A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice
<p>Location of the study areas in the city of Zhuzhou, Hunan Province, China.</p> "> Figure 2
<p>Rice under different stress levels obtained using the three indices at different growth stages. (<b>a1</b>–<b>f1</b>) The distributions of <span class="html-italic">CI<sub>red-edge</sub></span> under different stress levels at different growth stages; (<b>a2</b>–<b>f2</b>) the distributions of PSRI under different stress levels at different growth stages; (<b>a3</b>–<b>f3</b>) the distributions of HMSSI under different stress levels at different growth stages. Note: the pink zone represent the overlapping portion of different stress levels.</p> "> Figure 3
<p>Classification accuracies of multitemporal monitoring model for discriminating different stress levels at different growth stages. (<b>a</b>) User’s accuracy of multitemporal monitoring model; (<b>b</b>) producer’s accuracy of multitemporal monitoring model; (<b>c</b>) overall accuracy of multitemporal monitoring model; (<b>d</b>) kappa coefficient of multitemporal monitoring model.</p> "> Figure 4
<p>Variable importance of using multitemporal monitoring model based on whole growth stage.</p> "> Figure 5
<p>Spatial distributions of HMSSI at different growth stages. (<b>a</b>,<b>b</b>) Booting stage; (<b>c</b>,<b>d</b>) flowering stage; (<b>e</b>,<b>f</b>) mature stage.</p> "> Figure 5 Cont.
<p>Spatial distributions of HMSSI at different growth stages. (<b>a</b>,<b>b</b>) Booting stage; (<b>c</b>,<b>d</b>) flowering stage; (<b>e</b>,<b>f</b>) mature stage.</p> "> Figure 6
<p>Spatial distributions of stress levels using the multitemporal monitoring model. (<b>a</b>) Booting stage; (<b>b</b>) flowering stage; (<b>c</b>) mature stage.</p> "> Figure 7
<p>(<b>a</b>) Spatial distributions of stress levels using the multitemporal monitoring model at whole growth stage; (<b>b</b>) Spatial distributions of factories in the region.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sentinel-2 Images
2.3. Methods
2.3.1. Definition of HMSSI
2.3.2. Construction of the Multitemporal Monitoring Model
3. Results
3.1. Comparison of HMSSI with CIred-edge and PSRI
3.2. Performance of the Multitemporal Monitoring Model
3.3. Regional Evaluation of Heavy Metal Stress Using HMSSI and Multitemporal Monitoring Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, S.; Chen, B.M.; Lin, L. Soil Heavy Metal Pollution of Cultivated Land in China; Research of Soil & Water Conservation: Beijing, China, 2013. [Google Scholar]
- Shi, T.; Wang, J.; Chen, Y.; Wu, G. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 95–103. [Google Scholar] [CrossRef]
- Jin, M.; Liu, X.; Wu, L.; Liu, M. An improved assimilation method with stress factors incorporated in the wofost model for the efficient assessment of heavy metal stress levels in rice. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 118–129. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Chen, Y.; Wang, J.; Wu, G. Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice. J. Hazard. Mater. 2016, 308, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Steiger, B.V.; Webster, R.; Schulin, R.; Lehmann, R. Mapping heavy metals in polluted soil by disjunctive kriging. Environ. Pollut. 1996, 94, 205–215. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Dunagan, S.C.; Gilmore, M.S.; Varekamp, J.C. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapap.). Environ. Pollut. 2007, 148, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Liu, X.; Zhang, B. Evaluating heavy-metal stress levels in rice using a theoretical model of canopy-air temperature and leaf area index based on remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3232–3242. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Wu, G.; Xu, X. Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data—A case study along le’an river, China. Geospat. Inf. Sci. 2011, 14, 10–16. [Google Scholar] [CrossRef]
- Sanches, I.D.A.; Filho, C.R.S.; Kokaly, R.F. Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680 nm absorption feature with continuum removal. ISPRS J. Photogramm. Remote Sens. 2014, 97, 111–122. [Google Scholar] [CrossRef]
- Sridhar, B.B.M.; Vincent, R.K.; Roberts, S.J.; Czajkowski, K. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 676–681. [Google Scholar] [CrossRef]
- Cheng, S. Effects of heavy metals on plants and resistance mechanisms. Environ. Sci. Pollut. Res. 2003, 10, 256–264. [Google Scholar] [CrossRef]
- Droppa, M.; Horváth, G. The role of copper in photosynthesis. Crit. Rev. Plant Sci. 1990, 9, 111–123. [Google Scholar] [CrossRef]
- Jin, M.; Liu, X.; Wu, L.; Liu, M. Distinguishing heavy-metal stress levels in rice using synthetic spectral index responses to physiological function variations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 75–86. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Islam, M.N.; Miah, M.A.M.; Tasmen, A. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in bangladesh. Chemosphere 2007, 67, 1072. [Google Scholar] [CrossRef] [PubMed]
- Kastori, R.; Plesničar, M.; Sakač, Z.; Panković, D.; Arsenijević-Maksimović, I. Effect of excess lead on sunflower growth and photosynthesis. J. Plant Nutr. 1998, 21, 75–85. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green lai and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F.; Miehé, J.A. Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol. 2000, 148, 599–612. [Google Scholar] [CrossRef]
- Sampson, P.H.; Zarco-Tejada, P.J.; Mohammed, G.H.; Miller, J.R.; Noland, T.L. Hyperspectral remote sensing of forest condition: Estimating chlorophyll content in tolerant hardwoods. For. Sci. 2003, 49, 381–391. [Google Scholar]
- Horler, D.N.H.; Barber, J.; Darch, J.P.; Ferns, D.C.; Barringer, A.R. Approaches to detection of geochemical stress in vegetation. Adv. Space Res. 1983, 3, 175–179. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J.; Barringer, A.R. Red edge measurements for remotely sensing plant chlorophyll content. Adv. Space Res. 1983, 3, 273–277. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Colstoun, E.B.D.; Mcmurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sens. Environ. 2006, 106, 59–65. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [PubMed]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Varaprasad, B.; Daughtry, C.S.; Codling, E.E.; Hansen, D.J.; Susan, W.H.; Green, C.E. Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination. Int. J. Environ. Res. Public Health 2016, 13, 303. [Google Scholar] [CrossRef]
- Hui, W.; Zeng, L.; Sun, Y.; Zhang, J.; Guo, Q.; Sun, F.; Song, C.; Chen, J. Wheat canopy spectral reflectance feature response to heavy metal copper and zinc stress. Trans. Chin. Soc. Agric. Eng. 2017, 33, 171–176. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Lloret, P.; Munoz, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Dan, J.K.; Stoscheck, L. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sens. Environ. 2011, 115, 3640–3646. [Google Scholar] [CrossRef]
- Shoko, C.; Mutanga, O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS J. Photogramm. Remote Sens. 2017, 129, 32–40. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Laurin, G.V.; Puletti, N.; Hawthorne, W.; Liesenberg, V.; Corona, P.; Papale, D.; Chen, Q.; Valentini, R. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 2016, 176, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, R.L.; Moran, C.J. The americaview classification methods accuracy comparison project: A rigorous approach for model selection. Remote Sens. Environ. 2015, 170, 115–120. [Google Scholar] [CrossRef]
- Gomariz-Castillo, F.; Alonso-Sarría, F.; Cánovas-García, F. Improving classification accuracy of multi-temporal landsat images by assessing the use of different algorithms, textural and ancillary information for a mediterranean semiarid area from 2000 to 2015. Remote Sens. 2017, 9, 1058. [Google Scholar] [CrossRef]
- Clark, M.L. Comparison of simulated hyperspectral hyspiri and multispectral landsat 8 and Sentinel-2 imagery for multi-seasonal, regional land-cover mapping. Remote Sens. Environ. 2017, 200, 311–325. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Gitas, I.; Tsakiri-Strati, M. Estimating mediterranean forest parameters using multi seasonal landsat 8 oli imagery and an ensemble learning method. Remote Sens. Environ. 2017, 199, 154–166. [Google Scholar] [CrossRef]
- Small European Postal Administration Cooperation (SEPAC). Environmental Quality Standard for Soils; SEPAC: Bothell, WA, USA, 1995. [Google Scholar]
- Wang, Q.; Atkinson, P.M. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204, 31–42. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; Marnix, V.D.B. Using Sentinel-2 data for retrieving lai and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Drusch, M.; Bello, U.D.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Sylvander, S.; Huc, M.; Claverie, M.; Clesse, D.; Dechoz, C.; Lonjou, V.; Poulain, V. Spot-4 (take 5): Simulation of Sentinel-2 time series on 45 large sites. Remote Sens. 2015, 7, 12242–12264. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 403–411. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Zagajewski, B.; Tømmervik, H.; Bjerke, J.W.; Raczko, E.; Bochenek, Z.; Kłos, A.; Jarocińska, A.; Lavender, S.; Ziółkowski, D. Intraspecific differences in spectral reflectance curves as indicators of reduced vitality in high-arctic plants. Remote Sens. 2017, 9, 1289. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling water stress in a Shiraz Vineyard using hyperspectral imaging and machine learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef]
Study Areas | Cd | Hg | Pb | As | Pollution Level |
---|---|---|---|---|---|
A (27°49′ N, 113°04′ E) | 3.54 | 0.81 | 120.75 | 21.35 | High |
B (27°40′ N, 113°09′ E) | 2.31 | 0.24 | 91.05 | 17.34 | Medium |
C (27°47′ N, 113°10′ E) | 0.84 | 0.35 | 78.33 | 10.23 | Low |
Level II Soil quality standard * | 0.3 | 0.5 | 300 | 25 |
Sentinel-2 MSI Bands | Spatial Resolution (m) | Central Wavelength (nm) | Band Width (nm) |
---|---|---|---|
Band 1: Coastal Aerosol | 60 | 443 | 20 |
Band 2: Blue | 10 | 490 | 65 |
Band 3: Green | 10 | 560 | 35 |
Band 4: Red | 10 | 665 | 30 |
Band 5: Red-edge 1 | 20 | 705 | 15 |
Band 6: Red-edge 2 | 20 | 740 | 15 |
Band 7: Red-edge 3 | 20 | 783 | 20 |
Band 8: NIR | 10 | 842 | 115 |
Band 8A: NIR narrow | 20 | 865 | 20 |
Band 9: Water Vapor | 60 | 945 | 20 |
Band 10: SWIR Cirrus | 60 | 1375 | 30 |
Band 11: SWIR | 20 | 1610 | 90 |
Band 12: SWIR | 20 | 2190 | 180 |
Vegetation Indices | Growth Stage | High | Medium | Low |
---|---|---|---|---|
CIred-edge | Booting | 64% | 100% | 48% |
68% | 100% | 64% | ||
Flowering | 92% | 100% | 78% | |
99% | 100% | 72% | ||
Mature | 46% | 100% | 78% | |
40% | 88% | 86% | ||
PSRI | Booting | 50% | 100% | 74% |
52% | 100% | 50% | ||
Flowering | 54% | 100% | 78% | |
72% | 100% | 62% | ||
Mature | 70% | 100% | 80% | |
80% | 72% | 65% | ||
HMSSI | Booting | 17% | 35% | 8% |
8% | 32% | 5% | ||
Flowering | 6% | 28% | 3% | |
24% | 34% | 10% | ||
Mature | 18% | 18% | 26% | |
8% | 15% | 8% |
Growth Stage | Stress Levels | ||
---|---|---|---|
High | Medium | Low | |
Booting | 21.76% | 27.65% | 50.59% |
Flowering | 21.83% | 27.93% | 50.24% |
Mature | 21.65% | 28.17% | 50.18% |
Whole Growth | 20.68% | 28.45% | 50.87% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, M.; Liu, X.; Zhou, G. A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice. Sensors 2018, 18, 2172. https://doi.org/10.3390/s18072172
Zhang Z, Liu M, Liu X, Zhou G. A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice. Sensors. 2018; 18(7):2172. https://doi.org/10.3390/s18072172
Chicago/Turabian StyleZhang, Zhijiang, Meiling Liu, Xiangnan Liu, and Gaoxiang Zhou. 2018. "A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice" Sensors 18, no. 7: 2172. https://doi.org/10.3390/s18072172
APA StyleZhang, Z., Liu, M., Liu, X., & Zhou, G. (2018). A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice. Sensors, 18(7), 2172. https://doi.org/10.3390/s18072172