Classification and Discrimination of Different Fungal Diseases of Three Infection Levels on Peaches Using Hyperspectral Reflectance Imaging Analysis
<p>Flowchart of the data analysis procedures used to classify different fungal diseases. (PCA: principal components analysis; PC1: first principal component image; SPA: successive projections algorithm; RGB: red, blue, and green; HIS: hue, saturation, and lightness; GLCM: gray level co-occurrence matrix; PLSDA: partial least squares discrimination analysis; DBN: deep belief network).</p> "> Figure 2
<p>Average reflectance spectra of three kinds of disease and control group using the entire spectral region from 400 to 1000 nm for (<b>A</b>) different decay stages of all kinds of diseases, (<b>B</b>) different kinds of diseases of all decay stages, (<b>C</b>) slightly-decayed samples of different diseases, (<b>D</b>) moderately-decayed samples, (<b>E</b>) severely-decayed samples.</p> "> Figure 3
<p>RGB images of the three kinds of diseases at each level of decay.</p> "> Figure 4
<p>The common procedure for image processing.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Culture
2.2. Peach Samples
2.3. Evaluation of Decay Levels
2.4. Hyperspectral Image System and Image Acquisition
2.5. Extraction of Spectral Characteristics
2.6. Morphologic Characteristics Extraction
2.7. Data Processing and Analysis
3. Results and Discussion
3.1. Evaluation of Decayed Levels
3.2. Spectral Analysis
3.3. Image Features Analysis
3.4. Discriminant Models for the Classification of Diseased and Healthy Peaches
3.5. Classification of Different Peaches Diseases
3.6. Discriminant Models for Decayed Peaches Based on Optimal Features
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, H.; Zheng, X.; Yu, T. Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 2007, 18, 287–291. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, X.; Wang, Z.; Huang, Y.; Wei, Y.; Zhang, M.; Tu, K.; Pan, L. Growth Simulation and Discrimination of Botrytis cinerea, Rhizopus Stolonifer and Colletotrichum acutatum Using Hyperspectral Reflectance Imaging. PLoS ONE 2015, 10, e143400. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, M.; Gu, W. Computer vision based system for apple surface defect detection. Comput. Electron. Agric. 2002, 36, 215–223. [Google Scholar] [CrossRef]
- Moscetti, R.; Haff, R.P.; Saranwong, S.; Monarca, D.; Cecchini, M.; Massantini, R. Nondestructive detection of insect infested chestnuts based on NIR spectroscopy. Postharvest Biol. Technol. 2014, 87, 88–94. [Google Scholar] [CrossRef]
- Aparicio, R.; Rocha, S.M.; Delgadillo, I.; Morales, M.T. Detection of Rancid Defect in Virgin Olive Oil by the Electronic Nose. J. Agric. Food Chem. 2000, 48, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Muthomi, J.W.; Ndung’u, J.K.; Gathumbi, J.K.; Mutitu, E.W.; Wagacha, J.M. The occurrence of Fusarium species and mycotoxins in Kenyan wheat. Crop Prot. 2008, 27, 1215–1219. [Google Scholar] [CrossRef]
- Chun, H.S.; Choi, E.H.; Chang, H.; Choi, S.; Eremin, S.A. A fluorescence polarization immunoassay for the detection of zearalenone in corn. Anal. Chim. Acta 2009, 639, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh Sheikh, A.; Ahmadi, K.; Nikakhlagh, S. Detection of Streptococcus pneumoniae and Moraxella catarrhalis in patients with paranasal chronic sinusitis by polymerase chain reaction method. J. Chin. Med. Assoc. 2016, 79, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Aroca, A.; Raposo, R. PCR-Based Strategy to Detect and Identify Species of Phaeoacremonium Causing Grapevine Diseases. Appl. Environ. Microbil. 2007, 73, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Banada, P.P.; Huff, K.; Bae, E.; Rajwa, B.; Aroonnual, A.; Bayraktar, B.; Adil, A.; Robinson, J.P.; Hirleman, E.D.; Bhunia, A.K. Label-free detection of multiple bacterial pathogens using light-scattering sensor. Biosens. Bioelectron. 2009, 24, 1685–1692. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mittal, G.S. Geometric and optical characteristics of five microorganisms for rapid detection using image processing. Biosyst. Eng. 2008, 99, 1–8. [Google Scholar] [CrossRef]
- Pahlow, S.; Meisel, S.; Cialla-May, D.; Weber, K.; Rösch, P.; Popp, J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv. Drug Deliv. Rev. 2015, 89, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Cen, H.; Lu, R.; Ariana, D.P.; Mendoza, F. Hyperspectral Imaging-Based Classification and Wavebands Selection for Internal Defect Detection of Pickling Cucumbers. Food Bioprocess Technol. 2014, 7, 1689–1700. [Google Scholar] [CrossRef]
- Li, J.; Rao, X.; Ying, Y. Detection of common defects on oranges using hyperspectral reflectance imaging. Comput. Electron. Agric. 2011, 78, 38–48. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Huang, W.; Wang, Q.; Zhang, B.; Tian, X.; Fan, S.; Li, B. Multispectral detection of skin defects of bi-colored peaches based on vis–NIR hyperspectral imaging. Postharvest Biol. Technol. 2016, 112, 121–133. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Xiao, H.; Gu, X.; Pan, L.; Tu, K. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content. Food Chem. 2017, 235, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wang, Z.; Tu, K.; Wang, S.; Pan, L. Recognition of Mould Colony on Unhulled Paddy Based on Computer Vision using Conventional Machine-learning and Deep Learning Techniques. Sci. Rep. 2016, 6, 37994. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pan, L.; Zhao, X.; Tu, K. A Study on Soluble Solids Content Assessment Using Electronic Nose: Persimmon Fruit Picked on Different Dates. Int. J. Food Prop. 2016, 19, 53–62. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, H.; Tu, S.; Sun, K.; Pan, L.; Tu, K. Detecting decayed peach using a rotating hyperspectral imaging testbed. LWT Food Sci. Technol. 2018, 87, 326–332. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, L.; Tu, K.; Zhang, Q.; Liu, M. Comparison of Spectral and Image Morphological Analysis for Egg Early Hatching Property Detection Based on Hyperspectral Imaging. PLoS ONE 2014, 9, e88659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering. ISPRS J. Photogramm. Remote Sens. 1999, 54, 50–60. [Google Scholar] [CrossRef]
- Lv, X.; Bai, C.; Qiu, G.; Hu, M.; Zhang, S. Relationship between Mineragraphy Features of Sinter Ore and Its Gray Histogram. ISIJ Int. 2008, 48, 186–193. [Google Scholar] [CrossRef]
- Yang, H.; Hu, B.; Pan, X.; Yan, S.; Feng, Y.; Zhang, X.; Yin, L.; Hu, C. Deep belief network-based drug identification using near infrared spectroscopy. J. Innov. Opt. Health Sci. 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, Q.; Zhang, W.; Sun, Y.; Hu, P.; Tu, K. Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network. Food Chem. 2016, 192, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Merzlyak, M.N.; Solovchenko, A.E.; Gitelson, A.A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol. 2003, 27, 197–211. [Google Scholar] [CrossRef]
- Cubeddu, R.; D’Andrea, C.; Pifferi, A.; Taroni, P.; Torricelli, A.; Valentini, G.; Dover, C.; Johnson, D.; Ruiz-Altisent, M.; Valero, C. Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm. Appl. Opt. 2001, 40, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.L.; Kjaergaard, H.G. Influence of intramolecular hydrogen bond strength on OH-stretching overtones. J. Phys. Chem. A 2006, 110, 10245–10250. [Google Scholar] [CrossRef] [PubMed]
- Cen, H.; Lu, R.; Mendoza, F.A.; Ariana, D.P. Assessing Multiple Quality Attributes of Peaches Using Optical Absorption and Scattering Properties. Trans. ASABE 2012, 55, 647–657. [Google Scholar] [CrossRef]
- Bochereau, L.; Bourgine, P.; Palagos, B. A method for prediction by combining data analysis and neural networks: Application to prediction of apple quality using near infra-red spectraag. J. Agric. Eng. Res. 1992, 51, 207–216. [Google Scholar] [CrossRef]
- Lu, R. Light Scattering Technology for Food Property, Quality and Safety Assessment; CRC Press: Boca Raton, FL, USA, 2016; p. 4. [Google Scholar]
- Sun, Y.; Gu, X.; Sun, K.; Hu, H.; Xu, M.; Wang, Z.; Tu, K.; Pan, L. Hyperspectral reflectance imaging combined with chemometrics and successive projections algorithm for chilling injury classification in peaches. LWT Food Sci. Technol. 2017, 75, 557–564. [Google Scholar] [CrossRef]
Models | Levels | Spectral Features | Image Features | Combined Features | |||
---|---|---|---|---|---|---|---|
Calibration | Prediction | Calibration | Prediction | Calibration | Prediction | ||
(a) PLS-DA | All | 99.4 | 98.8 | 97.2 | 95.5 | 99.7 | 99.4 |
Slight | 90.8 | 86.6 | 86.6 | 85 | 91.6 | 88.3 | |
Moderate | 100 | 100 | 96.6 | 95 | 100 | 100 | |
Severe | 100 | 100 | 100 | 100 | 100 | 100 | |
(b) DBN | All | 98.7 | 98.7 | 97.8 | 96 | 99.1 | 98.7 |
Slight | 93.3 | 92 | 91.56 | 90.7 | 95.6 | 93.3 | |
Moderate | 100 | 100 | 100 | 100 | 100 | 100 | |
Severe | 100 | 100 | 100 | 100 | 100 | 100 |
Level | Classes | (A) Spectral Features | (B) Image Features | (C) Combined Features | |||
---|---|---|---|---|---|---|---|
Calibration | Prediction | Calibration | Prediction | Calibration | Prediction | ||
(I) All | B. c | 73.3 | 70 | 86.6 | 83.3 | 88.2 | 83.3 |
C. a | 93.3 | 86.6 | 83.3 | 66.6 | 92.5 | 63.3 | |
R. s | 96.6 | 90 | 90 | 76.6 | 94.1 | 93.3 | |
Healthy | 100 | 90 | 100 | 100 | 100 | 100 | |
Overall | 90.8 | 84.1 | 90 | 81.6 | 93.7 | 85.8 | |
(II) Slight | B. c | 55 | 40 | 100 | 60 | 56.6 | 60 |
C. a | 95 | 80 | 75 | 40 | 95 | 80 | |
R. s | 65 | 70 | 80 | 90 | 100 | 93.3 | |
Healthy | 95 | 100 | 100 | 90 | 100 | 100 | |
Overall | 77.5 | 72.5 | 88.7 | 70 | 87.92 | 83.3 | |
(III) Moderate | B. c | 70 | 70 | 100 | 90 | 78.3 | 90 |
C. a | 90 | 80 | 75 | 70 | 86.6 | 90 | |
R. s | 100 | 100 | 90 | 60 | 100 | 80 | |
Healthy | 100 | 100 | 100 | 100 | 100 | 100 | |
Overall | 90 | 87.5 | 91.2 | 80 | 91.2 | 90 | |
(IV) Severe | B. c | 85 | 90 | 100 | 100 | 100 | 80 |
C. a | 85 | 80 | 100 | 80 | 86.6 | 90 | |
R. s | 100 | 90 | 95 | 70 | 100 | 100 | |
Healthy | 100 | 100 | 100 | 100 | 100 | 100 | |
Overall | 92.5 | 90 | 98.7 | 87.5 | 96.6 | 95 |
Level | Classes | (A) Spectral Features | (B) Image Features | (C) Combined Features | |||
---|---|---|---|---|---|---|---|
Calibration | Prediction | Calibration | Prediction | Calibration | Prediction | ||
(I) All | B. c | 83.3 | 80 | 86.7 | 83.3 | 88.3 | 85 |
C. a | 93.3 | 86.6 | 88.3 | 83.3 | 93.3 | 90 | |
R. s | 96.7 | 93.3 | 90 | 86.7 | 96.7 | 96.7 | |
Healthy | 100 | 100 | 100 | 100 | 100 | 100 | |
Overall | 93.3 | 90 | 91.25 | 88.3 | 94.6 | 92.9 | |
(II) Slight | B. c | 71.7 | 70 | 73.3 | 66.7 | 80 | 76.7 |
C. a | 86.7 | 83.3 | 76.7 | 56.7 | 88.3 | 85 | |
R. s | 80 | 66.7 | 80 | 75 | 80 | 73.3 | |
Healthy | 90 | 90 | 100 | 90 | 100 | 100 | |
Overall | 82.1 | 77.5 | 82.5 | 72.1 | 87.1 | 83.6 | |
(III) Moderate | B. c | 80 | 76.7 | 95 | 90 | 91.7 | 86.7 |
C. a | 93.3 | 90 | 90 | 86.7 | 95 | 90 | |
R. s | 100 | 100 | 100 | 90 | 100 | 100 | |
Healthy | 100 | 100 | 100 | 100 | 100 | 100 | |
Overall | 93.3 | 91.7 | 96.3 | 91.7 | 96.7 | 94.2 | |
(IV) Severe | B. c | 100 | 100 | 100 | 100 | 100 | 100 |
C. a | 100 | 100 | 100 | 100 | 100 | 100 | |
R. s | 100 | 100 | 100 | 100 | 100 | 100 | |
Healthy | 100 | 100 | 100 | 100 | 100 | 100 | |
Overall | 100 | 100 | 100 | 100 | 100 | 100 |
Model | Classes | All | Slight | Moderate | Severe | ||||
---|---|---|---|---|---|---|---|---|---|
Cal | Pre | Cal | Pre | Cal | Pre | Cal | Pre | ||
(a) PLS-DA | B. c | 66.2 | 63.3 | 60.8 | 56.7 | 68.3 | 61.7 | 78.3 | 76.7 |
C. a | 71.6 | 59.1 | 66.2 | 60 | 80 | 81.7 | 86.7 | 80 | |
R. s | 89.7 | 86.3 | 83.3 | 80 | 100 | 80 | 100 | 100 | |
Healthy | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Overall | 81.9 | 77.2 | 77.6 | 74.2 | 87.1 | 80.9 | 91.3 | 89.2 | |
(b) DBN | B. c | 58.2 | 55 | 50 | 45.2 | 56 | 53.3 | 71.7 | 63.3 |
C. a | 70 | 64.5 | 63.3 | 60 | 66 | 63.3 | 76.7 | 66.7 | |
R. s | 72.5 | 68.8 | 66.7 | 63.3 | 76.7 | 70 | 78.3 | 70 | |
Healthy | 66.5 | 60 | 55 | 50.2 | 68.3 | 66.7 | 68.3 | 60 | |
Overall | 66.8 | 62.1 | 58.8 | 54.7 | 66.8 | 63.3 | 73.8 | 65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wei, K.; Liu, Q.; Pan, L.; Tu, K. Classification and Discrimination of Different Fungal Diseases of Three Infection Levels on Peaches Using Hyperspectral Reflectance Imaging Analysis. Sensors 2018, 18, 1295. https://doi.org/10.3390/s18041295
Sun Y, Wei K, Liu Q, Pan L, Tu K. Classification and Discrimination of Different Fungal Diseases of Three Infection Levels on Peaches Using Hyperspectral Reflectance Imaging Analysis. Sensors. 2018; 18(4):1295. https://doi.org/10.3390/s18041295
Chicago/Turabian StyleSun, Ye, Kangli Wei, Qiang Liu, Leiqing Pan, and Kang Tu. 2018. "Classification and Discrimination of Different Fungal Diseases of Three Infection Levels on Peaches Using Hyperspectral Reflectance Imaging Analysis" Sensors 18, no. 4: 1295. https://doi.org/10.3390/s18041295
APA StyleSun, Y., Wei, K., Liu, Q., Pan, L., & Tu, K. (2018). Classification and Discrimination of Different Fungal Diseases of Three Infection Levels on Peaches Using Hyperspectral Reflectance Imaging Analysis. Sensors, 18(4), 1295. https://doi.org/10.3390/s18041295