Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = BGC-Argo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9422 KiB  
Article
Seasonal Variability in the Relationship between the Volume-Scattering Function at 180° and the Backscattering Coefficient Observed from Spaceborne Lidar and Biogeochemical Argo (BGC-Argo) Floats
by Miao Sun, Peng Chen, Zhenhua Zhang and Yunzhou Li
Remote Sens. 2024, 16(15), 2704; https://doi.org/10.3390/rs16152704 - 24 Jul 2024
Viewed by 584
Abstract
The derivation of the particulate-backscattering coefficient (bbp) from Lidar signals is highly influenced by the parameter χp(π), which is defined by χp(π) = bbp/(2πβp(π)). This parameter facilitates the correlation of the [...] Read more.
The derivation of the particulate-backscattering coefficient (bbp) from Lidar signals is highly influenced by the parameter χp(π), which is defined by χp(π) = bbp/(2πβp(π)). This parameter facilitates the correlation of the particulate-volume-scattering function at 180°, denoted βp(π), with bbp. However, studies exploring the global and seasonal fluctuations of χp(π) remain sparse, largely due to measurement difficulties of βp(π) in the field conditions. This study pioneers the global data collection for χp(π), integrating bbp observations from Biogeochemical Argo (BGC-Argo) floats and βp(π) data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) spaceborne lidar. Our findings indicate that χp(π) experiences significant seasonal differences globally, peaking during summer and nadiring in winter. The global average χp(π) was calculated as 0.40, 0.48, 0.43, and 0.35 during spring, summer, autumn, and winter, respectively. The daytime values of χp(π) slightly exceeded those registered at night. To illuminate the seasonal variations in χp(π) in 26 sea regions worldwide, we deployed passive ocean color data MODIS bbp and active remote sensing data CALIOP βp(π), distinguishing three primary seasonal change patterns—the “summer peak”, the “decline”, and the “autumn pole”—with the “summer peak” typology being the most common. Post recalibration of the CALIOP bbp product considering seasonal χp(π) variations, we observed substantial statistical improvements. Specifically, the coefficient of determination (R2) markedly improved from 0.84 to 0.89, while the root mean square error (RMSE) declined from 4.0 × 10−4 m−1 to 3.0 × 10−4 m−1. Concurrently, the mean absolute percentage error (MAPE) also dropped significantly, from 31.48% to 25.27%. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

Figure 1
<p>A comparison of spatial distribution and quantity of BGC-Argo floats after quality control. (<b>a</b>) illustrates the spatial distribution of BGC-Argo buoys; (<b>b</b>) shows the comparison of the number of buoys with different quality control factors.</p>
Full article ">Figure 2
<p>The results for matching points of BGC-Argo and CALIOP using different spatial windows, including a 9 km window (<b>a</b>), a 50 km window (<b>b</b>), and a 1° × 1° window (<b>c</b>). (<b>d</b>) shows a comparison of the number of matching points across different spatiotemporal windows.</p>
Full article ">Figure 3
<p>The comparison between CALIOP and BGC-Argo <span class="html-italic">b</span><sub>bp</sub>(532 nm) matchups for a 9 km spatial window and a ±3 h time window, as well as the comparison between CALIOP and MODIS <span class="html-italic">b</span><sub>bp</sub> (532 nm) matchups for a 9 km spatial window and a ±12 h time window. (<b>a</b>,<b>b</b>) denote the fitting results of CALIOP <span class="html-italic">b</span><sub>bp</sub>(532) using the <span class="html-italic">χ</span><sub>p</sub>(π) = 1.00 algorithm and BGC-Argo <span class="html-italic">b</span><sub>bp</sub>(532) estimates matching; (<b>c</b>,<b>d</b>) denote the fitting results of CALIOP <span class="html-italic">b</span><sub>bp</sub>(532) using the <span class="html-italic">χ</span><sub>p</sub>(π) = 0.50 algorithm and BGC-Argo <span class="html-italic">b</span><sub>bp</sub>(532) estimates matching; and (<b>e</b>,<b>f</b>) denote the fitting results of CALIOP <span class="html-italic">b</span><sub>bp</sub>(532) using the <span class="html-italic">χ</span><sub>p</sub>(π) = 0.50 algorithm and MODIS <span class="html-italic">b</span><sub>bp</sub>(532) estimates matching.</p>
Full article ">Figure 4
<p>The flow chart of this study.</p>
Full article ">Figure 5
<p>The comparison of <span class="html-italic">χ</span><sub>p</sub>(π) values of conversion coefficients for different seasons within different spatial–temporal matching windows. (<b>a</b>) shows the <span class="html-italic">χ</span><sub>p</sub>(π) calibration results with a 9 km spatial window match; (<b>b</b>) shows the calibration results with a 50 km spatial window match; and (<b>c</b>) shows the calibration results with a 1° × 1° spatial window match.</p>
Full article ">Figure 6
<p>Line plots of the seasonal variation of <span class="html-italic">χ</span><sub>p</sub>(π) for 12 spatiotemporally matched windows. (<b>a</b>) A line graph representing the seasonal variation of <span class="html-italic">χ</span><sub>p</sub>(π) for each spatial–temporal window; (<b>b</b>) A bar graph representing the seasonal variation of the mean <span class="html-italic">χ</span><sub>p</sub>(π).</p>
Full article ">Figure 7
<p>Variations of <span class="html-italic">χ</span><sub>p</sub>(π) values between day and night for different seasons under a 1° × 1° spatial matching window. (<b>a</b>) presents comparisons of <span class="html-italic">χ</span><sub>p</sub>(π) calibration results between day and night for various seasons with a ±12 h time matching window; (<b>b</b>) shows comparisons of <span class="html-italic">χ</span><sub>p</sub>(π) calibration results between day and night for various seasons with a ±24 h time matching window; (<b>c</b>) displays bar graphs illustrating comparisons of <span class="html-italic">χ</span><sub>p</sub>(π) calibration results between day and night for various seasons with a ±12 h time matching window; and (<b>d</b>) presents bar graphs for comparisons of <span class="html-italic">χ</span><sub>p</sub>(π) calibration results between day and night for various seasons with a ±24 h time matching window.</p>
Full article ">Figure 8
<p>Performance comparison of CALIOP <span class="html-italic">b</span><sub>bp</sub> products before and after calibration in a 9 km spatial window. (<b>a</b>) R<sup>2</sup>, (<b>b</b>) RMSE, (<b>c</b>) MAPE, and (<b>d</b>) SD Based on BGC-Argo Evaluation.</p>
Full article ">Figure 9
<p>MODIS-corrected <span class="html-italic">χ</span><sub>p</sub>(π) seasonal line plots for various sea areas around the globe.</p>
Full article ">
13 pages, 5311 KiB  
Technical Note
Eddy-Induced Chlorophyll Profile Characteristics and Underlying Dynamic Mechanisms in the South Pacific Ocean
by Meng Hou, Jie Yang and Ge Chen
Remote Sens. 2024, 16(14), 2628; https://doi.org/10.3390/rs16142628 - 18 Jul 2024
Viewed by 670
Abstract
Many studies have consistently demonstrated that the near-surface phytoplankton chlorophyll (Chl) levels in anticyclonic eddies (AEs) are higher than in cyclonic eddies (CEs) in the South Pacific Ocean (SPO), using remote sensing data, which is attributed to higher phytoplankton biomass or physiological adjustments [...] Read more.
Many studies have consistently demonstrated that the near-surface phytoplankton chlorophyll (Chl) levels in anticyclonic eddies (AEs) are higher than in cyclonic eddies (CEs) in the South Pacific Ocean (SPO), using remote sensing data, which is attributed to higher phytoplankton biomass or physiological adjustments in AEs. However, the characteristics of the Chl profile induced by mesoscale eddies and their underlying dynamic mechanism have not been comprehensively studied by means of field measurement, and the influence mechanism of environmental factors at different depths on Chl has not been investigated. To fill this gap, we utilized Biogeochemical-Argo (BGC-Argo) data to investigate the relationships between Chl concentration and environmental factors at different water layers and the underlying dynamic mechanisms of mesoscale eddies in the SPO. Our findings indicate that the same environmental factor can have different effects on Chl at different depths. Within a mixed layer (ML), the elevated Chl levels in AEs result from both physiological adjustments and increased phytoplankton biomass, and the former plays a more dominant role, which is induced by enhanced nutrient availability and weakened light, due to the deepening ML in AEs. At depths ranging from 50 m to 110 m, and between 110 m and 150 m (near the depth of pycnocline or the bottom of the euphotic zone), the dominant factor contributing to higher Chl levels in CEs is phytoplankton physiological adaptation driven by reduced temperature and light. At depths exceeding 150 m (beyond the euphotic zone), higher Chl in AEs is primarily caused by high phytoplankton biomass as a result of downwelling by eddy pumping. This work should advance our comprehensive understanding of the physical–biological interactions of mesoscale eddies and their impacts on primary productivity throughout the water column, and it should provide some implications for understanding the biogeochemical processes. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Geographic distributions of eddy-induced Chl anomaly between January 2000 and August 2021. The upper-left subplot displays the distribution of Chl anomalies in the selected area. (<b>b</b>) Map of profiles containing Chl data. In the upper left subplot, the green and blue dots represent the location where BGC-Argo collected data. Each profile of BGC-Argo floats contained Chl, BBP, temperature, and PAR data. The green dots indicate that the profile contained nitrate data, while the blue dots indicate that the profile did not contain nitrate data.</p>
Full article ">Figure 2
<p>Mean profiles of Chl in eddies of different polarity. Red, blue, and black lines indicate the Chl profile in AEs, CEs, and OE, respectively. Red, blue, and black shadings are 95% confidence intervals for the AEs, CEs, and OE. A zoom of the figure can be seen in <a href="#app1-remotesensing-16-02628" class="html-app">Supporting Information Figure S1</a>.</p>
Full article ">Figure 3
<p>(<b>a</b>,<b>b</b>) Mean profiles of CPhyto and θ (Chl:CPhyto) in eddies of different polarity. Red, blue, and black lines indicate CPhyto and θin AEs, CEs, and OE, respectively. Red, blue, and black shadings are 95% confidence intervals of CPhyto in AEs, CEs, and OE. A zoom of the figure can be seen in <a href="#app1-remotesensing-16-02628" class="html-app">Supporting Information Figure S2</a>.</p>
Full article ">Figure 4
<p>(<b>a</b>–<b>c</b>) Profiles of temperature, PAR, and nitrate in eddies of different polarity. Red, blue, and black lines indicate that the profile is for AEs, CEs, and OE, respectively. Red, blue, and black shadings are 95% confidence intervals for AEs, CEs, and OE. A zoom of the figure can be seen in <a href="#app1-remotesensing-16-02628" class="html-app">Supporting Information Figures S3–S5</a>.</p>
Full article ">
7 pages, 8559 KiB  
Correction
Correction: Begouen Demeaux, C.; Boss, E. Validation of Remote-Sensing Algorithms for Diffuse Attenuation of Downward Irradiance Using BGC-Argo Floats. Remote Sens. 2022, 14, 4500
by Charlotte Begouen Demeaux and Emmanuel Boss
Remote Sens. 2024, 16(2), 313; https://doi.org/10.3390/rs16020313 - 12 Jan 2024
Viewed by 697
Abstract
There was an error in the original publication [...] Full article
Show Figures

Figure 3

Figure 3
<p>Comparison of satellite-derived and float-derived <span class="html-italic">K<sub>d</sub></span>(490) for the MODIS-Aqua, MODIS-Terra, VIIRS-JPSS, VIIRS-SNPP, OLCI-S3A and OLCI-S3B sensors: (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msubsup> </mrow> </semantics></math>(490) computed using the 3 different algorithms compared to <math display="inline"><semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math>(490); the black dashed line is the 1:1 line; (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msubsup> </mrow> </semantics></math>(490)/<math display="inline"><semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math>(490) for each of the 3 evaluated algorithms (color coded) for all sensors; the solid black line is a ratio of 1, and the dashed black lines are the 0.75 (Bottom) and 1.25 (Top) ratio. The vertical dashed blue line indicates the minimum value of <span class="html-italic">K<sub>d</sub></span>(490) present in the NOMAD dataset (0.026).</p>
Full article ">Figure 4
<p>Comparison of satellite-derived and float-derived <span class="html-italic">K<sub>d</sub></span>(412) for the two MODIS and the two OLCI sensors: (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msubsup> </mrow> </semantics></math>(412) computed using the 2 different algorithms compared to <math display="inline"><semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math>(412); the black dashed line is the 1:1 line. (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msubsup> </mrow> </semantics></math>/<math display="inline"><semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math> for the matchups; the solid black line is a ratio of 1, and the dashed black lines denote ratios of 0.75 (Bottom) and 1.25 (Top) ratio; the dashed blue line indicates the minimum value of <span class="html-italic">K<sub>d</sub></span>(411) present in the NOMAD dataset (0.026).</p>
Full article ">Figure 5
<p>Results of the comparison between the satellite-derived <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msup> </mrow> </semantics></math> and the float-retrieved <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics></math>, for two different PAR algorithms: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics></math> colored by solar zenith angle with each marker shape indicating a different sensor; the dashed line indicates the 1:1 line; <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>L</mi> <mi>e</mi> <mi>e</mi> <mn>05</mn> </mrow> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics></math> (left), <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>M</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics></math> (center) <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>L</mi> <mi>e</mi> <mi>e</mi> <mn>05</mn> </mrow> </msup> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>M</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msup> </mrow> </semantics></math> (right); (<b>b</b>) ratio for each of the two algorithms against <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics></math>; the solid line is a ratio of 1 and the dashed black lines denote ratios of 0.75 and 1.25.</p>
Full article ">
22 pages, 7645 KiB  
Article
A Reconstructing Model Based on Time–Space–Depth Partitioning for Global Ocean Dissolved Oxygen Concentration
by Zhenguo Wang, Cunjin Xue and Bo Ping
Remote Sens. 2024, 16(2), 228; https://doi.org/10.3390/rs16020228 - 6 Jan 2024
Cited by 1 | Viewed by 1768
Abstract
Dissolved oxygen (DO) is essential for assessing and monitoring the health of marine ecosystems. The phenomenon of ocean deoxygenation is widely recognized. Nevertheless, the limited availability of observations poses a challenge in achieving a comprehensive understanding of global ocean DO dynamics and trends. [...] Read more.
Dissolved oxygen (DO) is essential for assessing and monitoring the health of marine ecosystems. The phenomenon of ocean deoxygenation is widely recognized. Nevertheless, the limited availability of observations poses a challenge in achieving a comprehensive understanding of global ocean DO dynamics and trends. The study addresses the challenge of unevenly distributed Argo DO data by developing time–space–depth machine learning (TSD-ML), a novel machine learning-based model designed to enhance reconstruction accuracy in data-sparse regions. TSD-ML partitions Argo data into segments based on time, depth, and spatial dimensions, and conducts model training for each segment. This research contrasts the effectiveness of partitioned and non-partitioned modeling approaches using three distinct ML regression methods. The results reveal that TSD-ML significantly enhances reconstruction accuracy in areas with uneven DO data distribution, achieving a 30% reduction in root mean square error (RMSE) and a 20% decrease in mean absolute error (MAE). In addition, a comparison with WOA18 and GLODAPv2 ship survey data confirms the high accuracy of the reconstructions. Analysis of the reconstructed global ocean DO trends over the past two decades indicates an alarming expansion of anoxic zones. Full article
(This article belongs to the Special Issue Machine Learning for Spatiotemporal Remote Sensing Data)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Dissolved oxygen (DO) spatial distribution at a depth layer of 200 dbar by BGC-Argo floats in January 2020 and (<b>b</b>) temperature and salinity spatial distribution at the same depth by Core-Argo floats in January 2020.</p>
Full article ">Figure 2
<p>Number of available Argo profiles after quality control, and the different colors means different months at a depth layer of 10 dbar. (<b>a</b>) is the effective training dataset sample size and (<b>b</b>) is the spatially partitioned dataset sample size.</p>
Full article ">Figure 3
<p>Overview of time–space–depth machine learning (TSD-ML) method for reconstructing DO using Argo data.</p>
Full article ">Figure 4
<p>Flowchart of spatial partitioning approach.</p>
Full article ">Figure 5
<p>Spatial partitioning results of global ocean DO for January. (<b>a</b>) represents 10 dbar and (<b>b</b>) represents 1000 dbar, with different colors indicating different partitions.</p>
Full article ">Figure 6
<p>Comparison of reconstructed DO with observed DO obtained from BGC-Argo floats. The months are arranged sequentially from left to right, specifically January, April, July, and October. The solid red line and dashed black line in each plot represent the 1:1 line and the linear fit, respectively. The marginal histograms on the plot describe the density distribution of observed (green) and reconstructed (blue) DO data points.</p>
Full article ">Figure 7
<p>Depth profiles of DO observed by Argo floats. Each panel corresponds to a specific float ID, and different colors represent different cycles. (<b>a</b>) Float ID: 4900523, located in the North Pacific Ocean. (<b>b</b>) Float ID: 5904481, located in the South Pacific Ocean. (<b>c</b>) Float ID: 6900629, located in the Atlantic Ocean. (<b>d</b>) Float ID: 5904671, located in the Indian Ocean.</p>
Full article ">Figure 8
<p>Comparison of differences between 10dbar and 1000dbar layers reconstructed DO and WOA18 DO for January and July. Subfigures: (<b>a</b>) 10 dbar January, (<b>b</b>) 10 dbar July, (<b>c</b>) 1000 dbar January, (<b>d</b>) 1000 dbar July.</p>
Full article ">Figure 9
<p>Distribution map of GLODAPv2 DO data at 10 dbar in January.</p>
Full article ">Figure 10
<p>Scatter plot comparing reconstructed DO values with GLODAPv2 data.</p>
Full article ">Figure 11
<p>Distribution maps of DO at 200 dbar in January modeled using SP (<b>a</b>), PIV (<b>b</b>), and NSP (<b>c</b>) methods.</p>
Full article ">Figure 12
<p>The SHAP summary plots of the test dataset trained with the CatBoost model at 10 dbar (<b>a</b>,<b>b</b>), 100 dbar (<b>c</b>,<b>d</b>), 200 dbar (<b>e</b>,<b>f</b>), 1000 dbar (<b>g</b>,<b>h</b>), and 2000 dbar (<b>i</b>,<b>j</b>). The left side of each row represents January (winter) and the right side represents July (summer).</p>
Full article ">Figure 13
<p>Ocean Annual Average DO Distribution at Various Depths: (<b>a</b>) 10 dbar, (<b>b</b>) 50 dbar, (<b>c</b>) 75 dbar, (<b>d</b>) 100 dbar, (<b>e</b>) 150 dbar, (<b>f</b>) 200 dbar, (<b>g</b>) 300 dbar, (<b>h</b>) 500 dbar, (<b>i</b>) 800 dbar, (<b>j</b>) 1000 dbar, (<b>k</b>) 1500 dbar, (<b>l</b>) 2000 dbar.</p>
Full article ">Figure 14
<p>Quantitative analysis of global ocean OMZs area across various depth layers (2005–2020).</p>
Full article ">
23 pages, 39065 KiB  
Article
Vertically Resolved Global Ocean Light Models Using Machine Learning
by Pannimpullath Remanan Renosh, Jie Zhang, Raphaëlle Sauzède and Hervé Claustre
Remote Sens. 2023, 15(24), 5663; https://doi.org/10.3390/rs15245663 - 7 Dec 2023
Cited by 1 | Viewed by 1762
Abstract
The vertical distribution of light and its spectral composition are critical factors influencing numerous physical, chemical, and biological processes within the oceanic water column. In this study, we present vertically resolved models of downwelling irradiance (ED) at three different wavelengths and photosynthetically available [...] Read more.
The vertical distribution of light and its spectral composition are critical factors influencing numerous physical, chemical, and biological processes within the oceanic water column. In this study, we present vertically resolved models of downwelling irradiance (ED) at three different wavelengths and photosynthetically available radiation (PAR) on a global scale. These models rely on the SOCA (Satellite Ocean Color merged with Argo data to infer bio-optical properties to depth) methodology, which is based on an artificial neural network (ANN). The new light models are trained with light profiles (ED/PAR) acquired from BioGeoChemical-Argo (BGC-Argo) floats. The model inputs consist of surface ocean color radiometry data (i.e., Rrs, PAR, and kd(490)) derived by satellite and extracted from the GlobColour database, temperature and salinity profiles originating from BGC-Argo, as well as temporal components (day of the year and local time in cyclic transformation). The model outputs correspond to ED profiles at the three wavelengths of the BGC-Argo measurements (i.e., 380, 412, and 490 nm) and PAR profiles. We assessed the retrieval of light profiles by these light models using three different datasets: BGC-Argo profiles that were not used for the training (i.e., 20% of the initial database); data from four independent BGC-Argo floats that were used neither for the training nor for the 20% validation dataset; and the SeaBASS database (in situ data collected from various oceanic cruises). The light models show satisfactory predictions when thus compared with real measurements. From the 20% validation database, the light models retrieve light variables with high accuracies (root mean squared error (RMSE)) of 76.42 μmol quanta m−2 s−1 for PAR and 0.04, 0.08, and 0.09 W m−2 nm−1 for ED380, ED412, and ED490, respectively. This corresponds to a median absolute percent error (MAPE) that ranges from 37% for ED490 and PAR to 39% for ED380 and ED412. The estimated accuracy metrics across these three validation datasets are consistent and demonstrate the robustness and suitability of these light models for diverse global ocean applications. Full article
(This article belongs to the Special Issue AI for Marine, Ocean and Climate Change Monitoring)
Show Figures

Figure 1

Figure 1
<p>Geographical distribution of BGC-Argo profiles used for the development and validation of the SOCA-light model for photosynthetically available radiation (PAR) profiles. The details of the geographical distributions of profiles for other light variables (ED) are provided in <a href="#app1-remotesensing-15-05663" class="html-app">Figures S1–S3 in Supplementary Information</a>.</p>
Full article ">Figure 2
<p>Geographical distribution of independent light-variable profiles (PAR, ED380, ED412, and ED490) available for validation from the SeaBASS database. Red circles represent locations of PAR profiles, blue circles correspond to ED380 profiles, green circles to ED412 profiles, and orange circles to ED490 profiles.</p>
Full article ">Figure 3
<p>The temporal distribution (monthly (<b>A</b>) and hourly (<b>B</b>)) of PAR profiles used for this study.</p>
Full article ">Figure 4
<p>Schematic representation of the SOCA-light multilayer perceptron.</p>
Full article ">Figure 5
<p>Scatterplots between light variables (PAR, ED380, ED412, and ED490) modeled by the SOCA-light models versus their corresponding BGC-Argo measurements: PAR (<b>A</b>); ED380 (<b>B</b>); ED412 (<b>C</b>); ED490 (<b>D</b>). This validation was performed using 20% of profiles randomly selected from the total database. The color code scales the probability density function (PDF). The identity line is represented by the 1:1 black dotted line.</p>
Full article ">Figure 6
<p>Scatterplots illustrating the comparison between SOCA-light modeled variables (PAR, ED380, ED412, and ED490) and their corresponding BGC-Argo measurements collected by the four independent floats. The subplots display: PAR (<b>A</b>), ED380 (<b>B</b>), ED412 (<b>C</b>), ED490 (<b>D</b>). Each color represents a specific float: blue for NASTG, purple for EMS, brown for NASPG, orange for SO. The identity line is represented by the 1:1 black dotted line.</p>
Full article ">Figure 7
<p>Time series of the vertical distribution of the four light variables in the North Atlantic Subtropical Gyre (NASTG), as measured by BGC-Argo float with WMO 6901472 (<b>left column</b>) and modeled by SOCA-light (<b>right column</b>). The variables in each subplot are indicated by text in the corresponding subplots. The black stars indicate the depth at which instantaneous PAR value = 15 μmol quanta m<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>.</p>
Full article ">Figure 8
<p>Time series of the vertical distribution of the four light variables in the Southern Ocean (SO) measured by BGC-Argo float WMO 6901493 (<b>left column</b>) and modeled by SOCA-light (<b>right column</b>). The variables in each subplot are specified by text in the corresponding subplots. The black stars indicate the depth at which instantaneous PAR value = 15 μmol quanta m<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>.</p>
Full article ">Figure 9
<p>Scatterplots between light variables (PAR, ED380, ED412, and ED490) derived using SOCA-light models and SeaBASS in situ measurements. The subplots display: PAR (<b>A</b>), ED380 (<b>B</b>), ED412 (<b>C</b>), ED490 (<b>D</b>). The color code scales the PDF. The identity line is represented by the 1:1 black dotted line.</p>
Full article ">Figure 10
<p>Comparisons of Z_iPAR_15 derived by the SOCA-light PAR model versus Z_iPAR_15 estimated by BGC-Argo float measurements for the 20% validation database (<b>A</b>) and for the 4 independent floats (<b>B</b>).</p>
Full article ">Figure 11
<p>Seasonal climatology of Z_iPAR_15 derived at local noon using the SOCA-light PAR model applied to monthly climatological fields of inputs: Z_iPAR_15 averaged for the months of December, January, and February in (<b>A</b>); March, April, and May in (<b>B</b>); June, July, and August in (<b>C</b>); September, October, and November in (<b>D</b>).</p>
Full article ">
26 pages, 23632 KiB  
Article
Validation of Remote-Sensing Algorithms for Diffuse Attenuation of Downward Irradiance Using BGC-Argo Floats
by Charlotte Begouen Demeaux and Emmanuel Boss
Remote Sens. 2022, 14(18), 4500; https://doi.org/10.3390/rs14184500 - 9 Sep 2022
Cited by 12 | Viewed by 2392 | Correction
Abstract
Estimates of the diffuse attenuation coefficient (Kd) at two different wavelengths and band-integrated (PAR) were obtained using different published algorithms developed for open ocean waters spanning in type from explicit-empirical, semi-analytical and implicit-empirical and applied to data from spectral radiometers [...] Read more.
Estimates of the diffuse attenuation coefficient (Kd) at two different wavelengths and band-integrated (PAR) were obtained using different published algorithms developed for open ocean waters spanning in type from explicit-empirical, semi-analytical and implicit-empirical and applied to data from spectral radiometers on board six different satellites (MODIS-Aqua, MODIS-Terra, VIIRS–SNPP, VIIRS-JPSS, OLCI-Sentinel 3A and OLCI-Sentinel 3B). The resultant Kds were compared to those inferred from measurements of radiometry from sensors on board autonomous profiling floats (BGC-Argo). Advantages of BGC-Argo measurements compared to ship-based ones include: 1. uniform sampling in time throughout the year, 2. large spatial coverage, and 3. lack of shading by platform. Over 5000 quality-controlled matchups between Kds derived from float and from satellite sensors were found with values ranging from 0.01 to 0.67 m1. Our results show that although all three algorithm types provided similarly ranging values of Kd to those of the floats, for most sensors, a given algorithm produced statistically different Kd distributions from the two others. Algorithm results diverged the most for low Kd (clearest waters). Algorithm biases were traced to the limitations of the datasets the algorithms were developed and trained with, as well as the neglect of sun angle in some algorithms. This study highlights: 1. the importance of using comprehensive field-based datasets (such as BGC-Argo) for algorithm development, 2. the limitation of using radiative-transfer model simulations only for algorithm development, and 3. the potential for improvement if sun angle is taken into account explicitly to improve empirical Kd algorithms. Recent augmentation of profiling floats with hyper-spectral radiometers should be encouraged as they will provide additional constraints to develop algorithms for upcoming missions such as NASA’s PACE and SBG and ESA’s CHIME, all of which will include a hyper-spectral radiometer. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

Figure 1
<p>Histogram of the frequency distribution of <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> values for the BGC-argo floats. The vertical axis represents the probability of the occurrence of <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> within a specific value bin relative to the total number of profiles (<span class="html-italic">N</span>) for each specific wavelength and database. For 412 nm and 490 nm, the relative frequency of <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> was added for the Case 1 waters (<math display="inline"> <semantics> <mrow> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>490</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>555</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&gt;</mo> <mn>0.85</mn></mrow> </semantics> </math>) present in the NOMAD, COASTLOOC and the IOCCG (simulated) datasets.</p>
Full article ">Figure 2
<p>Map of Bio-Argo float observations and in situ observations used for algorithm development colored by matchups with individual satellite sensors or dataset. Background represents oceanic biomes 1–17 of [<a href="#B12-remotesensing-14-04500" class="html-bibr">12</a>]. Insert represent the Mediterranean Sea and the two biomes we added. The names associated with each biome number and color are listed in <a href="#remotesensing-14-04500-t0A2" class="html-table">Table A2</a>.</p>
Full article ">Figure 3
<p>Comparison of satellite-derived and float-derived <span class="html-italic">K<sub>d</sub></span>(490) for the MODIS-Aqua, MODIS-Terra, VIIRS-JPSS, VIIRS-SNPP, OLCI-S3A and OLCI-S3B sensors: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msubsup> </mrow> </semantics> </math>(490) computed using the 3 different algorithms compared to <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics> </math>(490); the black dashed line is the 1:1 line; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msubsup> </mrow> </semantics> </math>(490)/<math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics> </math>(490) for each of the 3 evaluated algorithms (color coded) for all sensors; the solid black line is a ratio of 1, and the dashed black lines are the 0.75 (Bottom) and 1.25 (Top) ratio. The vertical dashed blue line indicates the minimum value of <span class="html-italic">K<sub>d</sub></span>(490) present in the NOMAD dataset (0.026).</p>
Full article ">Figure 4
<p>Comparison of satellite-derived and float-derived <span class="html-italic">K<sub>d</sub></span>(412) for the two MODIS and the two OLCI sensors: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msubsup> </mrow> </semantics> </math>(412) computed using the 2 different algorithms compared to <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics> </math>(412); the black dashed line is the 1:1 line. (<b>b</b>) <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msubsup> </mrow> </semantics> </math>/<math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mi>d</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics> </math> for the matchups; the solid black line is a ratio of 1, and the dashed black lines denote ratios of 0.75 (Bottom) and 1.25 (Top) ratio; the dashed blue line indicates the minimum value of <span class="html-italic">K<sub>d</sub></span>(411) present in the NOMAD dataset (0.026).</p>
Full article ">Figure 5
<p>Results of the comparison between the satellite-derived <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msup> </mrow> </semantics> </math> and the float-retrieved <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math>, for two different PAR algorithms: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msup> </mrow> </semantics> </math> vs. <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> colored by solar zenith angle with each marker shape indicating a different sensor; the dashed line indicates the 1:1 line; <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>L</mi> <mi>e</mi> <mi>e</mi> <mn>05</mn> </mrow> </msup> </mrow> </semantics> </math> vs. <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> (left), <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>M</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msup> </mrow> </semantics> </math> vs. <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> (center) <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>L</mi> <mi>e</mi> <mi>e</mi> <mn>05</mn> </mrow> </msup> </mrow> </semantics> </math> vs. <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>M</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msup> </mrow> </semantics> </math> (right); (<b>b</b>) ratio for each of the two algorithms against <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math>; the solid line is a ratio of 1 and the dashed black lines denote ratios of 0.75 and 1.25.</p>
Full article ">Figure 5 Cont.
<p>Results of the comparison between the satellite-derived <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msup> </mrow> </semantics> </math> and the float-retrieved <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math>, for two different PAR algorithms: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>R</mi> <mi>r</mi> <mi>s</mi> </mrow> </msup> </mrow> </semantics> </math> vs. <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> colored by solar zenith angle with each marker shape indicating a different sensor; the dashed line indicates the 1:1 line; <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>L</mi> <mi>e</mi> <mi>e</mi> <mn>05</mn> </mrow> </msup> </mrow> </semantics> </math> vs. <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> (left), <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>M</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msup> </mrow> </semantics> </math> vs. <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> (center) <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>L</mi> <mi>e</mi> <mi>e</mi> <mn>05</mn> </mrow> </msup> </mrow> </semantics> </math> vs. <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>M</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mi>l</mi> </mrow> </msup> </mrow> </semantics> </math> (right); (<b>b</b>) ratio for each of the two algorithms against <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo stretchy="false">(</mo> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math>; the solid line is a ratio of 1 and the dashed black lines denote ratios of 0.75 and 1.25.</p>
Full article ">Figure 6
<p>Boxplot of the relative residuals between satellite-derived and float-derived <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and its dependence on the solar zenith angle for: (<b>a</b>) 490 nm; (<b>b</b>) 412 nm; and (<b>c</b>) PAR. Color denotes the algorithm used. Datapoints for 412 nm with residuals value higher than 0.8 were considered to be outliers and were not plotted here for clarity.</p>
Full article ">Figure 6 Cont.
<p>Boxplot of the relative residuals between satellite-derived and float-derived <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and its dependence on the solar zenith angle for: (<b>a</b>) 490 nm; (<b>b</b>) 412 nm; and (<b>c</b>) PAR. Color denotes the algorithm used. Datapoints for 412 nm with residuals value higher than 0.8 were considered to be outliers and were not plotted here for clarity.</p>
Full article ">Figure A1
<p>Results retrieved from the COASTLOOC the NOMAD &amp; IOCCG synthetic dataset at 412 nm and 490 nm: (<b>a</b>) scatterplot of estimated versus desired <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> values for the COASTLOOC dataset; the dashed line is the 1:1 line; (<b>b</b>) ratio of the estimated versus desired <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>; the horizontal line is a ratio of 1; (<b>c</b>) scatterplot of estimated versus desired <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> values; the dashed line is the 1:1 line; (<b>d</b>) ratio of the estimated versus desired <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>; the horizontal line is a ratio of 1.</p>
Full article ">Figure A2
<p>Residuals between for the operational algorithm (<math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo>(</mo> <mn>490</mn> <mo>)</mo> </mrow> <mrow> <mi>N</mi> <mi>A</mi> <mi>S</mi> <mi>A</mi> <mo>/</mo> <mi>E</mi> <mi>S</mi> <mi>A</mi> </mrow> </msup> </mrow> </semantics> </math>) and <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo>(</mo> <mn>490</mn> <mo>)</mo> </mrow> <mrow> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> as a function of the difference between the solar zenith angle at the time of the sensor overpass (<math display="inline"> <semantics> <mrow> <mi>θ</mi> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics> </math>) and the solar zenith angle when the BGC-Argo float surfaced (<math display="inline"> <semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>f</mi> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>t</mi> <mo>)</mo> </mrow> </semantics> </math>). Scatter points are colored by the value of <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <msup> <mrow> <mo>(</mo> <mn>490</mn> <mo>)</mo> </mrow> <mrow> <mi>N</mi> <mi>A</mi> <mi>S</mi> <mi>A</mi> <mo>/</mo> <mi>E</mi> <mi>S</mi> <mi>A</mi> </mrow> </msup> </mrow> </semantics> </math>.</p>
Full article ">Figure A3
<p>Test of the three potential methods for <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> retrieval from <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>λ</mi> </mrow> </mrow> </semantics> </math>) measured by floats at 490 nm, i.e., a linear fit to extrapolate to <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msup> <mn>0</mn> <mo>−</mo> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> (blue), a second degree polynomial to extrapolate to <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msup> <mn>0</mn> <mo>−</mo> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> (grey) and an iterative least-square fit on existing <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mn>490</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> measurements (yellow).</p>
Full article ">
13 pages, 854 KiB  
Article
Correction of Radiometry Data for Temperature Effect on Dark Current, with Application to Radiometers on Profiling Floats
by Terence O’Brien and Emmanuel Boss
Sensors 2022, 22(18), 6771; https://doi.org/10.3390/s22186771 - 7 Sep 2022
Cited by 5 | Viewed by 1675 | Correction
Abstract
Measurements of daytime radiometry in the ocean are necessary to constrain processes such as photosynthesis, photo-chemistry and radiative heating. Profiles of downwelling irradiance provide a means to compute the concentration of a variety of in-water constituents. However, radiometers record a non-negligible signal when [...] Read more.
Measurements of daytime radiometry in the ocean are necessary to constrain processes such as photosynthesis, photo-chemistry and radiative heating. Profiles of downwelling irradiance provide a means to compute the concentration of a variety of in-water constituents. However, radiometers record a non-negligible signal when no light is available, and this signal is temperature dependent (called the dark current). Here, we devise and evaluate two consistent methods for correction of BGC-Argo radiometry measurements for dark current: one based on measurements during the day, the other based on night measurements. A daytime data correction is needed because some floats never measure at night. The corrections are based on modeling the temperature of the radiometer and show an average bias in the measured value of nearly 0.01 W m2 nm1, 3 orders of magnitude larger than the reported uncertainty of 2.5×105 W m2 nm1 for the sensors deployed on BGC-Argo floats (SeaBird scientific OCR504 radiometers). The methods are designed to be simple and robust, requiring pressure, temperature and irradiance data. The correction based on nighttime profiles is recommended as the primary method as it captures dark measurements with the largest dynamic range of temperature. Surprisingly, more than 28% of daytime profiles (130,674 in total) were found to record significant downwelling irradiance at 240–250 dbar. The correction is shown to be small relative to near-surface radiance and thus most useful for studies investigating light fields in the twilight zone and the impacts of radiance on deep organisms. Based on these findings, we recommend that BGC-Argo floats profile occasionally at night and to depths greater than 250 dbar. We provide codes to perform the dark corrections. Full article
Show Figures

Figure 1

Figure 1
<p>Histograms of the value of <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mi>d</mi> <msub> <mi>E</mi> <mi>d</mi> </msub> <mo>/</mo> <mi>d</mi> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> (W m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> nm<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math><math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>C<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) by the night method (<b>top</b>, red) and Day method (<b>bottom</b>, blue) for <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> = 380 nm, 412 nm, 490 nm, and iPAR (<b>left</b> to <b>right</b>).</p>
Full article ">Figure 2
<p>Histograms of the non-zero value of <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>d</mi> <msub> <mi>E</mi> <mi>d</mi> </msub> <mo>/</mo> <mi>d</mi> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> (W m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> nm<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math><math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>C<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) or <math display="inline"> <semantics> <mrow> <mi>d</mi> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo>/</mo> <mi>d</mi> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics> </math> (<math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>mol photons m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math><math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>C<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) by the night method (<b>top</b>) and day method (<b>bottom</b>) for (<b>left</b> to <b>right</b>) <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> = 380 nm, 412 nm, 490 nm, and PAR.</p>
Full article ">Figure 3
<p>Histograms of the value of <math display="inline"> <semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics> </math> (W m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> nm<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> or <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>mol photons m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) by the night method (<b>top</b>) and day method (<b>bottom</b>) for (<b>left</b> to <b>right</b>) <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> = 380 nm, 412 nm, 490 nm and PAR. <math display="inline"> <semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics> </math> is the value reported by the irradiance sensor in the dark at <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>s</mi> </msub> </semantics> </math> = 0 <math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>C.</p>
Full article ">Figure 4
<p>Comparison of <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> obtained from nighttime profiles (x-axis) and daytime profiles (y-axis) <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msup> <mrow> <mrow> <mi mathvariant="normal">W</mi> <mtext> </mtext> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mtext> </mtext> </mrow> </msup> <msup> <mo>℃</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math> or <math display="inline"> <semantics> <mrow> <msup> <mrow> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi>mol</mi> <mtext> </mtext> <mi>photons</mi> <mtext> </mtext> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> <mtext> </mtext> </mrow> </msup> <msup> <mo>℃</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math>) for floats that produced non-zero <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> using both methods. Results are presented for <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> = 380 nm (<b>top left</b>), 412 nm (<b>top right</b>), 490 nm (<b>bottom left</b>), and PAR (<b>bottom right</b>).</p>
Full article ">Figure 5
<p>Size of corrections applied by the night (<b>top</b>) and day (<b>bottom</b>) method on good profiles at all wavelengths (19,605,908 measurements corrected) (<math display="inline"> <semantics> <mrow> <msup> <mrow> <mrow> <mi mathvariant="normal">W</mi> <mtext> </mtext> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mrow> <mtext> </mtext> <mi>nm</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> <mtext> </mtext> </mrow> </msup> </mrow> </semantics> </math> or <math display="inline"> <semantics> <mrow> <msup> <mrow> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi>mol</mi> <mtext> </mtext> <mi>photons</mi> <mtext> </mtext> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math>). Statistics shown in <a href="#sensors-22-06771-t002" class="html-table">Table 2</a>.</p>
Full article ">Figure 6
<p>Measurements of <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>d</mi> </msub> </semantics> </math>(<math display="inline"> <semantics> <mi>λ</mi> </semantics> </math>, z) &lt; 1 W m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> nm<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> and PAR(z) &lt; 100 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>mol photons m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> (<b>top</b> row) after corrections are applied by the night method (<b>middle</b> row) and day (<b>bottom</b> row). Columns are (<b>left</b> to <b>right</b>) <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> = 380, 412, 490 nm and PAR. Plotted on <math display="inline"> <semantics> <mrow> <mi>l</mi> <mi>o</mi> <msub> <mi>g</mi> <mn>10</mn> </msub> </mrow> </semantics> </math> scale.</p>
Full article ">
23 pages, 3322 KiB  
Article
Biogeochemical Model Optimization by Using Satellite-Derived Phytoplankton Functional Type Data and BGC-Argo Observations in the Northern South China Sea
by Chan Shu, Peng Xiu, Xiaogang Xing, Guoqiang Qiu, Wentao Ma, Robert J. W. Brewin and Stefano Ciavatta
Remote Sens. 2022, 14(5), 1297; https://doi.org/10.3390/rs14051297 - 7 Mar 2022
Cited by 4 | Viewed by 3287
Abstract
Marine biogeochemical models have been widely used to understand ecosystem dynamics and biogeochemical cycles. To resolve more processes, models typically increase in complexity, and require optimization of more parameters. Data assimilation is an essential tool for parameter optimization, which can reduce model uncertainty [...] Read more.
Marine biogeochemical models have been widely used to understand ecosystem dynamics and biogeochemical cycles. To resolve more processes, models typically increase in complexity, and require optimization of more parameters. Data assimilation is an essential tool for parameter optimization, which can reduce model uncertainty and improve model predictability. At present, model parameters are often adjusted using sporadic in-situ measurements or satellite-derived total chlorophyll-a concentration at sea surface. However, new ocean datasets and satellite products have become available, providing a unique opportunity to further constrain ecosystem models. Biogeochemical-Argo (BGC-Argo) floats are able to observe the ocean interior continuously and satellite phytoplankton functional type (PFT) data has the potential to optimize biogeochemical models with multiple phytoplankton species. In this study, we assess the value of assimilating BGC-Argo measurements and satellite-derived PFT data in a biogeochemical model in the northern South China Sea (SCS) by using a genetic algorithm. The assimilation of the satellite-derived PFT data was found to improve not only the modeled total chlorophyll-a concentration, but also the individual phytoplankton groups at surface. The improvement of simulated surface diatom provided a better representation of subsurface particulate organic carbon (POC). However, using satellite data alone did not improve vertical distributions of chlorophyll-a and POC. Instead, these distributions were improved by combining the satellite data with BGC-Argo data. As the dominant variability of phytoplankton in the northern SCS is at the seasonal timescale, we find that utilizing monthly-averaged BGC-Argo profiles provides an optimal fit between model outputs and measurements in the region, better than using high-frequency measurements. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

Figure 1
<p>Spatial distribution of surface chlorophyll-a concentration (mg m<sup>−3</sup>) in winter in the northern SCS. The background color shows the climatological Chla averaged in winter from 1998 to 2010. The white curve is the isobath of 200 m and 2000 m, respectively. The yellow pentacle shows the position of SEATS station. The red point shows the starting point of the float, and the gray curve shows the trajectory of the float.</p>
Full article ">Figure 2
<p>Flow chart of parameter optimization.</p>
Full article ">Figure 3
<p>(<b>a</b>) Time series of satellite-derived chlorophyll-a concentration (mg m<sup>−3</sup>) at the SEATS station. (<b>b</b>) Time series of BGC-Argo measured chlorophyll-a profiles (mg m<sup>−3</sup>).</p>
Full article ">Figure 4
<p>Comparison of sea surface chlorophyll-a concentration (mg m<sup>−3</sup>) from different model experiments in the optimization period.</p>
Full article ">Figure 5
<p>Comparison of chlorophyll-a concentrations (mg m<sup>−3</sup>) of pico-phytoplankton ((<b>a</b>) Chl1) and diatom ((<b>b</b>) Chl2) in the optimization period.</p>
Full article ">Figure 6
<p>Comparison of the vertical distribution of chlorophyll-a concentration (mg m<sup>−3</sup>) on 6 May 2015. Colored solid lines represent different experiments (CTRL, EXP1b, EXP2, and EXP3). Dotted lines represent the BGC-Argo observation.</p>
Full article ">Figure 7
<p>Comparison of vertical monthly chlorophyll-a concentrations averaged in March (<b>a</b>), June (<b>b</b>), and November (<b>c</b>) 2015. Colored solid lines represent different experiments (CTRL, EXP1b, EXP2, and EXP3). Dotted lines represent the BGC-Argo observation.</p>
Full article ">Figure 8
<p>Comparison of vertical monthly chlorophyll-a concentrations averaged in March (<b>a</b>), June (<b>b</b>), and November (<b>c</b>) 2015. Colored solid lines represent different experiments (CTRL, EXP-S, EXP-M and EXP3). Dotted lines represent the BGC-Argo observation.</p>
Full article ">Figure 9
<p>Comparison of modeled and measured POC concentrations (mg C m<sup>−3</sup>) at 100 m depth. Colored solid lines represent different experiments (CTRL, EXP-S, EXP-M, and EXP3). Blue dotted lines represent the BGC-Argo observation.</p>
Full article ">Figure 10
<p>Comparison of modeled POC export fluxes (mg C m<sup>−2</sup>d<sup>−1</sup>) from different model experiments at 100 m depth. Colored solid lines represent different experiments (CTRL, EXP 1b, EXP2, EXP3, EXP-S, EXP-M).</p>
Full article ">
19 pages, 4639 KiB  
Article
Improved Perceptron of Subsurface Chlorophyll Maxima by a Deep Neural Network: A Case Study with BGC-Argo Float Data in the Northwestern Pacific Ocean
by Jianqiang Chen, Xun Gong, Xinyu Guo, Xiaogang Xing, Keyu Lu, Huiwang Gao and Xiang Gong
Remote Sens. 2022, 14(3), 632; https://doi.org/10.3390/rs14030632 - 28 Jan 2022
Cited by 14 | Viewed by 3778
Abstract
Subsurface chlorophyll maxima (SCMs), commonly occurring beneath the surface mixed layer in coastal seas and open oceans, account for main changes in depth-integrated primary production and hence significantly contribute to the global carbon cycle. To fill the gap of previous methods (in situ [...] Read more.
Subsurface chlorophyll maxima (SCMs), commonly occurring beneath the surface mixed layer in coastal seas and open oceans, account for main changes in depth-integrated primary production and hence significantly contribute to the global carbon cycle. To fill the gap of previous methods (in situ measurement, remote sensing, and the extrapolating function based on surface-ocean data) for obtaining SCM characteristics (intensity, depth, and thickness), we developed an improved deep neural network (IDNN) model using a Gaussian radial basis activation function to retrieve the vertical profile of chlorophyll a concentration (Chl a) and associated SCM characteristics from surface-ocean data. The annually averaged SCM depth was further incorporated into the bias term and the Gaussian activation function to improve the estimation accuracy of the IDNN model. Based on the Biogeochemical-Argo (BGC-Argo) data acquired for three regions in the northwestern Pacific Ocean, vertical Chl a profiles produced by our improved DNN model using sea surface Chl a and sea surface temperature (SST) were in good agreement with the observations, especially in regions with low surface Chl a. Compared to other neural-network-based models with one hidden layer and a sigmoid activation function, the IDNN model retrieved vertical Chl a profiles well in more eutrophic subpolar regions. Furthermore, the application of the IDNN model to infer vertical Chl a profiles from remote-sensing information was validated in the northwestern Pacific Ocean. Full article
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p>Structure of the deep neural network (DNN). The input elements of DNN are longitude, latitude, time, sea surface temperature (SST), sea surface Chl <span class="html-italic">a</span>, water depth. The output is the vertical distribution of Chl <span class="html-italic">a</span> concentration over the water depth of 0–300 m. <span class="html-italic">b</span> is the bias term in the hidden layer. The prior information of nonlinear activation function (<span class="html-italic">f</span>) connects the hidden layers to the output.</p>
Full article ">Figure 2
<p>Locations and measuring months of 14 BGC-Argo profiles with a subsurface chlorophyll maximum (SCM) feature in the northwestern Pacific Ocean.</p>
Full article ">Figure 3
<p>Boxplot of three parameters (standard deviation (<b>a</b>); amplitude of the Gaussian curve (<b>b</b>); location of the amplitude (<b>c</b>)) in the Gaussian function in the northwestern Pacific Ocean. In each box, the orange horizontal line represents the median. The upper and lower horizontal lines of the box represent the 75th and 25th percentiles (Q3 and Q1), respectively. The upper and lower horizontal whiskers lines are the upper limit (U) and lower limit (L) of the data, respectively; the circles represent the outliers.</p>
Full article ">Figure 4
<p>(<b>a</b>–<b>c</b>) Scatter plot of observed Chl <span class="html-italic">a</span> concentration (<span class="html-italic">x</span>-axis) and estimated Chl <span class="html-italic">a</span> value (<span class="html-italic">y</span>-axis) in BGC-Argo test set in BOXes 1–3. The black dashed line is the bisector of the first quadrant, i.e., y = x. (<b>d</b>–<b>f</b>) The mean of observed value (blue line) and the mean of IDNN predicted values (orange line) in each BOX. The pink and green shades are the standard variance of the model results and observations, respectively, which overlap and form the brown shade. (<b>g</b>) The mean relative bias as a function of the adjusted depth between observed and the IDNN predicted Chl <span class="html-italic">a</span> in the test set for the three BOXes. The adjusted depth is defined as the difference between the observed SCM depth and the modeled one.</p>
Full article ">Figure 5
<p>Aggregated chlorophyll vertical profiles from the test set in terms of seasons in BOX1 (<b>a</b>–<b>d</b>), in BOX2 (<b>e</b>–<b>h</b>), and in BOX3 (<b>i</b>–<b>k</b>). The blue and red solid lines represent the mean of observed value and the mean of IDNN predicted Chl <span class="html-italic">a</span>, respectively. The pink and green shades are the standard variance of the model results and observations, respectively, which overlap and form the brown shade.</p>
Full article ">Figure 6
<p>Comparison of SCM characteristics (depth, intensity, and thickness) obtained from the IDNN results in the test set and observation profiles along trajectories of three BGC-Argo (No. 2902756 (<b>a</b>), No. 2902748 (<b>b</b>), and No. 2902755 (<b>c</b>) in BOX1–BOX3, respectively).</p>
Full article ">Figure 7
<p>Aggregated chlorophyll vertical profiles from the test set in different experiments in BOXes 1–3 (<b>a</b>–<b>c</b>).</p>
Full article ">Figure 8
<p>Relative deviation for MLP-3 (brown) and MLP-1 (green) models from the IDNN model in BOX1, BOX2, and BOX3.</p>
Full article ">Figure 9
<p>Modeling Chl <span class="html-italic">a</span> profiles by the IDNN and MLP models in three BOXes (<b>a</b>–<b>c</b>) of the northwestern Pacific Ocean. The configuration of MLP-1 is 6-10-1, that is, 6 input variables, 10 hidden nodes, and 1 output. The MLP-3 model is 6-3*64-1, that is, 3 hidden layers and 64 nodes in each hidden layer.</p>
Full article ">Figure 10
<p>Comparisons of the mean profiles of observed values (blue line), IDNN predictions (orange line), and MLP-1 predictions (green dash line) inferred from remote-sensing data in three BOXes (<b>a</b>–<b>c</b>).</p>
Full article ">Figure A1
<p>Locations and measuring months of 16 BGC—Argo profiles without SCM in the northwestern Pacific Ocean.</p>
Full article ">Figure A2
<p>Aggregated chlorophyll vertical profiles from the test set in BOX2 during four seasons (<b>a</b>), during summer (<b>b</b>), and during autumn (<b>c</b>), after removing two profiles with extreme values (over 4 mg m<sup>−3</sup>) between 0–50 m. The blue and red solid lines represent the mean of observed value and the mean of IDNN predicted Chl <span class="html-italic">a</span>, respectively. The pink and green shades are the standard variance of the model results and observations, respectively, which overlap and form the brown shade.</p>
Full article ">
19 pages, 3660 KiB  
Article
Correction of Biogeochemical-Argo Radiometry for Sensor Temperature-Dependence and Drift: Protocols for a Delayed-Mode Quality Control
by Quentin Jutard, Emanuele Organelli, Nathan Briggs, Xiaogang Xing, Catherine Schmechtig, Emmanuel Boss, Antoine Poteau, Edouard Leymarie, Marin Cornec, Fabrizio D’Ortenzio and Hervé Claustre
Sensors 2021, 21(18), 6217; https://doi.org/10.3390/s21186217 - 16 Sep 2021
Cited by 4 | Viewed by 2633
Abstract
Measuring the underwater light field is a key mission of the international Biogeochemical-Argo program. Since 2012, 0–250 dbar profiles of downwelling irradiance at 380, 412 and 490 nm besides photosynthetically available radiation (PAR) have been acquired across the globe every 1 to 10 [...] Read more.
Measuring the underwater light field is a key mission of the international Biogeochemical-Argo program. Since 2012, 0–250 dbar profiles of downwelling irradiance at 380, 412 and 490 nm besides photosynthetically available radiation (PAR) have been acquired across the globe every 1 to 10 days. The resulting unprecedented amount of radiometric data has been previously quality-controlled for real-time distribution and ocean optics applications, yet some issues affecting the accuracy of measurements at depth have been identified such as changes in sensor dark responsiveness to ambient temperature, with time and according to the material used to build the instrument components. Here, we propose a quality-control procedure to solve these sensor issues to make Argo radiometry data available for delayed-mode distribution, with associated error estimation. The presented protocol requires the acquisition of ancillary radiometric measurements at the 1000 dbar parking depth and night-time profiles. A test on >10,000 profiles from across the world revealed a quality-control success rate >90% for each band. The procedure shows similar performance in re-qualifying low radiometry values across diverse oceanic regions. We finally recommend, for future deployments, acquiring daily 1000 dbar measurements and one night profile per year, preferably during moonless nights and when the temperature range between the surface and 1000 dbar is the largest. Full article
(This article belongs to the Special Issue Advanced Sensing Technology for Ocean Observation)
Show Figures

Figure 1

Figure 1
<p>Sampled stations by the 55 profiling BGC-Argo floats considered in this study.</p>
Full article ">Figure 2
<p>Histogram of the average float ascent speed for 27000 BGC-Argo radiometry profiles, reconstructed from the available time stamps in the trajectory profile. Vertical dashed lines indicate the two values used for the sensitivity test which interval includes 91% of tested profiles.</p>
Full article ">Figure 3
<p>Flowchart of the QC procedure to correct radiometry for aging and temperature dependency.</p>
Full article ">Figure 4
<p>Radiometry drift measurements for E<sub>d</sub>(λ) and PAR as a function of time and temperature. Example is shown for the float WMO6901584.</p>
Full article ">Figure 5
<p>Radiometry drift measurements for E<sub>d</sub>(λ) and PAR as a function of time after estimation at a reference temperature of 5 °C. Solid line is the fit to all points. For this float, the fit is linear for all channels but E<sub>d</sub>(412). Example is shown for the float WMO6901584.</p>
Full article ">Figure 6
<p>Radiometry night profiles of E<sub>d</sub>(λ) and PAR as a function of sensor internal temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics></math>. Dots are colored according to pressure. Solid red line is the fit to all points, and is extrapolated to cover the entire range of temperature encountered by the float during the whole lifetime. Prior to computing the linear regression, night profiles have been corrected for any sensor aging. Example is shown for the float WMO6901584.</p>
Full article ">Figure 7
<p>Examples of radiometry profiles before and after DM-QC: Left) profiles are shown in a semi-log scale; Centre) profiles are shown in a linear scale; Right) the reconstructed sensor internal temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics></math> is shown (Equations (2)–(9)). Examples derive from four BGC-Argo floats deployed in oceanic regions characterized by diverse trophic and optical regimes: (<b>a</b>–<b>c</b>) Southern Ocean; (<b>d</b>–<b>f</b>) South Pacific subtropical gyre; (<b>g</b>–<b>i</b>) Mediterranean Sea; (<b>j</b>–<b>l</b>) North Atlantic subpolar gyre—Irminger Sea.</p>
Full article ">Figure 8
<p>Radiometry profiles acquired by the 55 BGC-Argo floats with ancillary night profiles and drift measurements. Green dots: successfully corrected profiles with the DM-QC procedure; Orange dots: uncorrected profiles; Yellow dots: profiles corrected with alternative methods (see <a href="#app1-sensors-21-06217" class="html-app">Supplementary Materials Section S2</a>).</p>
Full article ">Figure 9
<p>Number of floats with dark measurements successfully corrected for the four radiometric channels as a function of available night profiles.</p>
Full article ">
22 pages, 16863 KiB  
Article
Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats
by Xiaogang Xing, Emmanuel Boss, Jie Zhang and Fei Chai
Remote Sens. 2020, 12(15), 2367; https://doi.org/10.3390/rs12152367 - 23 Jul 2020
Cited by 20 | Viewed by 4181
Abstract
The vertical distribution of irradiance in the ocean is a key input to quantify processes spanning from radiative warming, photosynthesis to photo-oxidation. Here we use a novel dataset of thousands local-noon downwelling irradiance at 490 nm (Ed(490)) and photosynthetically available radiation [...] Read more.
The vertical distribution of irradiance in the ocean is a key input to quantify processes spanning from radiative warming, photosynthesis to photo-oxidation. Here we use a novel dataset of thousands local-noon downwelling irradiance at 490 nm (Ed(490)) and photosynthetically available radiation (PAR) profiles captured by 103 BGC-Argo floats spanning three years (from October 2012 to January 2016) in the world’s ocean, to evaluate several published algorithms and satellite products related to diffuse attenuation coefficient (Kd). Our results show: (1) MODIS-Aqua Kd(490) products derived from a blue-to-green algorithm and two semi-analytical algorithms show good consistency with the float-observed values, but the Chla-based one has overestimation in oligotrophic waters; (2) The Kd(PAR) model based on the Inherent Optical Properties (IOPs) performs well not only at sea-surface but also at depth, except for the oligotrophic waters where Kd(PAR) is underestimated below two penetration depth (2zpd), due to the model’s assumption of a homogeneous distribution of IOPs in the water column which is not true in most oligotrophic waters with deep chlorophyll-a maxima; (3) In addition, published algorithms for the 1% euphotic-layer depth and the depth of 0.415 mol photons m−2 d−1 isolume are evaluated. Algorithms based on Chla generally work well while IOPs-based ones exhibit an overestimation issue in stratified and oligotrophic waters, due to the underestimation of Kd(PAR) at depth. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p>BGC-Argo profile data distribution maps used in this study, for all points (<b>a</b>) with valid surface E<sub>d</sub>(490,0<sup>−</sup>) (N = 4882), (<b>b</b>) with valid iPAR(0<sup>−</sup>) (N = 2548), (<b>c</b>) with matchup with all satellite K<sub>d</sub>(490) products (N = 946), and (<b>d</b>) with matchup with all satellite K<sub>d</sub>(PAR) products (N = 374, same for z<sub>eu</sub> and z<sub>0.415</sub> products), respectively.</p>
Full article ">Figure 2
<p>Flow chart of BGC-Argo radiometry data processing. Note that all derived K<sub>d</sub> values are layer-averaged ones (the layer from sea surface to depth z, thus, z as the subscript in the symbols, e.g., K<sub>d</sub>(490)<sub>z</sub>), rather than K<sub>d</sub> at a specific depth. The same procedure could be used to derive the layer-averaged attenuation coefficient to any depth of interest.</p>
Full article ">Figure 3
<p>Diagram of a good match-up between satellite and float data. The 9 squares represent 9 pixels closest to the location of float surfacing, with 5 valid pixels (blue) and 4 invalid ones (white). The spatial resolution is 4 km. In such a condition or with more than 5 valid-value pixels out of 9, a pair of valid satellite-float matchup data is obtained.</p>
Full article ">Figure 4
<p>Histogram and boxplot of the distribution of the (<b>a</b>,<b>b</b>) near surface diffuse attenuation coefficient at 490 nm (K<sub>d</sub>(490)<sub>zpd</sub>), (<b>c</b>,<b>d</b>) euphotic layer depth (z<sub>eu</sub>), (<b>e</b>,<b>f</b>) and isolume depth (z<sub>0.415</sub>), for each of the 10 regions (SO: Southern Ocean; AS: Arctic Sea; SPG: Subpolar Gyre; BS: Black Sea; TZ: Transition Zone; WMS: West Med. Sea; RS: Red Sea; EMS: East Med. Sea; NC: New Caledonia; STG: Subtropical Gyre). In the histogram, black and red columns (as well as numbers) represent the full dataset and the satellite-matched ones, respectively. In the boxplot, red points beyond the end of the whiskers represent outliers beyond the 1.5 × IQR (IQR = interquartile range) threshold.</p>
Full article ">Figure 5
<p>Assessment of satellite K<sub>d</sub>(490) products based on BGC-Argo dataset. Scatter plot of float-observed K<sub>d</sub>(490)<sub>zpd</sub> v.s. MODIS-Aqua B/G-based empirical K<sub>d</sub>(490)<sub>M-KD2M</sub> (<b>a</b>) semi-analytical K<sub>d</sub>(490)<sub>M-L13</sub>, (<b>b</b>) semi-analytical K<sub>d</sub>(490)<sub>M-L05a</sub>, (<b>c</b>) Chla-based empirical K<sub>d</sub>(490)<sub>M-M07</sub>, (<b>d</b>) GlobColour semi-analytical K<sub>d</sub>(490)<sub>GC-L05a</sub>, (<b>e</b>) Scatter plot of float-observed K<sub>d</sub>(490)<sub>zpd</sub> vs. MODIS-Aqua-retrieved Chla, (<b>f</b>) black dashed line represents the empirical equation (Equation (5)) used in K<sub>d</sub>(490)<sub>GC-M07</sub> and K<sub>d</sub>(490)<sub>M-M07</sub>, and the red solid line represents the relationship obtained in this study (Equation (11)). Black solid lines are the 1:1 lines. Note that in Panel (<b>a</b>)–(<b>e</b>) we use only data for which all algorithms could be evaluated.</p>
Full article ">Figure 6
<p>Assessment of satellite K<sub>d</sub>(PAR) products based on BGC-Argo dataset. Scatter plots of float-observed K<sub>d</sub>(PAR) and satellite-derived K<sub>d</sub>(PAR)<sub>z-L05b</sub> [<a href="#B10-remotesensing-12-02367" class="html-bibr">10</a>] at (<b>a</b>) z<sub>pd</sub>, (<b>b</b>) 2z<sub>pd</sub>, (<b>c</b>) 3z<sub>pd</sub>, (<b>d</b>) 4z<sub>pd</sub>, (<b>e</b>) 5z<sub>pd</sub>, and (<b>f</b>) 6z<sub>pd</sub>, respectively. All black solid lines represent 1:1 lines.</p>
Full article ">Figure 7
<p>Assessment of satellite z<sub>eu</sub> and z<sub>0.415</sub> algorithms through comparison with the BGC-Argo dataset. z<sub>eu</sub> retrieved from a Chla-based algorithm (z<sub>eu-M07</sub>; [<a href="#B29-remotesensing-12-02367" class="html-bibr">29</a>]) (<b>a</b>) and from the IOPs-based algorithm (z<sub>eu-L07</sub>; [<a href="#B32-remotesensing-12-02367" class="html-bibr">32</a>]); (<b>b</b>) z<sub>0.415</sub> retrieved from a Chla-based algorithm (z<sub>0.415-B10</sub>; [<a href="#B31-remotesensing-12-02367" class="html-bibr">31</a>]); (<b>c</b>) and from IOPs-based algorithm (z<sub>0.415-L0</sub> [<a href="#B32-remotesensing-12-02367" class="html-bibr">32</a>]); (<b>d</b>) Black solid lines are the 1:1 lines.</p>
Full article ">Figure A1
<p>Evaluation of BGC-Argo data processing methods suggested here using the BIOSOPE data. Scatter plot of Measured and Estimated values, of E<sub>d</sub>(490,0<sup>−</sup>) (<b>a</b>) iPAR(0<sup>−</sup>), (<b>b</b>) z<sub>pd</sub>, (<b>c</b>) z<sub>eu</sub>, (<b>d</b>) K<sub>d</sub>(490)<sub>zpd</sub>, (<b>e</b>) and K<sub>d</sub>(PAR)<sub>zpd</sub>, (<b>f</b>) respectively. “Measured (meas.)” means determination of E<sub>d</sub>(490,0<sup>−</sup>) and iPAR(0<sup>−</sup>) based on measured radiometry above sea surface; “Estimated (Est.)” means determination of E<sub>d</sub>(490,0<sup>−</sup>) and iPAR(0<sup>−</sup>) is based on a linear (blue) or second-degree polynomial extrapolation (red) within the upper10 m of the ocean. The black solid lines represent the 1:1 lines.</p>
Full article ">Figure A2
<p>Comparison of different methodology of K<sub>d</sub> calculation. (<b>a</b>) float-observed K<sub>d</sub>(490)<sub>zpd-O17</sub> following the methodology of [<a href="#B15-remotesensing-12-02367" class="html-bibr">15</a>] vs. our determined K<sub>d</sub>(490)<sub>zpd</sub>; (<b>b</b>) z<sub>eu</sub> vs. z<sub>1%490</sub>; (<b>c</b>) z<sub>1%490</sub>/4.6 vs. z<sub>pd</sub>; (<b>d</b>) z<sub>eu</sub>/4.6 vs. z<sub>pd</sub>.</p>
Full article ">
15 pages, 2115 KiB  
Technical Note
Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations
by Marco Bellacicco, Vincenzo Vellucci, Michele Scardi, Marie Barbieux, Salvatore Marullo and Fabrizio D’Ortenzio
Sensors 2019, 19(13), 3032; https://doi.org/10.3390/s19133032 - 9 Jul 2019
Cited by 17 | Viewed by 4589
Abstract
Linear regression is widely used in applied sciences and, in particular, in satellite optical oceanography, to relate dependent to independent variables. It is often adopted to establish empirical algorithms based on a finite set of measurements, which are later applied to observations on [...] Read more.
Linear regression is widely used in applied sciences and, in particular, in satellite optical oceanography, to relate dependent to independent variables. It is often adopted to establish empirical algorithms based on a finite set of measurements, which are later applied to observations on a larger scale from platforms such as autonomous profiling floats equipped with optical instruments (e.g., Biogeochemical Argo floats; BGC-Argo floats) and satellite ocean colour sensors (e.g., SeaWiFS, VIIRS, OLCI). However, different methods can be applied to a given pair of variables to determine the coefficients of the linear equation fitting the data, which are therefore not unique. In this work, we quantify the impact of the choice of “regression method” (i.e., either type-I or type-II) to derive bio-optical relationships, both from theoretical perspectives and by using specific examples. We have applied usual regression methods to an in situ data set of particulate organic carbon (POC), total chlorophyll-a (TChla), optical particulate backscattering coefficient (bbp), and 19 years of monthly TChla and bbp ocean colour data. Results of the regression analysis have been used to calculate phytoplankton carbon biomass (Cphyto) and POC from: i) BGC-Argo float observations; ii) oceanographic cruises, and iii) satellite data. These applications enable highlighting the differences in Cphyto and POC estimates relative to the choice of the method. An analysis of the statistical properties of the dataset and a detailed description of the hypothesis of the work drive the selection of the linear regression method. Full article
(This article belongs to the Special Issue Remote Sensing of Ocean Colour: Theory and Applications)
Show Figures

Figure 1

Figure 1
<p>The northwestern Mediterranean Sea showing the southern coast of France, the island of Corsica, and the location of the BOUSSOLE buoy in the Ligurian Sea (black star) redrawn from [<a href="#B22-sensors-19-03032" class="html-bibr">22</a>]. Black dots are the locations where the float surfaced, while the float trajectory is overlaid in the plot with dashed black line.</p>
Full article ">Figure 2
<p>Scatter-plot and linear fit (continuous lines) calculated with ordinary least square (OLS) (blue) and standard major axis (SMA) (red) methods in the TChla-b<sub>bp</sub> relationship at the BOUSSOLE site. For both the coefficients, intercepts (A) and slopes (B), the standard errors are also indicated.</p>
Full article ">Figure 3
<p>Scatter plot between TChla and b<sub>bp</sub> from ocean colour data in the northwestern Mediterranean Sea with linear fits (continuous lines) calculated with OLS (blue) and SMA (red) methods (<b>a</b>). For both the coefficients, intercepts (A) and slopes (B), the standard errors are also indicated. Time series of C<sub>phyto</sub> (<b>b</b>) based on the b<sup>k</sup><sub>bp</sub> computed by OLS (in blue) and SMA (in red) methods.</p>
Full article ">Figure 4
<p>Scatter-plot and linear fits calculated with OLS (blue) and SMA (red) methods in the b<sub>bp</sub>-POC relationship at the BOUSSOLE site (<b>a</b>). For both the coefficients, intercepts (A) and slopes (B), the standar errors are also indicated. Time series anomalies of particulate organic carbon (POC) derived from BGC-Argo b<sub>bp</sub> vertical profiles (0–250 m) using OLS and SMA and relationships (<b>b</b>).</p>
Full article ">Figure A1
<p>For an OLS line, the error is defined as the vertical dispersion of a point from the straight line (distance 1 to 2) and the quantity minimized is the sum of squares of these linear distances. In case of SMA, on the other hand, the error is defined as the area of the triangle 3-4-5 and the quantity minimized is the sum of these area (redrawn from Smith et al., 2009 [<a href="#B30-sensors-19-03032" class="html-bibr">30</a>]) (<b>a</b>). Scatter plot and linear fits calculated with OLS (blue) and SMA (red) methods by using a syntehtical datasets with a normal distributed error added to both X and Y variables (<b>b</b>).</p>
Full article ">
Back to TopTop