Characterization of the Use of Low Frequency Ultrasonic Guided Waves to Detect Fouling Deposition in Pipelines
<p>Dispersion curve for 6-inch schedule 40 carbon steel pipe cross section using DISPERSE software (solid lines) and GUIGUW software (dashed lines).</p> "> Figure 2
<p>(<b>a</b>) Schematic and (<b>b</b>) set-up of the UGW collar arrangement for the current investigation on a 6.2-m 6-inch schedule 40 carbon steel pipe for data collection using pitch-catch configuration.</p> "> Figure 3
<p>Fouling generation of 6.2-m 6-inch schedule 40 carbon steel pipe (<b>a</b>) schematic and (<b>b</b>) experimental set-up.</p> "> Figure 4
<p>Image of the inner wall of the 6.2-m 6-inch schedule 40 carbon steel pipe (<b>a</b>) displaying some corrosion before commencing fouling generation procedure and (<b>b</b>) after generating a layer of Calcite.</p> "> Figure 5
<p>Comparison of maximum receiving amplitude at different input frequencies.</p> "> Figure 6
<p>Received UGW signal for baseline and Calcite, displaying drop in amplitude.</p> "> Figure 7
<p>Experimental results—Comparison of maximum amplitude for baseline and Calcite signal at different number of signal cycles.</p> "> Figure 8
<p>Comparison of FEA pitch-catch signal at different operating frequencies.</p> "> Figure 9
<p>Comparison of FEA pitch-catch signal at different fouling thicknesses.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Fundamentals of Ultrasonic Guided Waves
2.2. Current State of the Art of Ultrasonic Guided Waves
2.3. Finite Element Analysis
3. Laboratory Experiment and Results
3.1. UGW Inspection
3.2. Fouling Generation
3.3. Experimental Results
4. Numerical Investigation
5. Numerical Results and Discussions
6. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paipetis, A.S.; Matikas, T.E.; Aggelis, D.G.; van Hemelrijck, D. Emerging Technologies in Non-Destructive Testing V; Imprint; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Yan, T.; Yan, W.X. Fouling of offshore structures in China-a review. Biofouling 2003, 19, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Ocean Team Group As. Available online: http://www.oceanteam.eu/ (accessed on 14 March 2017).
- Hilsonic. Available online: http://www.hilsonic.co.uk/ (accessed on 14 August 2017).
- Ultrawave. Available online: http://www.ultrawave.co.uk/ (accessed on 14 August 2017).
- Maddah, H.; Chogle, A. Biofouling in reverse osmosis: Phenomena, monitoring, controlling and remediation. Appl. Water Sci. 2016, 7, 2637–2651. [Google Scholar] [CrossRef]
- Lamminen, M.O. Ultrasonic Cleaning of Latex Particle Fouled Membranes. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2004. [Google Scholar]
- Flemming, H.-C. Reverse osmosis membrane biofouling. Exp. Therm. Fluid Sci. 1997, 14, 382–391. [Google Scholar] [CrossRef]
- Wallhäußer, E.; Hussein, M.; Becker, T. Detection methods of fouling in heat exchangers in the food industry. Food Control 2012, 27, 1–10. [Google Scholar] [CrossRef]
- Espinasse, B.; Bacchin, P.; Aimar, P. On an experimental method to measure critical flux in ultrafiltration. Desalination 2002, 146, 91–96. [Google Scholar] [CrossRef]
- Davies, T.; Henstridge, S.; Gillham, C.; Wilson, D. Investigation of whey protein deposit properties using heat flux sensors. Food Bioprod. Process. 1997, 75, 106–110. [Google Scholar] [CrossRef]
- Withers, P.M. Ultrasonic, acoustic and optical techniques for the non-invasive detection of fouling in food processing equipment. Trends Food Sci. Technol. 1996, 7, 293–298. [Google Scholar] [CrossRef]
- Hay, T.R.; Rose, J.L. Fouling detection in the food industry using ultrasonic guided waves. Food Control 2003, 14, 481–488. [Google Scholar] [CrossRef]
- Lohr, K.R.; Rose, J.L. Ultrasonic guided wave and acoustic impact methods for pipe fouling detection. J. Food Eng. 2003, 56, 315–324. [Google Scholar] [CrossRef]
- Rose, J.L.; Nagy, P.B. Ultrasonic waves in solid media. J. Acoust. Soc. Am. 2000, 107, 1807–1808. [Google Scholar] [CrossRef]
- Silk, M.; Bainton, K. The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves. Ultrasonics 1979, 17, 11–19. [Google Scholar] [CrossRef]
- Pavlakovic, B.; Lowe, M.; Alleyne, D.; Cawley, P. Disperse: A general purpose program for creating dispersion curves. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Berlin, Germany, 1997; pp. 185–192. [Google Scholar]
- Bocchini, P.; Marzani, A.; Viola, E. Graphical user interface for guided acoustic waves. J. Comput. Civ. Eng. 2010, 25, 202–210. [Google Scholar] [CrossRef]
- Lowe, W. Advances in Resolution and Sensitivity of Ultrasonic Guided Waves for Quantitative Inspection of Pipelines. Ph.D. Thesis, Brunel University, London, UK, 2016. [Google Scholar]
- Silva, J.; Queiroz, I.; Lima, A.; Neff, F.; Neto, J.R. Vibration analysis for fouling detection using hammer impact test and finite element simulation. In Proceedings of the Instrumentation and Measurement Technology Conference 2008, Victoria, BC, Canada, 12–15 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 636–640. [Google Scholar]
- Silva, J.; Silva, K.; Lima, A.; Neto, J.R. Fouling detection based on analysis of ultrasonic guided waves using wavelet transform. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 1187–1191. [Google Scholar]
- Silva, J.; Lima, A.M.; Neff, H.; Neto, J.S.R. Vibration analysis based on hammer impact for fouling detection using microphone and accelerometer as sensors. Sens. Transducers 2010, 112, 10–23. [Google Scholar]
- Teletest. Teletest Focus+. Available online: https://www.teletestndt.com/ (accessed on 21 June 2018).
- Rose, J.L. Standing on the shoulders of giants: An example of guided wave inspection. Mater. Eval. 2002, 60, 53–59. [Google Scholar]
- Mu, J.; Rose, J.L. Guided wave propagation and mode differentiation in hollow cylinders with viscoelastic coatings. J. Acoust. Soc. Am. 2008, 124, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Benmeddour, F.; Treyssède, F.; Laguerre, L. Numerical modeling of guided wave interaction with non-axisymmetric cracks in elastic cylinders. Int. J. Solids Struct. 2011, 48, 764–774. [Google Scholar] [CrossRef]
- Moser, F.; Jacobs, L.J.; Qu, J. Modeling elastic wave propagation in waveguides with the finite element method. NDT E Int. 1999, 32, 225–234. [Google Scholar] [CrossRef]
- Protopappas, V.C.; Kourtis, I.C.; Kourtis, L.C.; Malizos, K.N.; Massalas, C.V.; Fotiadis, D.I. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones. J. Acoust. Soc. Am. 2007, 121, 3907–3921. [Google Scholar] [CrossRef] [PubMed]
- Raišutis, R.; Kažys, R.; Žukauskas, E.; Mažeika, L.; Vladišauskas, A. Application of ultrasonic guided waves for non-destructive testing of defective CFRP rods with multiple delaminations. NDT E Int. 2010, 43, 416–424. [Google Scholar] [CrossRef]
- Bartoli, I.; di Scalea, F.L.; Fateh, M.; Viola, E. Modeling guided wave propagation with application to the long-range defect detection in railroad tracks. NDT E Int. 2005, 38, 325–334. [Google Scholar] [CrossRef]
- Zheng, M.; Lu, C.; Chen, G.; Men, P. Modeling three-dimensional ultrasonic guided wave propagation and scattering in circular cylindrical structures using finite element approach. Phys. Procedia 2011, 22, 112–118. [Google Scholar] [CrossRef]
- Ghose, B.; Balasubramaniam, K. Finite Element Modeling and Simulation of Ultrasonic Guided Wave Propagation using Frequency Response Analysis. In Proceedings of the 14th Asia-Pacific Conference on NDT, Mumbai, India, 18–22 November 2013. [Google Scholar]
- Stork. Available online: http://stork.com/ (accessed on 31 May 2018).
- Wilcox, P.; Lowe, M.; Cawley, P. The effect of dispersion on long-range inspection using ultrasonic guided waves. NDT E Int. 2001, 34, 1–9. [Google Scholar] [CrossRef]
- Lowe, P.S.; Sanderson, R.M.; Boulgouris, N.V.; Haig, A.G.; Balachandran, W. Inspection of cylindrical structures using the first longitudinal guided wave mode in isolation for higher flaw sensitivity. IEEE Sens. J. 2016, 16, 706–714. [Google Scholar] [CrossRef]
Supplier | UGW System | Method of Excitation | Operating Frequency Range | Inspection Range |
---|---|---|---|---|
Plant Integrity Ltd. (EddyFi) | Teletest® Focus+ | PZT array | 20–100 kHz | 60 m |
Guided Ultrasonic Ltd. | Wavemaker® G4 | PZT array | 15–80 kHz | 60 m |
Structural Integrity Associates Inc. | PowerFocus™ | PZT array | 20–85 kHz | 150 m |
Olympus corporation | UltraWave® LRT | PZT array | 15–85 kHz | 90 m |
Innerspec Technologies Inc. | Temate® MRUT | Magnetostrictive coils | 0.1–1 MHz | 1–5 m |
NDT-Consultant Ltd. | MsSR® 3030R | Magnetostrictive coils | 2–250 kHz | - |
Material Property | Carbon Steel | Calcite |
---|---|---|
Density | 7830 kg/m3 | 2700 kg/m3 |
Young’s Modulus | 207 GPa | 70 GPa |
Poisons ratio | 0.33 | 0.3 |
Torsional Group Velocity | Theoretical Time of Arrival at 4 m (µs) | COMSOL Pk-Pk Time of Arrival (µs) | Error % | |
---|---|---|---|---|
Baseline | 3152.56 | 1268.81 | 1282.60 | 1.09 |
1 mm | 3152.77 | 1268.73 | 1282.00 | 1.05 |
3 mm | 3153.12 | 1268.59 | 1281.80 | 1.04 |
5 mm | 3153.40 | 1268.47 | 1281.20 | 1.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lais, H.; Lowe, P.S.; Gan, T.-H.; Wrobel, L.C.; Kanfoud, J. Characterization of the Use of Low Frequency Ultrasonic Guided Waves to Detect Fouling Deposition in Pipelines. Sensors 2018, 18, 2122. https://doi.org/10.3390/s18072122
Lais H, Lowe PS, Gan T-H, Wrobel LC, Kanfoud J. Characterization of the Use of Low Frequency Ultrasonic Guided Waves to Detect Fouling Deposition in Pipelines. Sensors. 2018; 18(7):2122. https://doi.org/10.3390/s18072122
Chicago/Turabian StyleLais, Habiba, Premesh S. Lowe, Tat-Hean Gan, Luiz C. Wrobel, and Jamil Kanfoud. 2018. "Characterization of the Use of Low Frequency Ultrasonic Guided Waves to Detect Fouling Deposition in Pipelines" Sensors 18, no. 7: 2122. https://doi.org/10.3390/s18072122