, M.; Galdi, C.; Lanari, R.; Ranaldo, N. Synthetic Aperture Radar Processing with GPGPU. IEEE Signal Process. Mag. 2010, 27, 69–78. [Google Scholar] [CrossRef]
- Imperatore, P.; Pepe, A.; Lanari, R. Spaceborne Synthetic Aperture Radar Data Focusing on Multicore-Based Architectures. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4712–4731. [Google Scholar] [CrossRef]
- Kirk, D.B.; Hwu, W.M.W. Programming Massively Parallel Processors: A Hands-on Approach, 1st ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2010. [Google Scholar]
Sub-Swaths | ||
---|---|---|
IW1 | 7021 | 31919 |
IW2 | 7740 | 28575 |
IW3 | 7050 | 35040 |
Parameter | Swath | Value | Unit |
---|---|---|---|
Wavelength | 0.055465756 | m | |
Azimuth antenna size | 12.300000 | m | |
Number of sub-swaths | 3 | ||
Sampling Frequency | IW1 | 64,345,238 | Hz |
IW2 | 54,595,960 | Hz | |
IW3 | 46,918,403 | Hz | |
Range pixel spacing | IW1 | 2.3295620 | m |
IW2 | 2.745555257 | m | |
IW3 | 3.194827944 | m | |
Pulse Repetition Frequency | IW1 | 1717.1290 | Hz |
IW2 | 1451.6271 | Hz | |
IW3 | 1685.8173 | Hz | |
Azimuth pixel spacing | IW1 | 4.1779080 | m |
IW2 | 4.9388437 | m | |
IW3 | 4.2459002 | m | |
Angular Steering rate | IW1 | 1.5903688 | degrees/s |
IW2 | 0.97986332 | degrees/s | |
IW3 | 1.3974408 | degrees/s |
Parameter | Swath | Value | Unit |
---|---|---|---|
Sampling Frequency | all | 64345238 | Hz |
Range Pixel Spacing | all | 2.3295620 | m |
Pulse Repetition Frequency | all | 486.48631 | Hz |
Azimuth Pixel Spacing | all | 14.713116 | m |
CRs | PSLR | ||||||
---|---|---|---|---|---|---|---|
(Nominal) | (Nominal) | (Nominal) | (Range) | (Azimuth) | |||
[m] | [m] | [m] | [m] | [dB] | [dB] | [dB] | |
D39 | 2.66 | 2.66 | 23.22 | 23.27 | −21.21 | −21.13 | −21.92 |
D40 | 2.66 | 23.5 | −21.87 | −21.35 |
CRs | PSLR | ||||||
---|---|---|---|---|---|---|---|
(Nominal) | (Nominal) | (Nominal) | (Range) | (Azimuth) | |||
[m] | [m] | [m] | [m] | [dB] | [dB] | [dB] | |
D39 | 2.66 | 2.66 | 23.22 | 24.88 | −21.21 | −21.16 | −22.68 |
D40 | 2.66 | 24.65 | −21.82 | −21.85 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusco, A.; Pepe, A.; Berardino, P.; De Luca, C.; Buonanno, S.; Lanari, R. A Phase-Preserving Focusing Technique for TOPS Mode SAR Raw Data Based on Conventional Processing Methods. Sensors 2019, 19, 3321. https://doi.org/10.3390/s19153321
Fusco A, Pepe A, Berardino P, De Luca C, Buonanno S, Lanari R. A Phase-Preserving Focusing Technique for TOPS Mode SAR Raw Data Based on Conventional Processing Methods. Sensors. 2019; 19(15):3321. https://doi.org/10.3390/s19153321
Chicago/Turabian StyleFusco, Adele, Antonio Pepe, Paolo Berardino, Claudio De Luca, Sabatino Buonanno, and Riccardo Lanari. 2019. "A Phase-Preserving Focusing Technique for TOPS Mode SAR Raw Data Based on Conventional Processing Methods" Sensors 19, no. 15: 3321. https://doi.org/10.3390/s19153321
APA StyleFusco, A., Pepe, A., Berardino, P., De Luca, C., Buonanno, S., & Lanari, R. (2019). A Phase-Preserving Focusing Technique for TOPS Mode SAR Raw Data Based on Conventional Processing Methods. Sensors, 19(15), 3321. https://doi.org/10.3390/s19153321