Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations
<p>The northwestern Mediterranean Sea showing the southern coast of France, the island of Corsica, and the location of the BOUSSOLE buoy in the Ligurian Sea (black star) redrawn from [<a href="#B22-sensors-19-03032" class="html-bibr">22</a>]. Black dots are the locations where the float surfaced, while the float trajectory is overlaid in the plot with dashed black line.</p> "> Figure 2
<p>Scatter-plot and linear fit (continuous lines) calculated with ordinary least square (OLS) (blue) and standard major axis (SMA) (red) methods in the TChla-b<sub>bp</sub> relationship at the BOUSSOLE site. For both the coefficients, intercepts (A) and slopes (B), the standard errors are also indicated.</p> "> Figure 3
<p>Scatter plot between TChla and b<sub>bp</sub> from ocean colour data in the northwestern Mediterranean Sea with linear fits (continuous lines) calculated with OLS (blue) and SMA (red) methods (<b>a</b>). For both the coefficients, intercepts (A) and slopes (B), the standard errors are also indicated. Time series of C<sub>phyto</sub> (<b>b</b>) based on the b<sup>k</sup><sub>bp</sub> computed by OLS (in blue) and SMA (in red) methods.</p> "> Figure 4
<p>Scatter-plot and linear fits calculated with OLS (blue) and SMA (red) methods in the b<sub>bp</sub>-POC relationship at the BOUSSOLE site (<b>a</b>). For both the coefficients, intercepts (A) and slopes (B), the standar errors are also indicated. Time series anomalies of particulate organic carbon (POC) derived from BGC-Argo b<sub>bp</sub> vertical profiles (0–250 m) using OLS and SMA and relationships (<b>b</b>).</p> "> Figure A1
<p>For an OLS line, the error is defined as the vertical dispersion of a point from the straight line (distance 1 to 2) and the quantity minimized is the sum of squares of these linear distances. In case of SMA, on the other hand, the error is defined as the area of the triangle 3-4-5 and the quantity minimized is the sum of these area (redrawn from Smith et al., 2009 [<a href="#B30-sensors-19-03032" class="html-bibr">30</a>]) (<b>a</b>). Scatter plot and linear fits calculated with OLS (blue) and SMA (red) methods by using a syntehtical datasets with a normal distributed error added to both X and Y variables (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Theoretical Background
2.2. Field and Satellite Measurements
2.2.1. Cruise Data
2.2.2. BGC-Argo Floats Data
2.2.3. Ocean Colour Data
2.3. Statistics
- (i)
- “Anomalies” here defined as the difference between parameters established with OLS and SMA linear regression methods.
- (ii)
- The relative percentage differences (RPD) between parameters computed by the application of the unsuitable and suitable method.
3. Results and Discussion
3.1. Total Chlorophyll-a versus Optical Backscattering
3.2. Optical Backscattering vs. Particulate Organic Carbon
4. Conclusions
- The phytoplankton carbon biomass based on the TChla-bbp relationship needs to be computed using the OLS method due to the asymmetry assumption between the two variables. In such a context, the intercept of the linear fit between TChla and bbp, which is necessary to compute the Cphyto, represents the fraction of bbp that does not co-vary with TChla, confirming that the dependent and independent parameters cannot be interchanged from a theoretical perspective. Only in this specific case, the application of the SMA is unsuitable, as it assumes symmetry of the parameters. Its application always determines an overestimation of phytoplankton carbon biomass.
- For all linear regression analysis in which the main aim is to compare two parameters (e.g., bbp-POC or TChla-bbp), the most appropriate method is SMA due to its theoretical symmetry, and because of the uncertainties that affect both variables. It is thus possible to interchange the x and y axes without any impact on the interpretation of the results.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Mathematical Details
References
- Legendre, P.; Legendre, L.F. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 24. [Google Scholar]
- Laws, E.A.; Archie, J.W. Appropriate use of regression analysis in marine biology. Mar. Biol. 1981, 65, 13–16. [Google Scholar] [CrossRef]
- Innamorati, M.; Ferrari, I.; Marino, D.; Ribera D’Alcalà, M. Metodi Nell’Ecologia del Plancton Marino. In Nova Thalassia, Min. Amb., S.I.B.M. ed.; Provincia e Comune, Università di Trieste: Trieste, Italia, 1990; Volume 11. [Google Scholar]
- Steele, J.H.; Baird, I.E. Further relations between primary production, chlorophyll, and particulate carbon. Limnol. Oceanogr. 1962, 7, 42–44. [Google Scholar] [CrossRef]
- Banse, K. Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Mar. Biol. 1977, 41, 199–212. [Google Scholar] [CrossRef]
- Loisel, H.; Bosc, E.; Stramski, D.; Oubelkheir, K.; Deschamps, P.Y. Seasonal variability of the backscattering coefficient in the Mediterranean Sea based on Satellite SeaWiFS imagery. Geophys. Res. Lett. 2001, 28, 4203–4206. [Google Scholar] [CrossRef]
- Stramski, D.; Reynolds, R.A.; Babin, M.; Kaczmarek, S.; Lewis, M.R.; Röttgers, R.; Claustre, H. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 2008, 5, 171–201. [Google Scholar] [CrossRef] [Green Version]
- Neukermans, G.; Loisel, H.; Mériaux, X.; Astoreca, R.; McKee, D. In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnol. Oceanogr. 2012, 57, 124–144. [Google Scholar] [CrossRef]
- Cetinić, I.; Perry, M.J.; Briggs, N.T.; Kallin, E.; D’Asaro, E.A.; Lee, C.M. Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment. J. Geophys. Res. Ocean. 2012. [Google Scholar] [CrossRef]
- Thomalla, S.J.; Ogunkoya, G.; Vichi, M.; Swart, S. Using optical sensors on gliders to estimate phytoplankton carbon concentrations and chlorophyll-to-carbon ratios in the Southern Ocean. Front. Mar. Sci. 2017, 4, 34. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Boss, E.; Siegel, D.A.; Shea, D.M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Bellacicco, M.; Volpe, G.; Colella, S.; Pitarch, J.; Santoleri, R. Influence of photoacclimation on the phytoplankton seasonal cycle in the Mediterranean Sea as seen by satellite. Remote Sens. Environ. 2016, 184, 595–604. [Google Scholar] [CrossRef]
- Bellacicco, M.; Volpe, G.; Briggs, N.; Brando, V.; Pitarch, J.; Landolfi, A.; Colella, S.; Marullo, S.; Santoleri, R. Global distribution of non-algal particles from ocean color data and implications for phytoplankton biomass detection. Geophys. Res. Lett. 2018, 45, 7672–7682. [Google Scholar] [CrossRef]
- Halsey, K.H.; Jones, B.M. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 2015, 7, 265–297. [Google Scholar] [CrossRef] [PubMed]
- Evers-King, H.; Martinez-Vicente, V.; Brewin, R.J.; Dall’Olmo, G.; Hickman, A.E.; Jackson, T.; Roy, S. Validation and Intercomparison of Ocean Color Algorithms for Estimating Particulate Organic Carbon in the Oceans. Front. Mar. Sci. 2017, 4, 251. [Google Scholar] [CrossRef]
- Briggs, N.; Perry, M.J.; Cetinić, I.; Lee, C.; D’Asaro, E.; Gray, A.M.; Rehm, E. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 1031–1039. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V.; Clerici, M.; D’Alimonte, D.; Zibordi, G.; Berthon, J.F.; Canuti, E. Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea. Prog. Oceanogr. 2011, 91, 229–244. [Google Scholar] [CrossRef]
- Zibordi, G.; Berthon, J.F.; Mélin, F.; D’Alimonte, D. Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset. Remote Sens. Environ. 2011, 115, 2104–2115. [Google Scholar] [CrossRef]
- Brewin, R.J.; Sathyendranath, S.; Müller, D.; Brockmann, C.; Deschamps, P.Y.; Devred, E.; Groom, S. The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sens. Environ. 2015, 162, 271–294. [Google Scholar] [CrossRef]
- Martínez-Vicente, V.; Evers-King, H.; Roy, S.; Kostadinov, T.S.; Tarran, G.A.; Graff, J.R.; Röttgers, R. Intercomparison of ocean color algorithms for picophytoplankton carbon in the ocean. Front. Mar. Sci. 2017, 4, 378. [Google Scholar] [CrossRef]
- Pitarch, J.; Volpe, G.; Colella, S.; Krasemann, H.; Santoleri, R. Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data. Ocean Sci. 2016, 12, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Antoine, D.; Siegel, D.A.; Kostadinov, T.; Maritorena, S.; Nelson, N.B.; Gentili, B.; Guillocheau, N. Variability in optical particle backscattering in contrasting bio-optical oceanic regimes. Limnol. Oceanogr. 2011, 56, 955–973. [Google Scholar] [CrossRef]
- Graff, J.R.; Westberry, T.K.; Milligan, A.J.; Brown, M.B.; Dall’Olmo, G.; van Dongen-Vogels, V.; Behrenfeld, M.J. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 102, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Pitarch, J.; Bellacicco, M.; Volpe, G.; Colella, S.; Santoleri, R. Use of the quasi-analytical algorithm to retrieve backscattering from in-situ data in the Mediterranean Sea. Remote Sens. Lett. 2016, 7, 591–600. [Google Scholar] [CrossRef]
- Constantin, S.; Doxaran, D.; Constantinescu, Ș. Estimation of water turbidity and analysis of its spatio-temporal variability in the Danube River plume (Black Sea) using MODIS satellite data. Cont. Shelf Res. 2016, 112, 14–30. [Google Scholar] [CrossRef]
- McArdle, B.H. Lines, models, and errors: Regression in the field. Limnol. Oceanogr. 2003, 48, 1363–1366. [Google Scholar] [CrossRef] [Green Version]
- Antoine, D.; Chami, M.; Claustre, H.; D’Ortenzio, F.; Morel, A.; Bécu, G.; Scott, A.J. BOUSSOLE: A Joint CNRS-INSU, ESA, CNES, and NASA Ocean Color Calibration and Validation Activity; NASA: Washington, DC, USA, 2006.
- Antoine, D.; D’Ortenzio, F.; Hooker, S.B.; Bécu, G.; Gentili, B.; Tailliez, D.; Scott, A.J. Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project). J. Geophys. Res. Ocean. 2008. [Google Scholar] [CrossRef]
- Antoine, D.; Guevel, P.; Desté, J.F.; Bécu, G.; Louis, F.; Scott, A.J.; Bardey, P. The “BOUSSOLE” buoy-a new transparent-to-swell taut mooring dedicated to marine optics: Design, tests, and performance at sea. J. Atmos. Ocean. Technol. 2008, 25, 968–989. [Google Scholar] [CrossRef]
- Smith, R.J. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 2009, 140, 476–486. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W. H. Freeman and Company: New York, NY, USA, 1995; Volume 887. [Google Scholar]
- Ras, J.; Claustre, H.; Uitz, J. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: Comparison between in situ and predicted data. Biogeosciences 2008, 5, 353–369. [Google Scholar] [CrossRef]
- Kheireddine, M.; Antoine, D. Diel variability of the beam attenuation and backscattering coefficients in the northwestern Mediterranean Sea (BOUSSOLE site). J. Geophys. Res. Ocean. 2014, 119, 5465–5482. [Google Scholar] [CrossRef] [Green Version]
- Maffione, R.A.; Dana, D.R. Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Appl. Opt. 1997, 36, 6057–6067. [Google Scholar] [CrossRef]
- Organelli, E.; Claustre, H.; Bricaud, A.; Barbieux, M.; Uitz, J.; D’Ortenzio, F.; Dall’Olmo, G. Bio-optical anomalies in the world’s oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements. J. Geophys. Res. Ocean. 2017. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V.; Chuprin, A.; Grant, M.; Jackson, T.; Sathyendranath, S. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data. Remote Sens. Environ. 2017, 203, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Mélin, F.; Sclep, G. Band shifting for ocean color multi-spectral reflectance data. Opt. Express 2015, 23, 2262–2279. [Google Scholar] [CrossRef] [PubMed]
- Sathyendranath, S.; Brewin, R.J.W.; Jackson, T.; Melin, F.; Platt, T. Ocean-colour products for climate-change studies: What are their ideal characteristics? Remote Sens. Environ. 2017, 203, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z. Update of the Quasi-Analytical Algorithm (QAA_v6). 2014. Available online: http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf (accessed on 8 July 2019).
- Mélin, F.; Berthon, J.F.; Zibordi, G. Assessment of apparent and inherent optical properties derived from SeaWiFS with field data. Remote Sens. Environ. 2005, 97, 540–553. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Westberry, T.K.; Behrenfeld, M.J.; Boss, E.; Slade, W.H. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences 2009, 6, 947–967. [Google Scholar] [CrossRef] [Green Version]
- Dall’Olmo, G.; Boss, E.; Behrenfeld, M.J.; Westberry, T.K. Particulate optical scattering coefficients along an Atlantic Meridional Transect. Opt. Express 2012, 20, 21532–21551. [Google Scholar] [CrossRef]
- Siegel, D.A.; Behrenfeld, M.J.; Maritorena, S.; McClain, C.R.; Antoine, D.; Bailey, S.W.; Eplee, R.E., Jr. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 2013, 135, 77–91. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellacicco, M.; Vellucci, V.; Scardi, M.; Barbieux, M.; Marullo, S.; D’Ortenzio, F. Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations. Sensors 2019, 19, 3032. https://doi.org/10.3390/s19133032
Bellacicco M, Vellucci V, Scardi M, Barbieux M, Marullo S, D’Ortenzio F. Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations. Sensors. 2019; 19(13):3032. https://doi.org/10.3390/s19133032
Chicago/Turabian StyleBellacicco, Marco, Vincenzo Vellucci, Michele Scardi, Marie Barbieux, Salvatore Marullo, and Fabrizio D’Ortenzio. 2019. "Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations" Sensors 19, no. 13: 3032. https://doi.org/10.3390/s19133032
APA StyleBellacicco, M., Vellucci, V., Scardi, M., Barbieux, M., Marullo, S., & D’Ortenzio, F. (2019). Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations. Sensors, 19(13), 3032. https://doi.org/10.3390/s19133032