Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles
<p>(<b>a</b>) Fipronil structure and numbered fipronil structure; (<b>b</b>) experimentally measured and theoretically calculated Raman vibrations of fipronil, respectively. The normal Raman (NR) spectrum was baseline corrected for the standard fipronil powder (at 633 nm).</p> "> Figure 2
<p>(<b>a</b>) Plausible adsorption mechanism of fipronil on AgNP surfaces; (<b>b</b>) UV-visible absorption spectra of initial fipronil (100 ppm), the supernatant solution of the excessive fipronil obtained by the reaction with CTAC-capped AgNPs, the subsequent centrifugation, and the removal of the supernatant fipronil from the precipitate AgNPs-CTAC-fipronil. The absorption values were compared to yield the loading efficiency to estimate the amount of the adsorption of fipronil on AgNPs; (<b>c</b>) the size distribution data are shown of initial AgNPs (∼50 nm), AgNPs-CTAC (∼88 nm), and AgNPs-CTAC-fipronil (∼116 nm); (<b>d</b>) surface charge changes after the adsorption of CTAC and subsequently fipronil on AgNPs. Error bars showed the standard deviation after the three repetitive measurements.</p> "> Figure 3
<p>(<b>a</b>) Theoretically estimated Raman vibrational spectra of fipronil binding at the nitrile moiety on Au<sub>6</sub> and Ag<sub>6</sub> atom clusters; (<b>b</b>) experimentally recorded SERS vibrational spectra of AgNPs-fipronil and NR spectrum of fipronil powder (laser at 514 nm).</p> "> Figure 4
<p>(<b>a</b>) Fipronil concentration-dependent SERS spectra using AgNPs (with the irradiation at 514 nm) in the range of 0.0001–200 ppm; (<b>b</b>) The calibration curves of the vibrational band intensities at ~2236 cm<sup>−1</sup>, the inset shows fitting of the linear region of 0.0001–0.1 ppm. Each SERS experiment was repeated three times independently to ensure the reliability of this evaluation. The mean and standard deviation values were defined.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of AgNPs
2.3. DFT Calculations
2.4. Instrumentations
2.5. SERS Preparation of Fipronil on AgNPs
3. Results and Discussion
3.1. Normal Raman Spectra of Fipronil
3.2. SERS Spectra of Fipronil on AgNPs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Martinez, M.A.; Wu, Q.; Ares, I.; Martínez-Larrañaga, M.R.; Anadón, A.; Yuan, Z. Fipronil insecticide toxicology: Oxidative stress and metabolism. Crit. Rev. Toxicol. 2016, 46, 876–899. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhao, S.; Zhang, J.; Qi, K.; Du, Z.; Shao, B. Determination of fipronil and its metabolites in chicken egg, muscle and cake by a modified QuEChERS method coupled with LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2018, 35, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Antia, A.; Ortiz-Santaliestra, M.E.; Camarero, P.R.; Mougeot, F.; Mateo, R. Assessing the risk of fipronil-treated seed ingestion and associated adverse effects in the red-legged partridge. Environ. Sci. Technol. 2015, 49, 13649–13657. [Google Scholar] [CrossRef] [PubMed]
- Goff, A.D.; Saranjampour, P.; Ryan, L.M.; Hladik, M.L.; Covi, J.A.; Armbrust, K.L.; Brander, S.M. The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities. Aquat. Toxicol. 2017, 186, 96–104. [Google Scholar] [CrossRef]
- Tu, Q.; Hickey, M.E.; Yang, T.; Gao, S.; Zhang, Q.; Qu, Y.; Du, X.; Wang, J.; He, L. A simple and rapid method for detecting the pesticide fipronil on egg shells and in liquid eggs by Raman microscopy. Food Control 2019, 96, 16–21. [Google Scholar] [CrossRef]
- Zhang, M.; Bian, K.; Zhou, T.; Song, X.; Liu, Q.; Meng, C.; He, L. Determination of residual fipronil in chicken egg and muscle by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1014, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Hildmann, F.; Gottert, C.; Frenzel, T.; Kempe, G.; Speer, K. Pesticide residues in chicken eggs—A sample preparation methodology for analysis by gas and liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2015, 1403, 1–20. [Google Scholar] [CrossRef]
- Vasylieva, N.; Ahn, K.C.; Barnych, B.; Gee, S.J.; Hammock, B.D. Development of an immunoassay for the detection of the phenylpyrazole insecticide fipronil. Environ. Sci. Technol. 2015, 49, 10038–10047. [Google Scholar] [CrossRef]
- Wang, K.; Vasylieva, N.; Wan, D.; Eads, D.A.; Yang, J.; Tretten, T.; Barnych, B.; Li, J.; Li, Q.X.; Gee, S.J.; et al. Quantitative detection of fipronil and fipronil-sulfone in sera of black-tailed prairie dogs and rats after oral exposure to fipronil by camel single-domain antibody-based immunoassays. Anal. Chem. 2019, 91, 1532–1540. [Google Scholar] [CrossRef]
- Salam, F.; Puat, N.H.A.; Rahman, G.A.; Ramli, S.N.M.; Mohamed, K.A.; Kadir, A.A.A.; Azmi, A.; Nasaruddin, M.F.; Saad, M.M.; Ishak, Z.; et al. Comparative study of pesticides analysis using enzyme inhibition sensor and gas chromatography methods. Procedia Chem. 2016, 20, 33–39. [Google Scholar] [CrossRef]
- Tognaccini, L.; Ricci, M.; Gellini, C.; Feis, A.; Smulevich, G.; Becucci, M. Surface enhanced Raman spectroscopy for in-field detection of pesticides: A test on dimethoate residues in water and on olive leaves. Molecules 2019, 24, 292. [Google Scholar] [CrossRef]
- Pinzaru, S.C.; Müller, C.; Tódor, I.S.; Glamuzina, B.; Chis, V. NIR-Raman spectrum and DFT calculations of okadaic acid DSP marine biotoxin microprobe. J. Raman Spectrosc. 2016, 47, 636–642. [Google Scholar] [CrossRef]
- Wu, H.; Sun, X.; Hou, C.; Hou, J.; Lei, Y. Preparation of Quasi-Three-Dimensional Porous Ag and Ag-NiO Nanofibrous Mats for SERS Application. Sensors 2018, 18, 2862. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, X.; Yin, H.; Meng, Q.; Zhao, Y.; Liu, L.; Wu, Z.; Xu, H. Quantitative and sensitive detection of chloramphenicol by surface-enhanced Raman scattering. Sensors 2017, 17, 2962. [Google Scholar] [CrossRef] [PubMed]
- Dies, H.; Siampani, M.; Escobedo, C.; Docoslis, A. Improving the surface-enhanced Raman scattering performance of silver nanodendritic substrates with sprayed-on graphene-based coatings. Sensors 2018, 18, 3404. [Google Scholar]
- Onawole, A.T.; Popoola, S.A.; Saleh, T.A.; Al-Saadi, A.A. Silver-loaded graphene as an effective SERS substrate for clotrimazole detection: DFT and spectroscopic studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 201, 354–361. [Google Scholar] [CrossRef]
- Bauman, S.J.; Brawley, Z.T.; Darweesh, A.A.; Herzog, J.B. Substrate oxide layer thickness optimization for a dual-width plasmonic grating for surface-enhanced Raman spectroscopy (SERS) biosensor applications. Sensors 2017, 17, 1530. [Google Scholar] [CrossRef] [PubMed]
- Cordero, E.; Korinth, F.; Stiebing, C.; Krafft, C.; Schie, I.W.; Popp, J. Evaluation of shifted excitation Raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra. Sensors 2017, 17, 1724. [Google Scholar] [CrossRef] [PubMed]
- Zukovskaja, O.; Jahn, I.J.; Weber, K.; Cialla-May, D.; Popp, J. Detection of Pseudomonas aeruginosa metabolite pyocyanin in water and saliva by employing the SERS technique. Sensors 2017, 17, 1704. [Google Scholar] [CrossRef]
- Dies, H.; Siampani, M.; Escobedo, C.; Docoslis, A. Direct detection of toxic contaminants in minimally processed food products using dendritic surface-enhanced Raman scattering substrates. Sensors 2018, 18, 2726. [Google Scholar] [CrossRef] [PubMed]
- Wijesuriya, S.; Burugapalli, K.; Mackay, R.; Ajaezi, G.C.; Balachandran, W. Chemically roughened solid silver: A simple, robust and broadband SERS substrate. Sensors 2016, 16, 1742. [Google Scholar] [CrossRef] [PubMed]
- Manciu, F.S.; Ciubuc, J.D.; Sundin, E.M.; Qiu, C.; Bennet, K.E. Analysis of serotonin molecules on silver nanocolloids-a Raman computational and experimental study. Sensors 2017, 17, 1471. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Church, J.S. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J. Food Drug Anal. 2014, 22, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.L.; Gao, Y.; Han, X.X.; Zhao, B. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review. J. Agric. Food Chem. 2017, 65, 6719–6726. [Google Scholar] [CrossRef] [PubMed]
- Taillebois, E.; Alamiddine, Z.; Brazier, C.; Graton, J.; Laurent, A.D.; Thany, S.H.; Le Questel, J.Y. Molecular features and toxicological properties of four common pesticides, acetamiprid, deltamethrin, chlorpyriphos and fipronil. Bioorg. Med. Chem. 2015, 23, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Orio, M.; Pantazis, D.A.; Neese, F. Density functional theory. Photosynth. Res. 2009, 102, 443–453. [Google Scholar] [CrossRef]
- Qu, F.; Lin, L.; He, Y.; Nie, P.; Cai, C.; Dong, T.; Pan, Y.; Tang, Y.; Luo, S. Spectral characterization and molecular dynamics simulation of pesticides based on terahertz time-domain spectra analyses and density functional theory (DFT) calculations. Molecules 2018, 23, 1607. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Ly, N.H.; Nguyen, T.D.; Joo, S.W. Raman spectroscopy of pH-induced release of zidovudine from lactobionic acid-conjugated PEGylated gold colloids. Colloids Surf. B Biointerfaces 2018, 171, 49–57. [Google Scholar] [CrossRef]
- Jamroz, M.H. Vibrational energy distribution analysis (VEDA): Scopes and limitations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 220–230. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Okumura, F.; Amaral, R.B.; Orestes, E.; Silva, A.B.F.; Mazo, L.H. Electrochemical and Quantum Chemical Investigations of the Insecticide Fipronil. J. Braz. Chem. Soc. 2016, 27, 925–932. [Google Scholar] [CrossRef]
- Muniz-Miranda, M.; Sbrana, G. Evidence for surface Ag+ complex formation by an anion-induced effect in the SER Spectra of phthalazine adsorbed on silver sols. J. Raman Spectrosc. 1996, 27, 105–110. [Google Scholar] [CrossRef]
- Otto, A.; Bruckbauer, A.; Chen, Y.X. On the chloride activation in SERS and single molecule SERS. J. Mol. Struct. 2003, 661, 501–514. [Google Scholar] [CrossRef]
a DFT | NR 633 nm | NR 514 nm | SERS 514 nm | b Assignments Based on PED Calculations |
---|---|---|---|---|
2301 | 2248 | 2253 | 2236 | ν(N24-C23) (85%) + ν(C23-C18) (15%) |
1654 | 1665 | ν(C1-C2) (26%) + ν(C5-C4) (12%) + ν(C3-C2) (10%) + ν(C4-C3) (12%) | ||
1610 | 1617 | 1614 | ν(C17-C16) (32%) + ν(N20-C16) (35%) + β(H22-N20-H21) (14%) | |
1541 | 1563 | 1571 | 1533 | ν(N15-C16) (10%) + ν(N15-C6) (29%) |
1480 | 1505 | 1512 | ν(C17-C16) (10%) + ν(N19-C18) (20%) | |
1454 | 1431 | ν(C23-C18) (21%) + β(C18-N19-N15) (20%) + β(C17-C16-N15) (13%) + β(C16-N15-N19) (13%) | ||
1422 | 1403 | 1424 | ν(C1-C2) (15%) + ν(C5-C4) (15%) + β(H7-C2-C3) (20%) + β(H8-C4-C5) (17%) | |
1393 | 1378 | ν(N19-C18) (34%) + β(C18-N19-N15) (11%) + β(C16-N15-N19) (11%) | ||
1327 | 1320 | 1326 | 1315 | ν(N19-C18) (13%) + ν(C9-C3) (15%) |
1284 | 1292 | 1251 | ν(C9-C3 )(23%) + β(H7-C2-C3) (11%) + β(H8-C4-C5) (18%) | |
1175 | 1179 | 1204 | ν(C17-C16) (10%) | |
1129 | 1134 | 1134 | ν(F29-C27) (34%) + ν(F30-C27) (24%) + ν(F28-C27) (14%) + β(F30-C27-F29) (10%) | |
1059 | 1070 | 1078 | 1033 | ν(C23-C18) (14%) + β(C17-C16-N15) (13%) + β(C16-N15-N19) (13%) |
842 | 867 | 875 | 910 | β(C4-C3-C2) (18%) |
801 | ν(S25-O26) (89%) | |||
747 | 756 | δ(C18-N19-N15-C6) (14%) + γ(C23-C17-N19-C18) (23%) + ν(C3-C2) (23%) | ||
642 | 621 | 640 | ν(F29-C27) (11%) + ν(F30-C27) (13%) + ν(F28-C27) (14%) + β(F29-C27-F28) (15%) + β(F30-C27-F29) (20%) + β(F28-C27-F30) (15%) | |
507 | 508 | 515 | 522 | ν(C23-C18) (15%) + β(C18-N19-N15) (23%) |
391 | 380 | 417 | β(N20-C16-C17) (12%) + β(F10-C9-F12) (17%) | |
338 | 345 | 354 | δ(N24-C23-C18-C17) (14%) + δ(C17-C16-N15-C6) (10%) + δ(C18-N19-N15-C6) (12%) + ν(C3-C2) (21%) | |
292 | 297 | β(F12-C9-F11) (20%) + γ(F10-C3-F12-C9) (17%) |
Binding Positions | Energy (a.u.) | Differences (a.u.) | Differences |
---|---|---|---|
Ag6-Fironil (binding at pyrazole) | −2267.49982461 | 0.00305258 | 1.915523 kcal/mol |
Ag6-Fironil (binding at CN) | −2267.50287719 | 0.00000000 | |
Au6-Fironil (binding at pyrazole) | −2205.66239617 | 0.00220096 | 1.381123 kcal/mol |
Au6-Fironil (binding at CN) | −2205.66459713 | 0.00000000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ly, N.H.; Nguyen, T.H.; Nghi, N.Đ.; Kim, Y.-H.; Joo, S.-W. Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles. Sensors 2019, 19, 1355. https://doi.org/10.3390/s19061355
Ly NH, Nguyen TH, Nghi NĐ, Kim Y-H, Joo S-W. Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles. Sensors. 2019; 19(6):1355. https://doi.org/10.3390/s19061355
Chicago/Turabian StyleLy, Nguyễn Hoàng, Thi Ha Nguyen, Ngô Đình Nghi, Young-Han Kim, and Sang-Woo Joo. 2019. "Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles" Sensors 19, no. 6: 1355. https://doi.org/10.3390/s19061355
APA StyleLy, N. H., Nguyen, T. H., Nghi, N. Đ., Kim, Y. -H., & Joo, S. -W. (2019). Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles. Sensors, 19(6), 1355. https://doi.org/10.3390/s19061355