Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination
<p>Ground traces of BDS-3 satellites and distribution of the tracking stations used in this study. Stations capable of tracking BDS-3 satellites are marked in blue. The other stations are marked in red.</p> "> Figure 2
<p>Mean RMS values of the station-specific post-fit residuals of ionosphere-free linear combination of B1 and B3 code and phase observations for BDS-2 and BDS-3 satellites. I(2) and M(2) represent BDS-2 IGSO (C06, C07, C08, C09, C10) and MEO (C11, C12, C14) satellites, and I(3) and M(3) represent BDS-3 IGSO (C31, C32) and MEO (C33, C34) satellites, respectively.</p> "> Figure 3
<p>Mean C/N0 values as a function of elevation for BDS-2 and BDS-3 IGSO and MEO satellites signals at site BJF1 equipped with GMR-4011 receiver with LEIAR25.R4 antenna (left) and site KUNU equipped with POLARX5 receiver with JAVRINGANT_DM antenna (right) during DOY 204-221, 2016. The upper and bottom panels show the results of B1 and B3 frequencies, respectively.</p> "> Figure 4
<p>MP combinations of BDS-2 (red) and BDS-3 (blue) B1 frequency as a function of time and a function of elevation angle for IGSO (<b>a</b>), and MEO (<b>b</b>) satellites at station BJF1. The olive lines represent corresponding satellite elevation.</p> "> Figure 5
<p>MP combinations of BDS-2 (red) and BDS-3 (blue) B3 frequency as a function of time and a function of elevation angle for (<b>a</b>) IGSO, and (<b>b</b>) MEO satellites at station BJF1.</p> "> Figure 6
<p>Mean and standard deviation (std) of MP combinations as a function of elevation for BDS-2 and BDS-3 IGSO and MEO satellites signals at stations BJF1 (left) and KUNU (right) during DOY 204-221, 2016. The upper and bottom panels show the results for B1 and B3, respectively. I(2) and M(2) represent BDS-2 IGSO (C06, C07, C08, C09, C10) and MEO (C11, C12, C14) satellites, and I(3) and M(3) represent BDS-3 IGSO (C31, C32) and MEO (C33, C34) satellites.</p> "> Figure 7
<p>RMS values of 48-h orbit overlap errors for four BDS-3 satellites in along-track, across-track, and radial directions during the period of the experiment.</p> "> Figure 8
<p>Modified Allan deviation of BDS-3 (C31–C34) satellite clocks for the time period DOY 204–223 (2016). For comparison purposes, the performance of the BDS-2 satellite clocks is also shown in the plot. G(2), I(2) and M(2) represent BDS-2 GEO (C01–C05 ), IGSO (C06–C10) and MEO (C11, C12, C14) satellites, and I(3) and M(3) represent BDS-3 IGSO (C31, C32) and MEO (C33, C34) satellites, respectively.</p> ">
Abstract
:1. Introduction
2. GNSS Processing
2.1. Data Collection
2.2. POD Strategy
2.3. Post-Fit Residuals
3. Results
3.1. Measurement Quality Analysis
3.1.1. Carrier-to-Noise Density Ratio
3.1.2. Multipath Combination
3.2. Orbit Validation
3.3. Clock Performance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- The State Council Information Office. China’s BeiDou Navigation Satellite System. Available online: http://www.beidou.gov.cn/attach/beidou/China's%20BeiDou%20Navigation%20Satellite%20System(English).pdf (accessed on 12 December 2016).
- Yang, Y. Progress, Contribution and Challenges of Compass/Beidou Satellite Navigation System. Acta Geod. Cartogr. Sin. 2010, 39, 1–6. [Google Scholar]
- China Satellite Navigation Office (CSNO). BeiDou Navigation Satellite System Signal in Space Interface Control Document, Open Service Signal (Version 2.1). Available online: http://www.beidou.gov.cn/attach/2016/11/07/21212.pdf (accessed on 10 December 2016).
- Yang, Y.; Li, J.; Xu, J.; Tang, J.; Guo, H.; He, H. Contribution of the Compass satellite navigation system to global PNT users. Chin. Sci. Bull. 2011, 56, 2813–2819. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O.; Sleewaegen, J.M.; Huisman, L.; Teunissen, P. Characterization of Compass M-1 signals. GPS Solut. 2012, 16, 117–126. [Google Scholar] [CrossRef]
- Wang, G.; de Jong, K.; Zhao, Q.; Hu, Z.; Guo, J. Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut. 2014, 19, 129–139. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P.; Hugentobler, U.; Teunissen, P.; Nakamura, S. Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut. 2012, 17, 211–222. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Li, M.; Qu, L.; Hu, Z.; Shi, C.; Liu, J. Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J. Geod. 2013, 87, 475–486. [Google Scholar] [CrossRef]
- Lou, Y.; Liu, Y.; Shi, C.; Yao, X.; Zheng, F. Precise orbit determination of BeiDou constellation based on BETS and MGEX network. Sci. Rep. 2014, 4, 4692. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lou, Y.; Liu, J.; Zhao, Q.; Su, X. Analysis of BDS satellite clocks in orbit. GPS Solut. 2015, 20, 783–794. [Google Scholar] [CrossRef]
- Steigenberger, P.; Hugentobler, U.; Hauschild, A.; Montenbruck, O. Orbit and clock analysis of Compass GEO and IGSO satellites. J. Geod. 2013, 87, 515–525. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O.; Steigenberger, P. Short-term analysis of GNSS clocks. GPS Solut. 2012, 17, 295–307. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Q.; Hu, Z.; Liu, J. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut. 2013, 17, 103–119. [Google Scholar] [CrossRef]
- Li, M.; Qu, L.; Zhao, Q.; Guo, J.; Su, X.; Li, X. Precise point positioning with the BeiDou navigation satellite system. Sensors 2014, 14, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhao, Q.; Li, M.; Tang, W.; Hu, Z.; Lou, Y.; Zhang, H.; Niu, X.; Liu, J. Precise orbit determination of Beidou Satellites with precise positioning. Sci. China Earth Sci. 2012, 55, 1079–1086. [Google Scholar] [CrossRef]
- Ge, M.; Zhang, H.; Jia, X.; Song, S.; Wickert, J. What Is Achievable with the Current Compass Constellation? GPS World 2012, 11, 29–34. [Google Scholar]
- Gisbert, J.V.P.; Batzilis, N.; Risueño, G.L.; Rubio, J.A. GNSS payload and signal characterization using a 3 m dish antenna. In Proceedings of the ION GNSS 2012, Nashville, TN, USA, 17–21 September 2012; pp. 347–356. [Google Scholar]
- Montenbruck, O.; Chris, R.; Robert, W.; Georg, W.; Ruth, N.; Urs, H. Getting a Grip on Multi-GNSS the International GNSS Service MGEX Campaign. GPS World 2013, 24, 44–49. [Google Scholar]
- Wanninger, L.; Beer, S. BeiDou satellite-induced code pseudorange variations: Diagnosis and therapy. GPS Solut. 2015, 19, 639–648. [Google Scholar] [CrossRef]
- Geng, T.; Xie, X.; Zhao, Q.; Liu, X.; Liu, J. Improving BDS integer ambiguity resolution using satellite-induced code bias correction for precise orbit determination. GPS Solut. 2017. [Google Scholar] [CrossRef]
- Chen, J.; Hu, X.; Tang, C.; Zhou, S.; Guo, R.; Pan, J.; Li, R.; Zhu, L. Orbit determination and time synchronization for new-generation Beidou satellites: Preliminary results. SCIENTIA SINICA Phys. Mech. Astron. 2016, 46, 1–11. [Google Scholar]
- Xiao, W.; Liu, W.; Sun, G. Modernization milestone: BeiDou M2-S initial signal analysis. GPS Solut. 2015, 20, 125–133. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2015, 90, 143–159. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Khachikyan, R.; Weber, G.; Langley, R.B.; Mervart, L.; Hugentobler, U. IGS-MGEX: Preparing the ground for multi-constellation GNSS science. Inside GNSS 2014, 9, 42–49. [Google Scholar]
- Liu, J.; Ge, M. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 8, 603–609. [Google Scholar]
- Wu, J.; Wu, S.; Hajj, G.; Bertiger, W.; Lichten, S. Effects of antenna orientation on GPS carrier phase. Manuscr. Geod. 1992, 18, 91–98. [Google Scholar]
- Saastamoinen, J. Atmospheric Correction for Troposphere and Stratosphere in Radio Ranging of Satellites. Geophys. Monogr. Ser. 1972, 15, 247–251. [Google Scholar]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- McCarthy, D.D.; Petit, G. IERS Conventions 2003 (IERS Technical Note No. 32); International Earth Rotation and Reference Systems Service (IERS): Frankfurt, Germany, 2003. [Google Scholar]
- Springer, T.A.; Beutler, G.; Rothacher, M. A new solar radiation pressure model for GPS. GPS Solut. 1999, 2, 50–62. [Google Scholar] [CrossRef]
- Estey, L.H.; Meertens, C.M. TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data. GPS Solut. 1999, 3, 42–49. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, G.; Liu, Z.; Hu, Z.; Dai, Z.; Liu, J. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations. Sensors 2016, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, M.R.; Degnar, J.J.; Bosworth, J.M. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Epstein, M.; Dass, T.; Rajan, J.; Gilmour, P. Long-term clock behavior of GPS IIR satellites. In Proceedings of the 39th Precise Time and Time Interval Meeting, Long Beach, CA, USA, 26–29 November 2007; pp. 59–78. [Google Scholar]
- Prange, L.; Orliac, E.; Dach, R.; Arnold, D.; Beutler, G.; Schaer, S.; Jäggi, A. CODE’s five-system orbit and clock solution—The challenges of multi-GNSS data analysis. J. Geod. 2017, 91, 345–360. [Google Scholar] [CrossRef]
- Hatch, R. The synergism of GPS code and carrier measurements. In Proceedings of the Third International Symposium on Satellite Doppler Positioning at Physical Sciences Laboratory of New Mexico State University, Las Cruces, NM, USA, 8–12 February 1982; pp. 1213–1231. [Google Scholar]
- Melbourne, W.G. The case for ranging in GPS-based geodetic systems. In Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 373–386. [Google Scholar]
- Wübbena, G. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 403–412. [Google Scholar]
Satellite | PRN | Type | Launch Date | Carrier Rocket | Mean Longitude (Inclination) |
---|---|---|---|---|---|
I1S | C31 | IGSO | 30 March 2015 | Long March-3C | 92.8° E (55.5°) |
I2S | C32 | IGSO | 29 September 2015 | Long March-3B | 96.5° E (55.5°) |
M1S | C33 | MEO | 25 July 2015 | Long March-3B | (55.5°) |
M2S | C34 | MEO | 25 July 2015 | Long March-3B | (55.5°) |
M3S | C35 | MEO | 1 February 2016 | Long March-3C | (55.5°) |
Abb. | Location | Country | Receiver | Antenna |
---|---|---|---|---|
BJF1 | Beijing | China | CETC-54 GMR-4011 | LEIAR25.R4 LEIT |
BRCH | Braunschweig | Germany | CETC-54 GMR-4011 | LEIAR25.R4 LEIT |
CLGY | Calgary | Canada | CETC-54 GMR-4011 | LEIAR25.R4 LEIT |
GUA1 | Urumqi | China | GNSS_GGR | RINT-8CH CETD |
LHA1 | Lhasa | China | CETC-54 GMR-4011 | NOV750.R4 NOVS |
TAHT | Tahiti | France | GNSS_GGR | RINT-8CH CETD |
WUH1 | Wuhan | China | CETC-54 GMR-4011 | LEIAR25.R4 LEIT |
ZHON | Antarctica | United Nations | CETC-54 GMR-4011 | LEIAR25.R4 LEIT |
FROY | Fitzroy Crossing | Australia | SEPT POLARX5 | LEIAR25.R3 LEIT |
KUNU | Kununurra | Australia | SEPT POLARX5 | JAVRINGANT_DM SCIS |
WLAL | Wallal | Australia | SEPT POLARX5 | LEIAR25.R3 LEIT |
Item | Models |
---|---|
Basic observable | B1 and B3 code and phase observations of BDS-2 and BDS-3 |
Modeled observable | Ionospheric-free linear combination |
Sampling rate | 300 s |
Elevation cutoff | 10° |
Weighting | A priori precision of 0.002 m and 2.0 m for raw phase and code observables, respectively, and elevation-dependent data weighting |
Phase wind up | Phase polarization effects applied [26] |
Tropospheric delay | Saastamoinen model [27], global mapping function [28], two-hourly ZTD without gradients |
Tide displacement | Solid Earth tide, pole tide, ocean tide loading; according to IERS Conventions 2003 [29] |
Relativity effect | Considered according to IERS Conventions 2003 [29] |
Geopotential | EIGEN_GL04C up to 12 × 12 degree |
N-body gravitation | Sun, Moon, and other planets; JPL DE405 ephemeris used |
Solar radiation | ECOM 5-parameter model [30] |
Satellite | Along | Cross | Radial | 3D | |
---|---|---|---|---|---|
IGSO | C31 | 36.1 | 18.6 | 5.9 | 41.1 |
C32 | 21.9 | 11.8 | 5.9 | 25.6 | |
MEO | C33 | 54.3 | 28.1 | 14.2 | 62.8 |
C34 | 40.4 | 23.1 | 12.6 | 48.2 | |
BDS-2 GEO | 224.0 | 8.1 | 7.1 | 224.2 | |
BDS-2 IGSO | 17.9 | 11.2 | 4.6 | 21.6 | |
BDS-2 MEO | 10.3 | 6.2 | 2.8 | 12.3 |
Satellite | Along | Cross | Radial | 3D | |
---|---|---|---|---|---|
IGSO | C31 | 46.9 | 38.1 | 8.3 | 61.0 |
C32 | 38.7 | 34.5 | 7.5 | 52.4 | |
MEO | C33 | 53.9 | 27.2 | 15.1 | 62.2 |
C34 | 50.4 | 37.0 | 14.1 | 64.1 | |
BDS-2 IGSO | 41.7 | 29.4 | 7.2 | 51.5 | |
BDS-2 MEO | 41.4 | 29.7 | 9.3 | 51.8 |
Satellite | # NP | Mean (cm) | STD (cm) | RMS (cm) |
---|---|---|---|---|
C31 | 4 | −19.6 | 0.4 | 19.6 |
C32 | 20 | 25.0 | 10.7 | 27.1 |
C33 | 21 | 9.8 | 18.3 | 20.7 |
C34 | 6 | −3.3 | 10.4 | 10.9 |
MADEV | BDS-2 GEO | BDS-2 IGSO | BDS-2 MEO | BDS-3 IGSO | BDS-3 MEO |
---|---|---|---|---|---|
1000 s | |||||
10,000 s | |||||
1 day |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Geng, T.; Zhao, Q.; Liu, J.; Wang, B. Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination. Sensors 2017, 17, 1233. https://doi.org/10.3390/s17061233
Xie X, Geng T, Zhao Q, Liu J, Wang B. Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination. Sensors. 2017; 17(6):1233. https://doi.org/10.3390/s17061233
Chicago/Turabian StyleXie, Xin, Tao Geng, Qile Zhao, Jingnan Liu, and Bin Wang. 2017. "Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination" Sensors 17, no. 6: 1233. https://doi.org/10.3390/s17061233
APA StyleXie, X., Geng, T., Zhao, Q., Liu, J., & Wang, B. (2017). Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination. Sensors, 17(6), 1233. https://doi.org/10.3390/s17061233