A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI)
<p>The hyperspectral imaging (HSI) system in reflection mode (VNIR: the visible and short-wave near-infrared, SWIR: long-wave near-infrared).</p> "> Figure 2
<p>Flow chart of the experimental procedure used to classify different geographical origins of RAM slices. (ROI: region of interest, SPA: successive projections algorithm, GLCM: gray-level co-occurrence matrix, GLRLM: gray-level run-length matrix analysis, PLS-DA: partial least square-discriminant analysis, SVM: support vector machine).</p> "> Figure 3
<p>Confusion matrix (<b>left</b>) and a sketch of ROC curves (<b>right</b>).</p> "> Figure 4
<p>Representative Red-Green-Blue (RGB) images (<b>a</b>) and raw spectra of Rhizoma Atractylodis Macrocephalaes (RAMs) in the VNIR range (<b>b</b>) and SWIR range (<b>c</b>) based on the whole data set.</p> "> Figure 5
<p>Effective wavelengths extracted from the VNIR range (435–898 nm) (<b>a</b>) and the SWIR range (900–1601 nm) (<b>b</b>) using successive projection algorithm (SPA) based on the calibration set.</p> "> Figure 6
<p>The receiver operating characteristics (ROC) curves of three fusion methods, full band spectra, and images in (<b>a</b>) the VNIR range and (<b>b</b>) the SWIR range based on the prediction set.</p> "> Figure 7
<p>The ROC curves of three fusion methods, SPA band spectra, and images in the VNIR range (<b>a</b>) and the SWIR range (<b>b</b>) based on the prediction set.</p> "> Figure 7 Cont.
<p>The ROC curves of three fusion methods, SPA band spectra, and images in the VNIR range (<b>a</b>) and the SWIR range (<b>b</b>) based on the prediction set.</p> "> Figure 8
<p>Classification maps by PLS-DA models in the VNIR range (435–898 nm) (<b>a</b>) and the SWIR range (900–1601 nm) (<b>b</b>) based on the prediction set. The red, green and blue represent Anhui, Zhejiang, and Hebei, respectively. The non-uniform distribution resulted from the categories of pixels not being completely consistent.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hyperspectral Imaging System
2.2. Sample Preparation
2.3. Image Preprocessing
2.3.1. Image Calibration
2.3.2. ROIs Identification
2.4. Extraction of Spectral Features
2.4.1. Spectral Pre-Processing
2.4.2. Effective Wavelength Selection
2.5. Extraction of Image Features
2.6. The Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI)
2.7. Classification Models
2.8. Evaluation of Classification Models
2.9. Visualization of RAM Geographical Origins
3. Results and Discussion
3.1. Representative RGB Images and Raw Spectra of RAMs
3.2. Selection of Pre-Processing Methods
3.3. Wavelength Selection
3.4. Full Bands Based Classification
3.4.1. Classification with VNIR and SWIR Fusion
3.4.2. Classification with Spectrum and Image Fusion
3.4.3. Classification with All Data Fusion
3.4.4. ROC Curves of Three Fusion Methods
3.5. SPA Bands Based Classification
3.5.1. Classification with VNIR and SWIR Fusion
3.5.2. Classification with Spectrum and Image Fusion
3.5.3. Classification with All Data Fusion
3.5.4. ROC Curves of Three Fusion Methods
3.6. Visualization of RAM Geographical Origins
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elmasry, G.; Kamruzzaman, M.; Sun, D.W.; Allen, P. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef] [PubMed]
- Su, W.H.; He, H.J.; Sun, D.W. Non-destructive and Rapid Evaluation of Staple Foods Quality by Using Spectroscopic Techniques: A Review. Crit. Rev. Food Sci. Nutr. 2015, 57, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Rand, R.S.; Keenan, D.M. Spatially smooth partitioning of hyperspectral imagery using spectral/spatial measures of disparity. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1479–1490. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Zhang, L.; Kong, S.G. Band-Subset-Based Clustering and Fusion for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 747–756. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Pu, H.; Sun, D.W.; Gao, W.; Xiong, Z.J. Use of Hyperspectral Imaging to Discriminate the Variety and Quality of Rice. Food Anal. Methods 2015, 8, 515–523. [Google Scholar] [CrossRef]
- Yang, X.; Hong, H.; You, Z.; Cheng, F.J. Spectral and Image Integrated Analysis of Hyperspectral Data for Waxy Corn Seed Variety Classification. Sensors 2015, 15, 15578–15594. [Google Scholar] [CrossRef]
- Gao, J.; Li, X.; Zhu, F.; He, Y. Application of hyperspectral imaging technology to discriminate different geographical origins of Jatropha curcas L. seeds. Comput. Electron. Agric. 2013, 99, 186–193. [Google Scholar] [CrossRef]
- Tankeu, S.; Vermaak, I.; Chen, W.; Sandasi, M.; Kamatou, G.; Viljoen, A. Hyperspectral Imaging and Support Vector Machine: A Powerful Combination to Differentiate Black Cohosh (Actaea racemosa) from Other Cohosh Species. Planta Med. 2017, 84, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Zhang, C.; Zhu, H.; Zhao, Y.; He, Y. Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries. PLoS ONE 2017, 12, e0180534. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Zhang, C.; Weng, H.; Nie, P.; He, Y. Sensitive Wavelengths Selection in Identification of Ophiopogon japonicus Based on Near-Infrared Hyperspectral Imaging Technology. Int. J. Anal. Chem. 2017, 2017, 6018769. [Google Scholar] [CrossRef]
- Li, R.; Sakwiwatkul, K.; Li, Y.; Hu, S. Enhancement of the immune responses to vaccination against foot-and-mouth disease in mice by oral administration of an extract made from Rhizoma Atractylodis Macrocephalae (RAM). Vaccine 2009, 27, 2094–2098. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Lin, S.Y.; Cheng, H.C.; Hou, W.C. Pro-oxidant and cytotoxic activities of atractylenolide I in human promyeloleukemic HL-60 cells. Food Chem. Toxicol. 2006, 44, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; He, L.; Dong, H.Y.; Jin, J.Q. Screening for the anti-inflammatory activity of fractions and compounds from Atractylodes macrocephala koidz. J. Ethnopharmacol. 2007, 114, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Song, H.P.; Li, R.L.; Zhou, C.; Cai, X.; Huang, H.Y. Atractylodes macrocephala Koidz stimulates intestinal epithelial cell migration through a polyamine dependent mechanism. J. Ethnopharmacol. 2015, 159, 23–35. [Google Scholar] [CrossRef]
- Chen, Q.; Li, P.; Yang, H.; Li, X.; Zhu, J.; Chen, F. Identification of volatile compounds of Atractylode lancea rhizoma using supercritical fluid extraction and GC-MS. J. Sep. Sci. 2015, 32, 3152–3156. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wen, H.M.; Cui, X.B.; Lu, T.L.; Li, W.; Shan, C.X. Qualitative evaluation of Atractylodis Macrocephalae Rhizoma from different habitats by HPLC-PDA fingerprint combined with UFLC-Q-TOF/MS qualitative identification. Chin. Tradit. Herb. Drugs 2016, 47, 3494–3501. [Google Scholar]
- Dan, S.; Yu, Z.-M.; Zhang, J.M. Fingerprints establishment of Rhizoma Atractylodis Macrocephalae by high performance liquid chromatography and analysis of plant resource. Chin. J. Tradit. Chin. Med. Pharm. 2010, 25, 466–469. [Google Scholar]
- Liu, Y.Q.; Cai, Q. HPLC determination of atractylenolide I and atractylenolide III in 50 batches crude drugs and slices of Atractylodes macrocephala Koidz. from different sources. Chin. J. Pharm. Anal. 2012, 32, 1249–1252. [Google Scholar]
- Li, J.; Zhang, J.; Zhao, Y.L.; Huang, H.Y.; Wang, Y.Z. Comprehensive Quality Assessment Based Specific Chemical Profiles for Geographic and Tissue Variation in Gentiana rigescens Using HPLC and FTIR Method Combined with Principal Component Analysis. Anal. Chem. 2017, 5, 125. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Qiu, J.-F.; Guo, L.-P.; Wang, Y.; Li, P.; Yang, F.-Q.; Su, H.; Wan, J.-B. Discrimination of multi-origin Chinese herbal medicines using gas chromatography-mass spectrometry-based fatty acid profiling. Molecules 2013, 18, 15329–15343. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W.; Guo, Z.; Chen, B.L. Fingerprint Analysis of Daturae Flos Using Rapid Resolution Liquid Chromatography-Electrospray Ionization Mass Spectrometry Combined with Stoichiometry. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 137–142. [Google Scholar] [CrossRef]
- Lin, W.; Chai, Q.; Wang, W.; Li, Y.; Qiu, B.; Peng, X.; Lin, Z.; Lai, T.; Huang, J. A novel method for geographical origin identification of Tetrastigma hemsleyanum (Sanyeqing) by near-infrared spectroscopy. Anal. Methods 2018, 10, 2980–2988. [Google Scholar] [CrossRef]
- Zhu, L.; Chang, H.; Zhou, Q.; Wang, Z. Improving the Classification Accuracy for Near-Infrared Spectroscopy of Chinese Salvia miltiorrhiza Using Local Variable Selection. J. Anal. Methods Chem. 2018, 2018, 5237308. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Fu, L.; Okamoto, H.; Shibata, Y.; Kataoka, T.; Cui, Y.; Li, R. Distinguishing overripe berries of Japanese blue honeysuckle using hyperspectral imaging analysis. Eng. Agric. 2014, 7, 22–27. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, C.; Hao, Q.; Liu, C.; Chen, W.; Zheng, L. Non-destructive determination and visualisation of insoluble and soluble dietary fibre contents in fresh-cut celeries during storage periods using hyperspectral imaging technique. Food Chem. 2017, 228, 249–256. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Protein content prediction in single wheat kernels using hyperspectral imaging. Food Chem. 2018, 240, 32–42. [Google Scholar] [CrossRef]
- Baranowski, P.; Mazurek, W.; Pastuszka-Woźniak, J. Supervised classification of bruised apples with respect to the time after bruising on the basis of hyperspectral imaging data. Postharvest Biol. Technol. 2013, 86, 249–258. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V.J.C.; Systems, I.L. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Amadasun, M.; King, R.J. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 1989, 19, 1264–1274. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Ţălu, Ş. Mathematical methods used in monofractal and multifractal analysis for the processing of biological and medical data and images. ABAH Bioflux 2012, 4, 1–4. [Google Scholar]
- Atrey, P.K.; Hossain, M.A.; Saddik, A.E.; Kankanhalli, M.S. Multimodal fusion for multimedia analysis: A survey. Multimedia Syst. 2010, 16, 345–379. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, K.; Liu, Q.; Pan, L.; Tu, K. Classification and Discrimination of Different Fungal Diseases of Three Infection Levels on Peaches Using Hyperspectral Reflectance Imaging Analysis. Sensors 2018, 18, 1295. [Google Scholar] [CrossRef] [PubMed]
- Serranti, S.; Cesare, D.; Marini, F.; Bonifazi, G. Classification of oat and groat kernels using NIR hyperspectral imaging. Talanta 2013, 103, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Sivakesava, S.; Irudayaraj, J. Classification of simple and complex sugar adulterants in honey by MIR spectroscopy. Int. J. Food Sci. Technol. 2010, 37, 351–360. [Google Scholar] [CrossRef]
- Hao, Y.; Sun, X.; Gao, R.; Pan, Y.; Liu, Y. Application of visible and near infrared spectroscopy to identification of navel orange varieties using SIMCA and PLS-DA methods. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2010, 26, 373–377. [Google Scholar]
- Wang, L.; Sun, D.W.; Pu, H.; Zhu, Z. Application of Hyperspectral Imaging to Discriminate the Variety of Maize Seeds. Food Anal. Methods 2016, 9, 225–234. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2005, 27, 861–874. [Google Scholar] [CrossRef]
- Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- Li, W.; Wen, H.M.; Zhang, A.H.; Ge, J.-H.; Wu, H. Study on Quality of Atractylodes macrocephala Koidz. I—Determination of 2 Atractylenolides by HPLC. Chin. J. Pharm. Anal. 2001, 21, 170–172. (In Chinese) [Google Scholar]
- Huang, X.F.; Ouyang, H.; Li, J.; Lu, Y.; Li, W.; Gong, Q. Identification of Characteristic Constituents in Atractylodis Macrocephalae Rhizoma from Different Regions by UPLC-Q-TOF-MS/MS. Chin. J. Exp. Tradit. Med. Form. 2017, 23, 27–33. (In Chinese) [Google Scholar]
- Qiu, X.M.; Lu, Y.H.; Shen, P.; Liu, A.; Zhang, Y.; Li, L. Study on determination of Polysaccharide in Atractylodes Macrocephala Koidz. China Pharm. 2005, 14, 40–41. (In Chinese) [Google Scholar]
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 23–95. [Google Scholar]
- Chen, Q.H.; Li, P.; He, J.; Zhu, J.; Chen, S.Y. Study on the Fingerprint of Processed Rhizoma Atractylodis Macrocephalae by HPLC. J. Chin. Med. Mater. 2009, 32, 35–38. [Google Scholar]
- Shao, Q.S.; Zhang, A.L.; Ye, W.W.; Guo, H.P.; Hu, R.H. Fast determination of two atractylenolides in Rhizoma Atractylodis Macrocephalae by Fourier transform near-infrared spectroscopy with partial least squares. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 120, 499–504. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the International Conference on Neural Information Processing Systems 2012, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; Lecun, Y.J. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. arXiv 2013, arXiv:1312.6229. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
Pre-Processing Algorithms | Models | VNIR | SWIR | ||
---|---|---|---|---|---|
Calibration | Prediction | Calibration | Prediction | ||
SNV | PLS-DA | 81.7 | 82.4 | 91.3 | 87.8 |
SVM | 84.3 | 77.3 | 87.7 | 84.7 | |
MSC | PLS-DA | 81.7 | 83.8 | 86.8 | 86.5 |
SVM | 83.9 | 78.9 | 89.1 | 82.7 | |
SG (9-point) | PLS-DA | 78.1 | 78.4 | 77.4 | 81.1 |
SVM | 75.7 | 78.5 | 78.9 | 78.6 | |
SG (13-point) | PLS-DA | 80.1 | 79.7 | 75.7 | 82.4 |
SVM | 75.4 | 84.7 | 77.9 | 79.9 | |
SG (17-point) | PLS-DA | 80.6 | 79.7 | 76.7 | 83.8 |
SVM | 75.8 | 84.1 | 78.9 | 79.6 | |
SG (21-point) | PLS-DA | 79.8 | 79.7 | 77.2 | 81.1 |
SVM | 75.3 | 83.6 | 76.9 | 79.5 | |
First Derivative | PLS-DA | 82.0 | 83.8 | 92.9 | 93.2 |
SVM | 85.6 | 83.2 | 90.4 | 92.0 | |
Second Derivative | PLS-DA | 86.8 | 86.5 | 93.5 | 93.2 |
SVM | 85.7 | 84.6 | 92.3 | 93.1 |
Spectral Type | Models | (A) Spectra | (B) Images | (C) Spectrum and Image Fusion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Full Bands | GLCM | GLRLM | Full Bands +GLCM | Full Bands +GLRLM | |||||||
Cal | Pre | Cal | Pre | Cal | Pre | Cal | Pre | Cal | Pre | ||
(I) VNIR | PLS-DA | 86.8 | 86.5 | 78.3 | 77.0 | 77.3 | 79.7 | 84.8 | 85.1 | 86.9 | 90.5 |
SVM | 85.7 | 84.6 | 76.5 | 70.1 | 79.9 | 76.6 | 85.2 | 88.8 | 86.5 | 89.7 | |
(II) SWIR | PLS-DA | 93.5 | 93.2 | 75.5 | 78.4 | 74.9 | 74.3 | 94.5 | 91.9 | 96.5 | 93.2 |
SVM | 92.3 | 93.1 | 68.4 | 72.3 | 76.0 | 75.9 | 92.9 | 89.6 | 94.1 | 92.4 | |
(III) VNIR and SWIR Fusion | PLS-DA | 93.5 | 94.6 | 79.0 | 77.0 | 78.1 | 78.4 | 92.9 | 91.9 | 94.6 | 97.3 |
SVM | 93.1 | 92.4 | 73.6 | 71.1 | 81.5 | 79.5 | 92.7 | 88.2 | 93.8 | 96.2 |
Spectral Type | Models | (A) Spectra | (B) Images | (C) Spectrum and Image Fusion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SPA Bands | GLCM | GLRLM | SPA Bands +GLCM | SPA Bands +GLRLM | |||||||
Cal | Pre | Cal | Pre | Cal | Pre | Cal | Pre | Cal | Pre | ||
(I) VNIR | PLS-DA | 78.1 | 75.7 | 78.3 | 77.0 | 77.3 | 79.7 | 81.9 | 86.5 | 84.7 | 86.5 |
SVM | 78.7 | 80.8 | 76.5 | 70.1 | 79.9 | 76.6 | 80.1 | 81.9 | 83.3 | 83.1 | |
(II) SWIR | PLS-DA | 82.2 | 79.7 | 75.5 | 78.4 | 74.9 | 74.3 | 87.0 | 86.5 | 85.4 | 83.8 |
SVM | 86.8 | 80.9 | 68.4 | 72.3 | 76.0 | 75.9 | 81.9 | 82.3 | 87.5 | 88.4 | |
(III) VNIR and SWIR Fusion | PLS-DA | 86.5 | 83.8 | 79.0 | 77.0 | 78.1 | 78.4 | 89.1 | 89.2 | 89.0 | 93.2 |
SVM | 92.0 | 88.4 | 73.6 | 71.1 | 81.5 | 79.5 | 82.0 | 82.2 | 88.2 | 89.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ru, C.; Li, Z.; Tang, R. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Sensors 2019, 19, 2045. https://doi.org/10.3390/s19092045
Ru C, Li Z, Tang R. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Sensors. 2019; 19(9):2045. https://doi.org/10.3390/s19092045
Chicago/Turabian StyleRu, Chenlei, Zhenhao Li, and Renzhong Tang. 2019. "A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI)" Sensors 19, no. 9: 2045. https://doi.org/10.3390/s19092045
APA StyleRu, C., Li, Z., & Tang, R. (2019). A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Sensors, 19(9), 2045. https://doi.org/10.3390/s19092045