Leaf Segmentation on Dense Plant Point Clouds with Facet Region Growing
<p>Two types of imaging sensors with tripods: (<b>a</b>) shows the binocular stereo vision system used in this research; (<b>b</b>) shows a Kinect V2 sensor mounted on a tripod.</p> "> Figure 2
<p>Overview of the proposed method.</p> "> Figure 3
<p>Breadth-first searching strategy for facet region growing: (<b>a</b>) shows the facets before region growing started; (<b>b</b>) shows the result of the first round of facet region growing; (<b>c</b>) shows the result of the second round of facet region growing; (<b>d</b>) shows the result of the third round of facet region growing; (<b>e</b>) shows the result of the final round of facet region growing.</p> "> Figure 4
<p>The original and pre-processed point clouds of the three greenhouse sample plants: (<b>a</b>) the original point cloud of <span class="html-italic">Epipremnum aureum</span>; (<b>b</b>) the original point cloud of <span class="html-italic">Monstera deliciosa</span>; (<b>c</b>) the original point cloud of <span class="html-italic">Calathea makoyana</span>; (<b>d</b>) the pre-processed result on <span class="html-italic">Epipremnum aureum</span>; (<b>e</b>) the pre-processed point cloud on (<b>b</b>); and, (<b>f</b>) the preprocessed result on (<b>c</b>).</p> "> Figure 5
<p>The facet over-segmentation of <span class="html-italic">Epipremnum aureum, Monstera deliciosa, and Calathea makoyana</span>; point clouds (<b>a</b>,<b>e</b>,<b>i</b>) show the top-views of the original three point clouds, respectively; (<b>b</b>) the over-segmentation result of <span class="html-italic">Epipremnum aureum</span> when <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 100 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.05 m; (<b>c</b>) the result when <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 40 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.05 m; (<b>d</b>) the result when <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 20 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.03 m. (<b>f</b>) The over-segmentation result of <span class="html-italic">Monstera deliciosa</span> when the value of <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 100 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.05 m; (<b>g</b>) the result when <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 40 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.05 m; and, (<b>h</b>) the result obtained when <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 40 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.03 m. (<b>j</b>) The over-segmentation result of <span class="html-italic">Calathea makoyana</span> when the value of <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 100 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.05 m; (<b>k</b>) the result when <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 40 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.05 m; and, (<b>l</b>) the result obtained when <math display="inline"><semantics> <mi>K</mi> </semantics></math> is 40 and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </semantics></math> is 0.03 m.</p> "> Figure 6
<p>The results of individual leaf segmentation of <span class="html-italic">Epipremnum aureum, Monstera deliciosa, and Calathea makoyana</span>. The left column (<b>a</b>,<b>d</b>,<b>g</b>) shows three different views of the result of the point cloud of <span class="html-italic">Epipremnum aureum</span>, respectively. The middle column (<b>b</b>,<b>e</b>,<b>h</b>) shows three different views of the result of the point cloud of <span class="html-italic">Monstera deliciosa</span>, respectively. The right column (<b>c</b>,<b>f</b>,<b>i</b>) shows three different views of the result of the point cloud of <span class="html-italic">Calathea makoyana</span>, respectively.</p> "> Figure 7
<p>The granularity of over-segmentation affects the result of facet region growing. (<b>a</b>) shows the side view of a facet set containing only two adjacent facets, and (<b>b</b>) shows the side view of a facet set containing three adjacent facets. If the facet <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>b</mi> </msub> </mrow> </semantics></math> in (<b>a</b>) breaks into two parts, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>; In (<b>b</b>), the distance from <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> </mrow> </semantics></math> is much smaller than the distance from <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>b</mi> </msub> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> </mrow> </semantics></math>, making the region growing to be easier.</p> "> Figure 8
<p>False Positives (FP) in two sample point clouds: (<b>a</b>) the two FPs for the point cloud of <span class="html-italic">Epipremnum aureum</span>; (<b>b</b>) the FP of the point cloud of <span class="html-italic">Monstera deliciosa</span> sample plant.</p> "> Figure 9
<p>The segmentation result of our method on a point cloud containing a table surface and several objects (bottles and boxes): (<b>a</b>) the original point cloud with real colors, and (<b>b</b>) the segmentation result with different objects labeled in different colors, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Platform and Experiment Subjects
2.1.1. Platform
2.1.2. Experiment Subjects
2.2. Framework
2.3. Point Cloud Pre-Processing
2.3.1. Removal of Non-Leaf Areas and Outliers
2.3.2. Using IPCA to Compute Spatial Characteristics of Each Point
Algorithm 1 IPCA for computing the spatial characteristics of each point. | |
Input: Point Cloud , is any point in . | |
Parameters: Initial number of points in the neighborhood . | |
Output: The unit normal vector , and the smoothness . | |
1 | for each point in do |
2 | Initialize ’s -nearest neighbors data matrix . |
3 | repeat |
4 | Compute the covariance matrix of by Equation (2). |
5 | Compute the eigenvalues in descending order , , and , and their corresponding eigenvectors , , and of by Eigenvalue Decomposition. |
6 | , . |
7 | Compute the distance between the point and ’s current fitted plane by Equation (1). |
8 | if then |
9 | remove the point from |
10 | end if |
11 | until remains the same |
12 | end for |
2.4. Facet Over-Segmentation
2.4.1. Seed Point Selection and Coarse Planar Facet Generation
2.4.2. Local K-Means Clustering Based Facet Refinement
Algorithm 2 Facet over-segmentation. | |
Input: Unit normal vector , and the smoothness of each point . | |
Parameters: , , and | |
Output: the collection of facets, the seed point set . | |
1 | |
2 | for each unused point in do |
3 | set the point with the largest in of as the seed point |
4 | |
5 | for each unused point in do |
6 | if and satisfy the three conditions at the same time. |
7 | (i) |
8 | (ii) |
9 | (iii) |
10 | then grow belongs to the region of , and label as used |
11 | end if |
12 | end for |
13 | end for |
14 | Set each region of in as a facet. |
15 | Set distance for each point in . |
16 | repeat |
17 | for each cluster center in do |
18 | for each point in a sphere of radius centered at do |
19 | Compute the distance (multiple seeds may exist) |
20 | if then |
21 | |
22 | classify to the cluster of |
23 | end if |
24 | end for |
25 | end for |
26 | Points that do not belong to any facet are classified to its nearest seed points. Each cluster of a seed now becomes a new facet , and all facets form a collection . |
27 | until the positions of seeds remain stable. |
2.5. Facet Region Growing for Individual Leaf Segmentation
Algorithm 3 Facet region growing. | |
Input: The collection of facts . | |
Parameters: | |
Output: The collection of individual leaves. | |
1 | for each unused facet in do |
2 | a temporal facet queue for breadth-first search |
3 | Set as the starting facet of a new individual leaf. |
4 | , and label as used. |
5 | repeat |
6 | |
7 | for each unused facet in do |
8 | if is adjacent and then |
9 | and label as used |
10 | Grow to . |
11 | end if |
12 | end for |
13 | until |
14 | end for |
3. Results and Discussion
3.1. Point Cloud Pre-Processing Results
3.2. Results of Facet over-Segmentation
3.3. Result of Individual Leaf Segmentation based on Facet Region Growing
3.4. Parameters
3.5. Performance Evaluation
- TP (True Positive): if a segmented leaf region covers more than 70% of the total number of the points of the real single leaf, the segmented leaf is then regarded as a TP.
- FP (False Positive): if two real leaves are segmented by the same segmentation region, then we regard it to be an FP.
- FN (False Negative): If more than 70% points of a real leaf are not covered by any segmentation, then we call it an FN.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Neto, J.C.; Meyer, G.E.; Jones, D.D. Individual leaf extractions from young canopy images using Gustafson–Kessel clustering and a genetic algorithm. Comput. Electr. Agric. 2006, 51, 66–85. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, F.; Shah, S.G.; Ye, Y.; Mao, H. Use of leaf color images to identify nitrogen and potassium deficient tomatoes. Pattern Recognit. Lett. 2011, 32, 1584–1590. [Google Scholar] [CrossRef]
- Kalyoncu, C.; Toygar, O. Geometric leaf classification. Comput. Vis. Image Understand. 2015, 133, 102–109. [Google Scholar] [CrossRef]
- Kumar, N.; Belhumeur, P.N.; Biswas, A.; Jacobs, D.W.; Kress, W.J.; Lopez, I.C.; Soares, J.V. Leafsnap: A computer vision system for automatic plant species identification. In Computer Vision–ECCV; Springer: Berlin/Heidelberg, Germany, 2012; pp. 502–516. [Google Scholar]
- Zhang, S.; Wu, X.; You, Z.; Zhang, L. Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electr. Agric. 2017, 134, 135–141. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Ann. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Gehan, M.A.; Fahlgren, N.; Abbasi, A.; Berry, J.C.; Callen, S.T.; Chavez, L.; Doust, A.N.; Feldman, M.J.; Gilbert, K.B.; Hodge, J.G.; et al. PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ 2017, 5, e4088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Applegate, C.; Alonso, A.D.; Reynolds, D.; Orford, S.; Mackiewicz, M.; Griffiths, S.; Penfield, S.; Pullen, N. Leaf-GP: An open and automated software application for measuring growth phenotypes for arabidopsis and wheat. Plant Methods 2017, 13, 1176. [Google Scholar] [CrossRef] [PubMed]
- Scharr, H.; Minervini, M.; French, A.P.; Klukas, C.; Kramer, D.M.; Liu, X.; Luengo, I.; Pape, J.-M.; Polder, G.; Vukadinovic, D.; et al. Leaf segmentation in plant phenotyping: A collation study. Mach. Vis. Appl. 2015, 27, 585–606. [Google Scholar] [CrossRef]
- Yin, X.; Liu, X.; Chen, J.; Kramer, D.M. Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos. IEEE Trans. Pattern Anal. Mach. Intel. 2018, 40, 1411–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viaud, G.; Loudet, O.; Cournède, P.H. Leaf Segmentation and Tracking in Arabidopsis thaliana Combined to an Organ-Scale Plant Model for Genotypic Differentiation. Front. Plant Sci. 2017, 7, 2057. [Google Scholar] [CrossRef] [PubMed]
- Dobrescu, A.; Giuffrida, M.V.; Tsaftaris, S.A. Leveraging multiple datasets for deep leaf counting. In Proceedings of the ICCV2017, Venice, Italy, 22–29 October 2017; pp. 2072–2079. [Google Scholar]
- Morris, D.D. A pyramid CNN for Dense-Leaves Segmentation. arXiv, 2018; arXiv:1804.01646v1. [Google Scholar]
- Pape, J.-M.; Klukas, C. Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images. In Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP), Swansea, UK, 7–10 September 2015; pp. 3.1–3.12. [Google Scholar]
- Ferrara, R.; Virdis, S.G.; Ventura, A.; Ghisu, T.; Duce, P.; Pellizzaro, G. An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density based clustering algorithm DBSCAN. Agric. For. Meteorol. 2018, in press. [Google Scholar] [CrossRef]
- Yang, B.; Dai, W.; Dong, Z.; Liu, Y. Automatic Forest Mapping at Individual Tree Levels from Terrestrial Laser Scanning Point Clouds with a Hierarchical Minimum Cut Method. Remote Sens. 2016, 8, 372. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef]
- Li, S.; Dai, L.; Wang, H.; Wang, Y.; He, Z.; Lin, S. Estimating Leaf Area Density of Individual Trees Using the Point Cloud Segmentation of Terrestrial LiDAR Data. Remote Sens. 2017, 9, 1202. [Google Scholar] [CrossRef]
- Teng, C.-H.; Kuo, Y.-T.; Chen, Y.-S. Leaf segmentation classification and three-dimensional recovery from a few images with close viewpoints. Opt. Eng. 2011, 50. [Google Scholar] [CrossRef]
- Chaurasia, G.; Beardsley, P. Editable Parametric Dense Foliage from 3D Capture. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV) (2017), Venice, Italy, 22–29 October 2017; pp. 5305–5314. [Google Scholar]
- Li, D.; Xu, L.; Tang, X.S.; Sun, S.; Cai, X.; Zhang, P. 3D Imaging of Greenhouse Plants with an Inexpensive Binocular Stereo Vision System. Remote Sens. 2017, 9, 508. [Google Scholar] [CrossRef]
- Paproki, A.; Sirault, X.; Berry, S.; Furbank, R.; Fripp, J. A novel mesh processing based technique for 3D plant analysis. BMC Plant Boil. 2012, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Wang, L.; Chung, B.K.; Lee, J.M. In situ 3D segmentation of individual plant leaves using a RGB-D camera for agricultural automation. Sensors 2015, 15, 20463–20479. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, X.; Mitra, N.J.; Chamovitz, D.; Cohen-Or, D.; Chen, B. Analyzing growing plants from 4D point cloud data. ACM Trans. Graph. 2013, 32, 1–10. [Google Scholar] [CrossRef]
- pointclouds.org. Available online: http://pointclouds.org/ (accessed on 24 October 2018).
- Yang, L.; Zhang, L.; Dong, H.; Alelaiwi, A.; El Saddik, A. Evaluating and Improving the Depth Accuracy of Kinect for Windows v2. IEEE Sensors J. 2015, 15, 4275–4285. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, F.; Zhu, H.; Li, D.; Li, Y.; Tang, L. An Improved RANSAC for 3D Point Cloud Plane Segmentation Based on Normal Distribution Transformation Cells. Remote Sens. 2017, 9, 433. [Google Scholar] [CrossRef]
Parameter | Description | Value for Epipremnum | Value for Monstera | Value for Makoyana |
---|---|---|---|---|
The radius parameter of the search sphere used for removing outliers. | 0.015 m | — | 0.015 m | |
A threshold that defines the minimum number of points in the search sphere. | 85 | — | 50 | |
The number of the nearest neighbors of the current point when computing the average spacing. | 40 | 25 | — | |
A threshold that is used to multiply the standard deviation of the average spacing. | 1 | 0.1 | — | |
The number of the nearest neighbor points used in IPCA. | 20 | 40 | 40 | |
A radius threshold used for coarse planar facet generation. | 0.03 m | 0.03 m | 0.03 m | |
An angle threshold for comparing two normals. | ||||
A threshold for measure the distance from a point to a plane. | 0.025 m | 0.025 m | 0.025 m | |
A radius threshold used in local K-means clustering. | 0.1 m | 0.1 m | 0.1 m | |
A threshold that defines the distance from the center of one facet to another adjoining facet. | 0.0055 m | 0.0025 m | 0.0055 m |
Plant Type | True Positive (TP) | Reference | False Positive (FP) | False Negative (FN) | Recall | Precision | F-Measure |
---|---|---|---|---|---|---|---|
Epipremnum aureum | 21 | 23 | 2 | 0 | 100% | 91.30% | 95.45% |
Monstera deliciosa | 15 | 16 | 1 | 0 | 100% | 93.75% | 96.77% |
Calathea makoyana | 11 | 12 | 0 | 1 | 91.67% | 100% | 95.65% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Cao, Y.; Tang, X.-s.; Yan, S.; Cai, X. Leaf Segmentation on Dense Plant Point Clouds with Facet Region Growing. Sensors 2018, 18, 3625. https://doi.org/10.3390/s18113625
Li D, Cao Y, Tang X-s, Yan S, Cai X. Leaf Segmentation on Dense Plant Point Clouds with Facet Region Growing. Sensors. 2018; 18(11):3625. https://doi.org/10.3390/s18113625
Chicago/Turabian StyleLi, Dawei, Yan Cao, Xue-song Tang, Siyuan Yan, and Xin Cai. 2018. "Leaf Segmentation on Dense Plant Point Clouds with Facet Region Growing" Sensors 18, no. 11: 3625. https://doi.org/10.3390/s18113625