Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning
<p>Stations used for precise orbit determination (POD) of BeiDou satellites. The green diamonds represent iGMAS stations and the black circles represent GA tracking stations. The blue and red lines indicate the trajectories of the BeiDou-2 and BeiDou-3e satellites, respectively.</p> "> Figure 2
<p>Multipath (MP) combinations for BeiDou-2 (C10, C14), BeiDou-3e (C31, C34), and GPS (G32) satellites with respect to elevation. For BeiDou satellites, MP1 and MP3 represent the B1 and B3 frequency MPs, respectively, whereas for global positioning satellites (GPS) (right column), MP1 and MP2 represent the L1 and L2 frequency MPs. Blue dots represent MP1 and red dots represent MP3/MP2.</p> "> Figure 3
<p>MP combinations for BeiDou-2 and BeiDou-3e satellites as a function of azimuth and elevation. The first and second columns represent BeiDou-2 inclined geosynchronous orbits (IGSOs) and medium Earth orbits (MEOs), respectively, the third column represents BeiDou-3e satellites, and the last column represents GPS satellites. The MP for the B1I and L1 signals is shown at the top and the MP for the B3I and L2 signals is shown at the bottom.</p> "> Figure 4
<p>BeiDou-2 satellite attitude control modes: yaw-steering (YS) (<b>a</b>) and orbit-normal (ON) (<b>b</b>). In YS mode, the satellite rotates around the z axis, and the x axis remains yawing all the time, while during the ON period, the x axis stops yawing and is consistent with the velocity throughout.</p> "> Figure 5
<p>Comparison of RMS values of orbit overlap before and after ambiguity fixing. The dark yellow and red bars represent real-valued ambiguity (float) and ambiguity fixed (fixed) solutions, respectively.</p> "> Figure 6
<p>SLR residuals for BeiDou-2 satellites (top) and BeiDou-3e satellites (bottom).</p> "> Figure 7
<p>STD values for BeiDou clock products using one-day overlaps between two adjacent arcs with the middle day in the first arc as a reference.</p> "> Figure 8
<p>Stations used for static and kinematic PPP. Black points represent four stations, TOMP, ALBY, HOB2, and STR1, which are located in Australia.</p> "> Figure 9
<p>Variations in number of satellites used and position dilution of precision (PDOP) values of GPS, GB114, GB134, B114 and B134 solutions for station STR1 on DOY 057, 2017.</p> "> Figure 10
<p>RMS values of precision for PPP in E, N, and U components at four stations (TOMP, ALBY, HOB2 and STR1) using five solutions compared with ground truth values.</p> "> Figure 11
<p>Average convergence times and RMS values for kinematic PPP at the TOMP, ALBY, HOB2 and STR1. The top panel shows the convergence times using five solutions, and the RMS values of the E, N, and U components are illustrated in the bottom panel.</p> ">
Abstract
:1. Introduction
2. Data Availability and Collection
3. Signal Performance
4. Precise Orbit Determination (POD)
4.1. POD Strategy
4.2. Orbit Validation
4.2.1. Orbit Overlap Comparisons
4.2.2. SLR Validation
4.3. Satellite Clock Offset Validation
5. Precise Point Positioning (PPP)
5.1. Static PPP Solutions
5.2. Kinematic PPP Solutions
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Acronym | Full Name |
ACs | Analysis Centers |
AR | Ambiguity Resolution |
CNES/CLS | Centre National d’Etudes Spatiales/Collecte de Localisation Satellite |
CODE | Center for Orbit Determination in Europe |
DOY | Day Of Year |
ECOM | Empirical CODE Orbit Model |
GA | Geoscience Australia |
GEO | GEostationary Orbit |
GFZ | GeoForschungsZentrum Potsdam |
GLONASS | GLObal Navigation Satellite System |
GPS | Global Positioning System |
HMW | Hatch–Melbourne–Wübbena combination |
IERS | International Earth Rotation Service |
iGMAS | international GNSS Monitoring and Assessment Service |
IGS | International GNSS Service |
IGSO | Inclined GeoSynchronous Orbit |
ILRS | International Laser Ranging Service |
ISL | Inter-Satellite Link |
JAXA | Japan Aerospace Exploration Agency |
LRA | Laser Retroreflector Array |
MEO | Medium Earth Orbit |
MGEX | Multi-GNSS Experiment Extension |
NL | Narrow-Lane |
NPs | Normal Points |
ON | Orbit-Normal |
PANDA | Position And Navigation Data Analyst software |
PCO | Phase Center Offset |
PCV | Phase Center Variation |
PDOP | Position Dilution Of Precision |
POD | Precise Orbit Determination |
PPP | Precise Point Positioning |
PRN | Pseudo Random Noise |
RMS | Root Mean Square |
SLR | Satellite Laser Ranging |
SRP | Solar Radiation Pressure |
STD | STandard Deviation |
TUM | Technische Universität München |
WHU | Wuhan University |
WL | Wide-Lane |
YS | Yaw-Steering |
ZTDs | Zenith Troposphere Delays |
References
- CSNO. Development Plan of bds. Available online: http://www.beidou.gov.cn/xt/gfxz/201712/P020171221335896007730.pdf (accessed on 12 September 2017).
- CSNO. Beidou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal (Version 2.1). Available online: http://www.beidou.gov.cn/xt/gfxz/201710/P020171202693088949056.pdf (accessed on 12 September 2017).
- CSNO. China’s BeiDou Navigation Satellite System. Available online: http://www.beidou.gov.cn/xt/gfxz/201712/P020171221333863515306.pdf (accessed on 12 September 2017).
- Hauschild, A.; Montenbruck, O.; Sleewaegen, J.M.; Huisman, L.; Teunissen, P.J.G. Characterization of Compass M-1 signals. GPS Solut. 2012, 16, 117–126. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Q.L.; Li, M.; Tang, W.M.; Hu, Z.G.; Lou, Y.D.; Zhang, H.P.; Niu, X.J.; Liu, J.N. Precise orbit determination of Beidou Satellites with precise positioning. Sci. China Earth Sci. 2012, 55, 1079–1086. [Google Scholar] [CrossRef]
- Wanninger, L.; Beer, S. BeiDou satellite-induced code pseudorange variations: Diagnosis and therapy. GPS Solut. 2014, 19, 639–648. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.L.; Zhao, Q.L.; Liu, J.N. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, X.H.; Wang, J.L.; Ren, X.D. Modeling and assessment of triple-frequency BDS precise point positioning. J. Geod. 2016, 90, 1223–1235. [Google Scholar] [CrossRef]
- Li, X.X.; Ge, M.R.; Dai, X.L.; Ren, X.D.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, G.; Liu, Z.; Hu, Z.; Dai, Z.; Liu, J. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations. Sensors 2016, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Wu, M.K.; Liu, W.K.; Li, X.X.; Yu, S.; Lu, C.X.; Wickert, J. Initial assessment of the COMPASS/BeiDou-3: New-generation navigation signals. J. Geod. 2017, 91, 1225–1240. [Google Scholar] [CrossRef]
- Song, X.; Mao, Y.; Feng, L.; Jia, X.; Ji, J. The Preliminary Result and Analysis for BD Orbit Determination with Inter-satellite Link Data. Acta Geodetica et Cartographica Sinica 2017, 46, 547–553. [Google Scholar]
- Tan, B.F.; Yuan, Y.B.; Wen, M.Y.; Ning, Y.F.; Liu, X.F. Initial Results of the Precise Orbit Determination for the New-Generation BeiDou Satellites (BeiDou-3) Based on the iGMAS Network. ISPRS Int. J. Geo-Inf. 2016, 5, 196. [Google Scholar] [CrossRef]
- Xie, X.; Geng, T.; Zhao, Q.; Liu, J.; Wang, B. Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination. Sensors 2017, 17, 1233. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, M.; Curran, J.; Fortuny, J. First Signals of BeiDou Phase 3 Acquired at Ispra, Italy. 21 August 2015. Available online: http://gpsworld.com/first-signals-of-beidou-phase-3-acquired-at-ispra-italy/ (accessed on 12 September 2017).
- Cameron, A. New BeiDou TMBOC Signal Tracked; Similar to Future GPS L1C Structure. Available online: http://gpsworld.com/new-beidou-tmboc-signal-tracked-similar-to-future-gps-l1c-structure/ (accessed on 12 September 2017).
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Khachikyan, R.; Weber, G.; Langley, R.; Mervart, L.; Hugentobler, U. IGS-MGEX: Preparing the ground for multi-constellation GNSS science. Inside GNSS 2014, 9, 42–49. [Google Scholar]
- Jiao, W. International GNSS Monitoring and Assessment System (iGMAS) and Latest Progress; China Satellite Navigation Conference (CSNC): Nanjing, China, 20 May 2014. [Google Scholar]
- Lou, Y.; Liu, Y.; Shi, C.; Yao, X.; Zheng, F. Precise orbit determination of BeiDou constellation based on BETS and MGEX network. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhao, Q.; Hu, Z.; Liu, J. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut. 2012, 17, 103–119. [Google Scholar] [CrossRef]
- Wang, G.; de Jong, K.; Zhao, Q.; Hu, Z.; Guo, J. Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut. 2014, 19, 129–139. [Google Scholar] [CrossRef]
- Estey, L.H.; Meertens, C.M. TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data. GPS Solut. 1999, 3, 42–49. [Google Scholar] [CrossRef]
- Jing-nan, L.; Mao-rong, G. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 8, 603–609. [Google Scholar] [CrossRef]
- Beutler, G.; Brockmann, E.; Gurtner, W.; Hugentobler, U.; Mervart, L.; Rothacher, M.; Verdun, A. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results. Manus. Geod. 1994, 19, 367–386. [Google Scholar]
- Zhao, Q.L.; Guo, J.; Li, M.; Qu, L.Z.; Hu, Z.G.; Shi, C.; Liu, J.N. Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J. Geod. 2013, 87, 475–486. [Google Scholar] [CrossRef]
- Bar-Sever, Y.E. A new model for GPS yaw attitude. J. Geod. 1996, 70, 714–723. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, Q.; Geng, T.; Su, X.; Liu, J. Precise Orbit Determination for COMPASS IGSO Satellites during Yaw Maneuvers. In China Satellite Navigation Conference (CSNC) 2013 Proceedings: Precise Orbit Determination & Positioning Atomic Clock Technique & Time–Frequency System Integrated Navigation & New Methods; Sun, J., Jiao, W., Wu, H., Shi, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 41–53. [Google Scholar]
- Dai, X.L.; Ge, M.R.; Lou, Y.D.; Shi, C.; Wickert, J.; Schuh, H. Estimating the yaw-attitude of BDS IGSO and MEO satellites. J. Geod. 2015, 89, 1005–1018. [Google Scholar] [CrossRef]
- Montenbruck, O.; Schmid, R.; Mercier, F.; Steigenberger, P.; Noll, C.; Fatkulin, R.; Kogure, S.; Ganeshan, A.S. GNSS satellite geometry and attitude models. Adv. Space Res. 2015, 56, 1015–1029. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Gendt, G.; Dick, G.; Zhang, F.P. Improving carrier-phase ambiguity resolution in global GPS network solutions. J. Geod. 2005, 79, 103–110. [Google Scholar] [CrossRef]
- Melbourne, W.G. The case for ranging in GPS-based geodetic systems. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985. [Google Scholar]
- Wübbena, G. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985. [Google Scholar]
- Hatch, R. The synergism of GPS code and carrier measurements. In Proceedings of the third international symposium on satellite doppler positioning, Physical Sciences Laboratory of New Mexico State University, Las Cruces, NM, USA, 8–12 February 1982. [Google Scholar]
- Geng, T.; Xie, X.; Zhao, Q.L.; Liu, X.L.; Liu, J.N. Improving BDS integer ambiguity resolution using satellite-induced code bias correction for precise orbit determination. GPS Solut. 2017, 21, 1191–1201. [Google Scholar] [CrossRef]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946–1975) 1973, 107, 13–34. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B.; Al, E. IERS Conventions (2010). IERS Tech. Note 2010, 36, 1–95. [Google Scholar]
- Bizouard, C.; Gambis, D. The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2005; Springer: Berlin/Heidelberg, Germany, 2009; pp. 265–270. [Google Scholar]
- Odijk, D.; Teunissen, P.J.G. Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solut. 2013, 17, 521–533. [Google Scholar] [CrossRef]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hugentobler, U. Enhanced solar radiation pressure modeling for Galileo satellites. J. Geod. 2014, 89, 283–297. [Google Scholar] [CrossRef]
- Hackel, S.; Steigenberger, P.; Hugentobler, U.; Uhlemann, M.; Montenbruck, O. Galileo orbit determination using combined GNSS and SLR observations. GPS Solut. 2014, 19, 15–25. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, Q.; Guo, X.; Liu, X.; Liu, J.; Zhou, Q. Quality assessment of onboard GPS receiver and its combination with DORIS and SLR for Haiyang 2A precise orbit determination. Sci. China Earth Sci. 2014, 58, 138–150. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, C.; Guo, J.; Liu, X. Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia-Pacific Region. Sensors 2015, 15, 29970–29983. [Google Scholar] [CrossRef] [PubMed]
Site | Location | Agency | Receiver Type | Antenna Type |
---|---|---|---|---|
ABJA | Nigeria, Abuja | iGMAS | gnss_ggr | RINT-8CH CETD |
GUA1 | China, Urumchi | iGMAS | gnss_ggr | RINT-8CH CETD |
HMNS | South Africa, Hermanus | iGMAS | gnss_ggr | RINT-8CH CETD |
BJF1 | China, Beijing | iGMAS | CETC-54-GMR-4016 | LEIAR25.R4 LEIT |
BRCH | Germany, Braunschweig | iGMAS | CETC-54-GMR-4011 | NOV750.R4 NOVS |
DWIN | Australia, Darwin | iGMAS | CETC-54-GMR-4011 | GNSS-750 NONE |
KNDY | Sri Lanka, Kandy | iGMAS | CETC-54-GMR-4016 | GNSS-750 NONE |
LHA1 | China, Lhasa | iGMAS | CETC-54-GMR-4016 | NOV750.R4 NOVS |
WUH1 | China, Wuhan | iGMAS | CETC-54-GMR-4016 | LEIAR25.R4 LEIT |
ZHON | Antarctica, Zhongshan Station | iGMAS | CETC-54-GMR-4011 | GNSS-750 NONE |
ALBY | Australia, Albany | GA | SEPT POLARX5 | JAVRINGANT_DM SCIS |
ARUB | Australia, Arubiddy | GA | SEPT POLARX5 | LEIAR25.R3 NONE |
CEDU | Australia, Ceduna | GA | SEPT POLARX5 | AOAD/M_T NONE |
DAV1 | Antarctica, Davis | GA | SEPT POLARX5 | LEIAR25.R3 LEIT |
HOB2 | Australia, Hobart | GA | SEPT POLARX5 | AOAD/M_T NONE |
KUNU | Australia, Kununurra | GA | SEPT POLARX5 | JAVRINGANT_DM SCIS |
MEDO | Australia, Meadow Station | GA | SEPT POLARX5 | LEIAR25.R3 LEIT |
NCLF | Australia, Northcliffe | GA | SEPT POLARX5 | JAVRINGANT_DM SCIS |
NORS | Australia, Norseman | GA | SEPT POLARX5 | JAVRINGANT_DM SCIS |
PTHL | Australia, Port Hedland | GA | SEPT POLARX5 | LEIAR25.R3 LEIT |
STR1 | Australia, Canberra | GA | SEPT POLARX5 | ASH701945C_M NONE |
THEV | Australia, Thevenard | GA | SEPT POLARX5 | LEIAR25.R3 LEIT |
TOMP | Australia, Tom Price | GA | SEPT POLARX5 | LEIAR25.R3 LEIT |
WILU | Australia, Wiluna | GA | SEPT POLARX5 | LEIAR25.R3 LEIT |
BeiDou-2 IGSO | BeiDou-2 MEO | BeiDou-3e IGSO | BeiDou-3e MEO | GPS | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B1 | B3 | B1 | B3 | B1 | B3 | B1 | B3 | L1 | L2 | |
Mean | 1.8 | 1.5 | 1.2 | 1.1 | 0.2 | 0.1 | −0.3 | 0.3 | −0.1 | −0.1 |
RMS | 40.7 | 23.8 | 52.5 | 30.3 | 33.1 | 21.9 | 29.9 | 26.0 | 34.1 | 34.3 |
Item | Model | Reference |
---|---|---|
Basic observations | Undifferenced ionosphere-free code and phase combination of B1I and B3I signals | |
Sampling interval | 300 s | |
Cutoff elevation | 10° | |
Arc length | 3 days | |
Weighting | Prior precision of phase and code observations is 2 cm and 2 m, respectively, and elevation-dependent data weighting | |
Satellite antenna phase center | C06-C14: PCO and PCV corrected with values estimated by Wuhan University (except C13); C31-C34: corrected with data supplied by BeiDou Operational Control Center (OCC) | [7] |
Tropospheric delay | Saastamoinen model, global mapping function, two-hourly ZTDs | [37,38] |
Relativity effect | Considered according to IERS Conventions 2010 | [39] |
Earth orientation parameters | Fixed according to IERS C04 | [40] |
Geopotential | EIGEN_GL04C up to degree 12 × 12 (European Improved Gravity model of the Earth by New techniques) | |
N-body gravitation | Sun, Moon, and other planets: JPL DE405 (Jet Propulsion Laboratory Development Ephemeris 405) ephemeris used | |
Solar radiation | ECOM five-parameter model with a constant acceleration bias in along-track direction | [28] |
Attitude model | Both YS and ON models for BeiDou-2; YS model only for BeiDou-3e |
PCO | |||
---|---|---|---|
X | Y | Z | |
C31 | −5 | 0 | 100 |
C32 | −4.5 | −30 | 250 |
C33 | −20 | 0 | 150 |
C34 | −20 | 0 | 150 |
Satellite Type | PRN | Along-Track | Cross-Track | Radial | 3D |
---|---|---|---|---|---|
BeiDou-2 GEO | C01 | 46.6 | 4.3 | 5.5 | 47.1 |
C02 | 51.8 | 4.7 | 6.0 | 52.4 | |
C03 | 61.1 | 3.2 | 5.7 | 61.4 | |
C04 | 71.7 | 6.7 | 5.8 | 72.2 | |
C05 | 73.4 | 8.0 | 7.6 | 74.2 | |
BeiDou-2 IGSO | C06 | 13.4 | 19.4 | 5.1 | 24.1 |
C07 | 14.0 | 13.2 | 4.8 | 19.9 | |
C08 | 14.8 | 15.5 | 4.8 | 21.9 | |
C09 | 15.5 | 18.7 | 5.4 | 24.9 | |
C10 | 14.8 | 13.3 | 4.4 | 20.4 | |
C13 | 14.9 | 16.9 | 4.8 | 23.0 | |
BeiDou-2 MEO | C11 | 17.3 | 12.8 | 4.8 | 22.0 |
C12 | 15.5 | 11.5 | 4.3 | 19.7 | |
C14 | 15.6 | 11.6 | 4.9 | 20.0 | |
BeiDou-3e IGSO | C31 | 21.5 | 15.7 | 6.5 | 27.4 |
C32 | 16.9 | 15.1 | 5.5 | 23.3 | |
BeiDou-3e MEO | C33 | 17.1 | 12.3 | 4.8 | 21.6 |
C34 | 20.2 | 15.1 | 5.5 | 25.8 |
SLR Offsets | |||
---|---|---|---|
X | Y | Z | |
C01 | −54.38 | −57.04 | 109.30 |
C08 | −40.03 | −57.30 | 109.34 |
C10 | −40.23 | −57.30 | 110.00 |
C11 | −37.54 | −53.80 | 110.00 |
C13 | −40.23 | −57.30 | 110.00 |
C31 | −95.91 | 18.13 | 63.76 |
C32 | 18.51 | 68.54 | 196.02 |
C33 | 61.21 | −7.17 | 122.90 |
C34 | 61.01 | −7.12 | 124.48 |
PRN | STD | MEAN | RMS | NP# | NP(U) | % |
---|---|---|---|---|---|---|
C01 | 20.0 | −18.9 | 27.5 | 305 | 305 | 100 |
C08 | 9.8 | −0.3 | 9.8 | 345 | 331 | 96 |
C10 | 8.3 | 0.8 | 8.4 | 270 | 256 | 95 |
C11 | 6.8 | −0.6 | 6.8 | 499 | 484 | 97 |
C13 | 6.2 | 0.7 | 6.2 | 293 | 293 | 100 |
C32 | 9.6 | −9.5 | 13.9 | 85 | 85 | 100 |
C33 | 3.8 | 8.1 | 8.9 | 33 | 33 | 100 |
C34 | 4.2 | 8.6 | 9.5 | 58 | 58 | 100 |
BeiDou-2 GEO | BeiDou-2 IGSO | BeiDou-2 MEO | BeiDou-3e IGSO | Beidou-3e MEO | ALL | |
---|---|---|---|---|---|---|
STD | 0.22 | 0.17 | 0.15 | 0.18 | 0.17 | 0.18 |
Solution | Description |
---|---|
GPS | GPS only |
GB114 | GPS and BeiDou PRN 1-14 |
GB134 | GPS and BeiDou PRN 1-14, 31-34 |
B114 | BeiDou PRN 1-14 |
B134 | BeiDou PRN 1-14, 31-34 |
Site | TOMP | ALBY | HOB2 | STR1 | Average | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sol. | E | N | U | E | N | U | E | N | U | E | N | U | E | N | U | |
GPS | 0.55 | 0.52 | 1.26 | 0.49 | 0.34 | 0.79 | 0.38 | 0.36 | 0.39 | 0.40 | 0.30 | 0.43 | 0.46 | 0.38 | 0.72 | |
GB114 | 0.37 | 0.46 | 1.06 | 0.62 | 0.37 | 0.90 | 0.37 | 0.30 | 0.48 | 0.41 | 0.20 | 0.59 | 0.44 | 0.33 | 0.76 | |
GB134 | 0.40 | 0.30 | 1.34 | 0.54 | 0.44 | 0.86 | 0.36 | 0.32 | 0.49 | 0.38 | 0.20 | 0.64 | 0.42 | 0.32 | 0.83 | |
B134 | 0.73 | 0.34 | 1.90 | 0.75 | 0.68 | 1.47 | 0.77 | 0.58 | 1.86 | 0.84 | 0.52 | 1.79 | 0.77 | 0.53 | 1.76 | |
B114 | 0.71 | 0.53 | 1.41 | 0.91 | 0.59 | 1.76 | 1.25 | 0.49 | 1.84 | 0.87 | 0.47 | 1.61 | 0.94 | 0.52 | 1.66 |
Site | TOMP | ALBY | HOB2 | STR1 | Average | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sol. | E | N | U | E | N | U | E | N | U | E | N | U | E | N | U | Con. Time | |
GPS | 1.81 | 1.26 | 2.23 | 1.81 | 1.25 | 2.23 | 1.77 | 1.22 | 2.20 | 1.79 | 1.23 | 2.23 | 1.79 | 1.24 | 2.22 | 36 | |
GB114 | 1.84 | 1.28 | 2.24 | 1.90 | 1.33 | 2.29 | 1.88 | 1.32 | 2.26 | 1.87 | 1.29 | 2.24 | 1.87 | 1.30 | 2.26 | 18.5 | |
GB134 | 1.91 | 1.27 | 2.32 | 1.88 | 1.29 | 2.34 | 1.86 | 1.25 | 2.32 | 1.88 | 1.32 | 2.33 | 1.88 | 1.28 | 2.33 | 13.5 | |
B134 | 2.42 | 1.75 | 3.68 | 2.48 | 1.83 | 3.61 | 2.50 | 1.83 | 3.78 | 2.48 | 1.81 | 3.94 | 2.47 | 1.80 | 3.75 | 43.5 | |
B114 | 2.56 | 2.00 | 3.93 | 2.59 | 2.03 | 3.97 | 2.64 | 2.07 | 4.20 | 2.62 | 2.05 | 4.45 | 2.60 | 2.04 | 4.14 | 46 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Li, M.; Li, W.; Liu, J. Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning. Sensors 2018, 18, 135. https://doi.org/10.3390/s18010135
Xu X, Li M, Li W, Liu J. Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning. Sensors. 2018; 18(1):135. https://doi.org/10.3390/s18010135
Chicago/Turabian StyleXu, Xiaolong, Min Li, Wenwen Li, and Jingnan Liu. 2018. "Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning" Sensors 18, no. 1: 135. https://doi.org/10.3390/s18010135
APA StyleXu, X., Li, M., Li, W., & Liu, J. (2018). Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning. Sensors, 18(1), 135. https://doi.org/10.3390/s18010135