Abstract
Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape characteristics, the presence of occlusions and variability in leaf shape and pose, as well as imaging conditions, render this problem challenging. The aim of this paper is to compare several leaf segmentation solutions on a unique and first-of-its-kind dataset containing images from typical phenotyping experiments. In particular, we report and discuss methods and findings of a collection of submissions for the first Leaf Segmentation Challenge of the Computer Vision Problems in Plant Phenotyping workshop in 2014. Four methods are presented: three segment leaves by processing the distance transform in an unsupervised fashion, and the other via optimal template selection and Chamfer matching. Overall, we find that although separating plant from background can be accomplished with satisfactory accuracy (\(>\)90 % Dice score), individual leaf segmentation and counting remain challenging when leaves overlap. Additionally, accuracy is lower for younger leaves. We find also that variability in datasets does affect outcomes. Our findings motivate further investigations and development of specialized algorithms for this particular application, and that challenges of this form are ideally suited for advancing the state of the art. Data are publicly available (online at http://www.plant-phenotyping.org/datasets) to support future challenges beyond segmentation within this application domain.
Similar content being viewed by others
Notes
To measure Dice per leaf, we first find matches between a leaf in ground truth and an algorithm’s result that maximally overlap, and then report the Dice (Eq. 1) of matched leaves; for non-matched leaves a zero is reported.
This indicates that additional (possibly tailored) evaluation metrics may be necessary, although our testing with some common in the literature did not yield any improvement.
See the new Leaf Counting Challenge of CVPPP 2015 at BMVC (http://www.plant-phenotyping.org/CVPPP2015).
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)
Aksoy, E., Abramov, A., Wörgötter, F., Scharr, H., Fischbach, A., Dellen, B.: Modeling leaf growth of rosette plants using infrared stereo image sequences. Comput. Electron. Agric. 110, 78–90 (2015)
Alenyà, G., Dellen, B., Torras, C.: 3D modelling of leaves from color and ToF data for robotized plant measuring. In: IEEE International Conference on Robotics and Automation, pp. 3408–3414 (2011)
Arvidsson, S., Pérez-Rodríguez, P., Mueller-Roeber, B.: A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol 191(3), 895–907 (2011)
Augustin, M., Haxhimusa, Y., Busch, W., Kropatsch, W.G.: Image-based phenotyping of the mature Arabidopsis shoot system. In: Computer Vision—ECCV 2014 Workshops, vol. 8928, pp. 231–246. Springer (2015)
Bansal, S., Aggarwal, D.: Color image segmentation using CIELab color space using ant colony optimization. Int. J. Comput. Appl. 29(9), 28–34 (2011)
Barrow, H., Tenenbaum, J., Bolles, R., Wolf, H.: Parametric correspondence and chamfer matching: two new techniques for image matching. Tech. rep, DTIC (1977)
Beucher, S.: The watershed transformation applied to image segmentation. Scanning Microsc. Int. 6, 299–314 (1992)
Biskup, B., Scharr, H., Schurr, U., Rascher, U.: A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ. 30, 1299–1308 (2007)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Casanova, D., Florindo, J.B., Gonçalves, W.N., Bruno, O.M.: IFSC/USP at ImageCLEF 2012: plant identification task. In: CLEF (Online Working Notes/Labs/Workshop) (2012)
Cerutti, G., Antoine, V., Tougne, L., Mille, J., Valet, L., Coquin, D., Vacavant, A.: ReVeS participation: tree species classification using random forests and botanical features. In: Conference and Labs of the Evaluation Forum (2012)
Cerutti, G., Tougne, L., Mille, J., Vacavant, A., Coquin, D.: Understanding leaves in natural images: a model-based approach for tree species identification. Comput. Vis. Image Underst. 10(117), 1482–1501 (2013)
CORESTA, C.: A scale for coding growth stages in tobacco crops (2009). http://www.coresta.org/Guides/Guide-No07-Growth-Stages_Feb09.pdf
De Vylder, J., Ochoa, D., Philips, W., Chaerle, L., Van Der Straeten, D.: Leaf segmentation and tracking using probabilistic parametric active contours. In: International Conference on Computer Vision/Computer Graphics Collaboration Techniques, pp. 75–85 (2011)
De Vylder, J., Vandenbussche, F.J., Hu, Y., Philips, W., Van Der Straeten, D.: Rosette Tracker: an open source image analysis tool for automatic quantification of genotype effects. Plant Physiol. 160(3), 1149–1159 (2012)
Dellen, B., Scharr, H., Torras, C.: Growth signatures of rosette plants from time-lapse video. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1–11 (2015)
Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conferenced on Pattern Recognition, vol. 1, pp. 566–568 (1994)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Giuffrida, M.V., Minervini, M., Tsaftaris, S.A.: Learning to count leaves in rosette plants. In: Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP) Workshop, pp. 1.1–1.13. BMVA Press (2015)
Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)
Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S.J., Dauzat, M., Hamard, P., Thioux, J.J., Rolland, G., Bouchier-Combaud, S., Lebaudy, A., Muller, B., Simonneau, T., Tardieu, F.: PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169(3), 623–635 (2006)
Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., Schreiber, F.: HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform. 12(1), 148 (2011)
He, X., Gould, S.: An exemplar-based CRF for multi-instance object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 296–303 (2014)
Jansen, M., Gilmer, F., Biskup, B., Nagel, K., Rascher, U., Fischbach, A., Briem, S., Dreissen, G., Tittmann, S., Braun, S., Jaeger, I.D., Metzlaff, M., Schurr, U., Scharr, H., Walter, A.: Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36(10/11), 902–914 (2009)
Jin, J., Tang, L.: Corn plant sensing using real-time stereo vision. J. Field Robot. 26(6–7), 591–608 (2009)
Kalyoncu, C., Toygar, Ö.: Geometric leaf classification. Comput. Vis. Image Underst. 133, 102–109 (2015)
Klukas, C., Chen, D., Pape, J.M.: Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant Physiol. 165(2), 506–518 (2014)
Kurugollu, F., Sankur, B., Harmanci, A.E.: Color image segmentation using histogram multithresholding and fusion. Image Vis. Comput. 19(13), 915–928 (2001)
Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Int. Conf. Comput. Vis. (ICCV) 2, 416–423 (2001)
Mezaris, V., Kompatsiaris, I., Strintzis, M.: Still image objective segmentation evaluation using ground truth. In: 5th COST 276 Workshop, pp. 9–14 (2003)
Minervini, M., Abdelsamea, M.M., Tsaftaris, S.A.: Image-based plant phenotyping with incremental learning and active contours. Ecol. Inform. 23, 35–48 (2014). (Special Issue on Multimedia in Ecology and Environment)
Minervini, M., Fschbach, A., Scharr, H., Tsaftaris, S.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. (2015) (In press)
Minervini, M., Giuffrida, M.V., Tsaftaris, S.A.: An interactive tool for semi-automated leaf annotation. In: Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP) Workshop, pp. 6.1-6.13. BMVA Press (2015)
Minervini, M., Scharr, H., Tsaftaris, S.A.: Image analysis: the new bottleneck in plant phenotyping. IEEE Signal Process. Mag. 32(4), 126–131 (2015)
Müller-Linow, M., Pinto-Espinosa, F., Scharr, H., Rascher, U.: The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool. Plant Methods 11(1), 11 (2015)
Nagel, K., Putz, A., Gilmer, F., Heinz, K., Fischbach, A., Pfeifer, J., Faget, M., Blossfeld, S., Ernst, M., Dimaki, C., Kastenholz, B., Kleinert, A.K., Galinski, A., Scharr, H., Fiorani, F., Schurr, U.: GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct. Plant Biol. 39, 891–904 (2012)
Nieuwenhuis, C., Cremers, D.: Spatially varying color distributions for interactive multilabel segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1234–1247 (2013)
Pape, J.M., Klukas, C.: 3-D histogram-based segmentation and leaf detection for rosette plants. In: Computer Vision—ECCV 2014 Workshops, vol. 8928, pp. 61–74. Springer (2015)
Polak, M., Zhang, H., Pi, M.: An evaluation metric for image segmentation of multiple objects. Image Vis. Comput. 27(8), 1223–1227 (2009)
Pratt, W.K.: Digital Image Processing. Wiley-Interscience, New York, NY (1978)
Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang, S.: Image-based plant modeling. ACM Trans. Graph. 25(3), 599–604 (2006)
Riemenschneider, H., Sternig, S., Donoser, M., Roth, P.M., Bischof, H.: Hough regions for joining instance localization and segmentation. In: Computer Vision—ECCV 2012, vol. 7574, pp. 258–271. Springer (2012)
Scharr, H., Minervini, M., Fischbach, A., Tsaftaris, S.A.: Annotated image datasets of rosette plants. Tech. Rep. FZJ-2014-03837, Forschungszentrum Jülich GmbH, (2014). http://hdl.handle.net/2128/5848
Silva, L., Koga, M., Cugnasca, C., Costa, A.: Comparative assessment of feature selection and classification techniques for visual inspection of pot plant seedlings. Comput. Electron. Agric. 97, 47–55 (2013)
Soares, J.V.B., Jacobs, D.W.: Efficient segmentation of leaves in semi-controlled conditions. Mach. Vis. Appl. 24(8), 1623–1643 (2013)
Song, Y., Wilson, R., Edmondson, R., Parsons, N.: Surface modelling of plants from stereo images. In: Proceedings of the 6th International Conference on 3-D Digital Imaging and Modeling (3DIM ’07), pp. 312–319 (2007)
Teng, C.H., Kuo, Y.T., Chen, Y.S.: Leaf segmentation, classification, and three-dimensional recovery from a few images with close viewpoints. Opt. Eng. 50(3), 1–13 (2011)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)
van der Heijden, G., Song, Y., Horgan, G., Polder, G., Dieleman, A., Bink, M., Palloix, A., van Eeuwijk, F., Glasbey, C.: SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Funct. Plant Biol. 39(11), 870–877 (2012)
W3C: Portable network graphics (PNG) specification (2003)
Walter, A., Scharr, H., Gilmer, F., Zierer, R., Nagel, K.A., Ernst, M., Wiese, A., Virnich, O., Christ, M.M., Uhlig, B., Jünger, S., Schurr, U.: Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol. 174(2), 447–455 (2007)
Walter, A., Schurr, U.: The modular character of growth in Nicotiana tabacum plants under steady-state nutrition. J. Exp. Bot. 50(336), 1169–1177 (1999)
Wang, J., He, J., Han, Y., Ouyang, C., Li, D.: An adaptive thresholding algorithm of field leaf image. Comput. Electron. Agric. 96, 23–39 (2013)
Wu, B., Nevatia, R.: Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses. Int. J. Comput. Vis. 82(2), 185–204 (2009)
Yanikoglu, B., Aptoula, E., Tirkaz, C.: Automatic plant identification from photographs. Mach. Vis. Appl. 6(25), 1369–1383 (2014)
Yin, X., Liu, X., Chen, J., Kramer, D.M.: Multi-leaf alignment from fluorescence plant images. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 437–444 (2014)
Yin, X., Liu, X., Chen, J., Kramer, D.M.: Multi-leaf tracking from fluorescence plant videos. In: IEEE International Conference on Image Processing (ICIP), pp. 408–412 (2014)
Yin, X., Liu, X., Chen, J., Kramer, D.M.: Multi-Leaf Segmentation, Alignment and Tracking from Fluorescence Plant Videos. arXiv:1505.00353 (2015)
Ziou, D., Tabbone, S.: Edge detection techniques: an overview. Int. J. Pattern Recogn. Image Anal. 8(4), 537–559 (1998)
Acknowledgments
We would like to thank participants of the 2014 CVPPP workshop for comments and annotators that have contributed to this work.
Author contributions SAT coordinated this collation study. SAT and HS organized the original LSC challenge. SAT, HS, and MM, wrote the paper and performed analysis. All other authors have contributed methods, text, and results. All authors have approved the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Additional information
MM and SAT acknowledge a Marie Curie Action: “Reintegration Grant” (Grant #256534) of the EU’s Seventh Framework Programme (FP7/2007-2013). HS acknowledges funding from EU-FP7 no. 247947 (GARNICS). HS, JMP, and CK acknowledge the support of the German-Plant-Phenotyping Network, which is funded by the German Federal Ministry of Education and Research (Project Identification Number: 031A053). XY, XL, and DK acknowledge the support of US Department of Energy, Office of Science, Basic Energy Sciences Program (DE-FG02-91ER20021) and the MSU centre for Advanced Algal and Plant Phenotyping.
Rights and permissions
About this article
Cite this article
Scharr, H., Minervini, M., French, A.P. et al. Leaf segmentation in plant phenotyping: a collation study. Machine Vision and Applications 27, 585–606 (2016). https://doi.org/10.1007/s00138-015-0737-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-015-0737-3