Analysis of Serotonin Molecules on Silver Nanocolloids—A Raman Computational and Experimental Study
"> Figure 1
<p>(<b>a</b>) Serotonin structural representation in neutral state after energy optimization. Red and blue colors were used for oxygen and nitrogen atoms, respectively. (<b>b</b>,<b>c</b>) Experimentally measured and theoretically calculated Raman vibrations of serotonin, respectively. The Raman spectrum was recorded for the standard 5-HT powder.</p> "> Figure 2
<p>(<b>a</b>–<b>c</b>) Serotonin structural representation after energy optimization for silver dimer in the proximity of the hydroxyl group, between the NH and NH<sub>2</sub> sites of the indole and amine groups, and between the OH and NH<sub>2</sub> chemical bonds of the phenolichydroxyl and amine groups, respectively. (<b>d</b>–<b>f</b>) Theoretically estimated and experimentally recorded Raman vibrational spectra of neutral 5-HT associated with (<b>a</b>–<b>c</b>), respectively. The spectra are vertically translated for easier visualization and appropriately labeled.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) Structural representations of the anionic and cationic forms of serotonin in the proximity of a silver dimer. (<b>c</b>,<b>d</b>) Theoretically calculated and experimentally measured Raman vibrations of the anionic and cationic forms of serotonin, respectively. The spectra are vertically translated for easier visualization and appropriately labeled.</p> "> Figure 4
<p>The redox process of serotonin consisting of the transfer of two electrons and two protons. The structural representations of oxidized and reduced 5-HT forms are presented and appropriately labeled.</p> "> Figure 5
<p>(<b>a</b>,<b>b</b>) Structural representations of oxidized forms of serotonin in the proximity of a silver dimer. (<b>c</b>,<b>d</b>) Theoretically calculated and experimentally measured Raman vibrations of the oxidized forms, (<b>a</b>,<b>b</b>), of serotonin, respectively. The spectra are vertically translated for easier visualization and appropriately labeled.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Feldberg, W.; Toh, C.C. Distribution of 5-hydroxytryptamine (serotonin, enteramine) in the wall of the digestive tract. J. Physiol. 1953, 119, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Rapport, M.M.; Green, A.A.; Page, I.H. Serum vasoconstrictor (serotonin) IV. Isolation and characterization. J. Biol. Chem. 1948, 176, 1243–1251. [Google Scholar] [PubMed]
- Aghajanian, C.K.; Wang, R.Y. Physiology and Pharmacology of Central Serotonergic Neurons. In Psychopharmacology: A Generation of Progress; Lipton, M.A., Di Mascio, A., Killiam, K.F., Eds.; Raven Press: New York, NY, USA, 1978; pp. 171–183. [Google Scholar]
- Mossner, R.; Lesch, K.P. Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav. Immun. 1998, 12, 249–271. [Google Scholar] [CrossRef] [PubMed]
- Young, S.N. How to increase serotonin in the human brain without drugs. J. Psychiatry Neurosci. 2007, 32, 394–399. [Google Scholar] [PubMed]
- Curcio, C.A.; Kemper, T. Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal apcking density. J. Neuropathol. Exp. Neurol. 1984, 43, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Wimo, A.; Winblad, B.; Aguero-Torres, H.; Von Strauss, E. The magnitude of dementia occurrence in the world. Alzheimer Dis. Assoc. Disord. 2003, 17, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Adolfssum, R.; Alafuzoff, L.; Alafuzoff, I.; Bucht, G.; Marcusson, J.; Nyberg, P.; Perdahl, E.; Wester, P.; Winblad, B. Transmitter deficits in Alzheirmer’s disease. Neurochem. Int. 1985, 7, 545–563. [Google Scholar] [CrossRef]
- Van den Berg, E.K.; Schmitz, J.M.; Benedict, C.R.; Malloy, C.R.; Willerson, J.T.; Dehmer, G.J. Transcardiac serotonin concentration is increased in selected patients with limiting angina and complex coronary lesion morphology. Circulation 1989, 79, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Rubanyl, G.M.; Frye, R.L.; Holmes, D.R., Jr.; Vanhoutte, P.M. Vasoconstrictor activity of coronary sinus plasma from patients with coronary artery disease. J. Am. Coll. Cardiol. 1987, 9, 1243–1249. [Google Scholar] [CrossRef]
- Ashton, J.H.; Benedict, C.R.; Fitzgerald, C.; Raheja, S.; Taylor, A.; Campbell, W.B.; Buja, L.M.; Willerson, J.T. Serotonin as a mediator of cyclic flow variations in stenosed canine coronary arteries. Circulation 1986, 73, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Golino, P.; Buja, L.M.; Yao, S.K.; McNatt, J.; Willerson, J.T. Failure of Nitroglycerin and Diltiazem to Reduce Platelet-Mediated Vasoconstriction in Dogs with Coronary Artery Stenosis and Endothelial Injury: Further Evidence for Thromboxane A2 and Serotonin as Mediators of Coronary Artery Vasoconstriction in Vivo. J. Am. Coll. Cardiol. 1990, 15, 718–726. [Google Scholar] [CrossRef]
- Schmitz, J.M.; Apprill, P.G.; Buja, L.M.; Willerson, J.T.; Campbell, W.B. Vascular prostaglandin and thromboxane production in a canine model of myocardial ischemia. Circ. Res. 1985, 57, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Gardier, A.M. Mutant mouse models and antidepressant drug research: Focus on serotonin and brain-derived neurotrophic factor. Behav. Pharmacol. 2009, 20, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Bennet, K.E.; Tomshine, J.R.; Min, H.-K.; Manciu, F.S.; Marsh, M.P.; Paek, S.B.; Settell, M.L.; Nicolai, E.N.; Blaha, C.D.; Kouzani, A.Z.; et al. A Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain. Front. Hum. Neurosci. 2016, 10, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Creed, M.C.; Nobrega, J.N. The role of serotonin in the antidyskinetic effects of deep brain stimulation: Focus on antipsychotic-induced motor symptoms. Rev. Neurosci. 2013, 24, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Griessenauer, C.J.; Chang, S.Y.; Tye, S.J.; Kimble, C.J.; Bennet, K.E.; Garris, P.A.; Lee, K.H. Wireless Instantaneous Neurotransmitter Concentration System: Electrochemical monitoring of serotonin using fast-scan cyclic voltammetry—A proof-of-principle study: Laboratory investigation. J. Neurosurg. 2010, 113, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, P.; Dankoski, E.C.; Petrovic, J.; Keithley, R.B.; Wightman, R.M. Voltammetric Detection of 5-Hydroxytryptamine Release in the Rat Brain. Anal. Chem. 2009, 81, 9462–9471. [Google Scholar] [CrossRef] [PubMed]
- Van Gompel, J.J.; Chang, S.-Y.; Goerss, S.J.; Kim, I.Y.; Kimble, C.; Bennet, K.E.; Lee, K.H. Development of intraoperative electrochemical detection: Wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback. Neurosurg. Focus. 2010, 29. [Google Scholar] [CrossRef] [PubMed]
- Bunin, M.A.; Wightman, R.M. Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: An investigation of extrasynaptic transmission. J. Neurosci. 1998, 18, 4854–4860. [Google Scholar] [PubMed]
- Volicer, L.; Wrona, M.Z.; Matson, W.; Dryhurst, G. Neurotoxic Oxidative Metabolite of Serotonin. In Bioimaing in Neurodegeneration; Broderick, P.A., Rahni, D.N., Kolodny, E.H., Eds.; Human Press Inc.: Totowa, NJ, USA, 2005; pp. 85–93. [Google Scholar]
- Agid, Y.; Buzsaki, G.; Diamond, D.M.; Frackowiak, R.; Giedd, J.; Girault, J.A.; Grace, A.; Lambert, J.J.; Manji, H.; Mayberg, H.; et al. How can drug discovery for psychiatric disorders be improved? Nat. Rev. Drug Discov. 2007, 6, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Berton, O.; Nestler, E.J. New approaches to antidepressant drug discovery: Beyond monoamines. Nat. Rev. Neurosci. 2006, 7, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, M.; Hendra, P.J.J.; McQuillan, J.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Dieringer, J.A.; Mcfarland, A.D.; Shah, N.C.; Stuart, D.A.; Whitney, A.V.; Yonzon, C.R.; Young, M.A.; Zhang, X.; Van Duyne, R.P. Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss. 2006, 132, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.T.; McClellan, A.K.; Joe, L.V.; Wright, A.M.; Lloyd, L.T.; Tschumper, G.S.; Hammer, N.I. Competition between Hydrophilic and Argyrophilic Interactions in Surface Enhanced Raman Spectroscopy. Chem. Phys. Chem. 2016, 17, 2782–2786. [Google Scholar] [CrossRef] [PubMed]
- Lagutschenkov, A.; Langer, J.; Berden, G.; Oomens, J.; Dopfer, O. Infrared Spectra of Protonated Neurotransmitters: Serotonin. J. Phys. Chem. A, 2010, 114, 13268–13276. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Guo, Z.; Jiang, X.; Fang, K.; Lu, X.; Zhang, Y.; Gu, N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. Colloid Interface Sci. 2013, 394, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Bennet, K.E.; Tomshine, J.R.; Hara, S.; Ciubuc, J.D.; Schmidt, U.; Durrer, W.G.; McIntosh, M.B.; Eastman, M.; Manciu, F.S. Ultrasensitive Detection of Neurotransmitters by Surface Enhanced Raman Spectroscopy for Biosensing Applications. Bionterface Res. Appl. Chem. 2017, 1, 1921–1926. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Krishnakumar, V.; Keresztury, G.; Sundius, T.; Ramasamy, R. Simulation of IR and Raman spectra based on scaled DFT force fields: A case study of 2-(methylthio)benzonitrile, with emphasis on band assignment. J. Mol. Struct. 2004, 702, 9–21. [Google Scholar] [CrossRef]
- Polavarapu, P.L. Ab initio vibrational Raman and Raman optical activity spectra. J. Phys. Chem. 1990, 94, 8106–8112. [Google Scholar] [CrossRef]
- Keresztury, G. Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Chichester, UK, 2001. [Google Scholar]
- Virga, A.; Rivolo, P.; Frascella, F.; Angelini, A.; Descrovi, E.; Geobaldo, F.; Giorgis, F. Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. J. Phys. Chem. C 2013, 117, 20139–20145. [Google Scholar] [CrossRef]
- Otto, A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 2005, 36, 497–509. [Google Scholar] [CrossRef]
- Song, P.; Guo, X.; Pan, Y.; Wen, Y.; Zhang, Z.; Yang, H. SERS and in situ SERS spectroelectrochemical investigations of serotonin monolayers at a silver electrode. J. Electroanal. Chem. 2013, 688, 384–391. [Google Scholar] [CrossRef]
- Pande, S.; Jana, S.; Sinha, A.K.; Sarkar, S.; Basu, M.; Pradhan, M.; Pal, A.; Chowdhury, J.; Pal, T. Dopamine molecules on Aucore-Agshell bimetallic nanocolloids: Fourier transform infrared, Raman, and surface-enhanced Raman spectroscopy study aided by density functional theory. J. Phys. Chem. C 2009, 113, 6989–7002. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manciu, F.S.; Ciubuc, J.D.; Sundin, E.M.; Qiu, C.; Bennet, K.E. Analysis of Serotonin Molecules on Silver Nanocolloids—A Raman Computational and Experimental Study. Sensors 2017, 17, 1471. https://doi.org/10.3390/s17071471
Manciu FS, Ciubuc JD, Sundin EM, Qiu C, Bennet KE. Analysis of Serotonin Molecules on Silver Nanocolloids—A Raman Computational and Experimental Study. Sensors. 2017; 17(7):1471. https://doi.org/10.3390/s17071471
Chicago/Turabian StyleManciu, Felicia S., John D. Ciubuc, Emma M. Sundin, Chao Qiu, and Kevin E. Bennet. 2017. "Analysis of Serotonin Molecules on Silver Nanocolloids—A Raman Computational and Experimental Study" Sensors 17, no. 7: 1471. https://doi.org/10.3390/s17071471
APA StyleManciu, F. S., Ciubuc, J. D., Sundin, E. M., Qiu, C., & Bennet, K. E. (2017). Analysis of Serotonin Molecules on Silver Nanocolloids—A Raman Computational and Experimental Study. Sensors, 17(7), 1471. https://doi.org/10.3390/s17071471