Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism
<p>Hierarchical layered structure of tactile sensation and physical measures.</p> "> Figure 2
<p>Cross-sectional structure types of door armrest samples.</p> "> Figure 3
<p>Experimental apparatus for measuring vibration.</p> "> Figure 4
<p>Measurement of bulk displacement.</p> "> Figure 5
<p>Measurement of thermal property.</p> "> Figure 6
<p>Experimental apparatus for measuring frictional force.</p> "> Figure 7
<p>Multiple regression analysis result.</p> "> Figure 8
<p>Comparison between actual and estimated scores.</p> ">
Abstract
:1. Introduction
2. Concept
3. Subjective Responses of Samples
3.1. Method
3.2. Principal Component Analysis
4. Data Collection of Physical Measures
4.1. Vibration
4.2. Bulk Displacement
4.3. Thermal Property
4.4. Friction Force
5. Correlation between Subjective Responses and Physical Measures
6. Verification Experiment
7. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Citrin, A.V.; Stem, D.E.; Spangenberg, E.R.; Clark, M.J. Consumer need for tactile input. J. Bus. Res. 2003, 56, 915–922. [Google Scholar] [CrossRef]
- McCabe, D.B.; Nowlis, S.M. The effect of examining actual products or product descriptions on consumer preference. J. Consum. Psychol. 2003, 13, 431–439. [Google Scholar] [CrossRef]
- Peck, J.; Childers, T.L. To have and to hold: The influence of haptic information on product judgments. J. Mark. 2003, 67, 35–48. [Google Scholar] [CrossRef]
- Nishimatsu, T.; Takahashi, T.; Kanai, H.; Ishizawa, H.; Matsumoto, Y.; Toba, E. Influence of combination of covering fabrics and seat pad on sitting comfort of automotive seat. J. Text. Mach. Soc. Jpn. 2004, 57, T67–T72. [Google Scholar] [CrossRef]
- Shen, Y.; Pomeory, C.; Xi, N.; Chen, Y. Quantification and verification of automobile interior textures by a high performance tactile-haptic interface. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October 2006; pp. 3773–3778. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory evaluation of food. In Sensory Evaluation of Food—Principles and Practices; Food Science Text Series; Springer: New York, NY, USA, 2010; pp. 433–449. [Google Scholar]
- Klatzky, R.L.; Pawluk, D.; Peer, A. Haptic perception of material properties and implications for applications. Proc. IEEE 2013, 101, 2081–2092. [Google Scholar]
- Lederman, S.J.; Klatzky, R.L. Haptic perception: A tutorial. Atten. Percept. Psychophys. 2009, 71, 1439–1459. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.C.; Marks, L.E. Spatial summation of cold. Physiol. Behav. 1979, 22, 541–547. [Google Scholar] [CrossRef]
- Frisoli, A.; Solazzi, M.; Reiner, M.; Bergamasco, M. The contribution of cutaneous and kinesthetic sensory modalities in haptic perception of orientation. Brain Res. Bull. 2011, 85, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Asaga, E.; Takemura, K.; Maeno, T.; Ban, A.; Toriumi, M. Tactile evaluation based on human tactile perception mechanism. Sens. Actuators A Phys. 2013, 203, 69–75. [Google Scholar] [CrossRef]
- Pan, N. Quantification and evaluation of human tactile sense towards fabrics. Int. J. Des. Nat. 2007, 1, 48–60. [Google Scholar]
- Kitaguchi, S.; Kumazawa, M.; Morita, H.; Endo, M.; Sato, T.; Sukigara, S. Fabric hand, quality, aesthetic and preference of textiles through sensory evaluation. J. Text. Eng. 2015, 61, 31–39. [Google Scholar] [CrossRef]
- Alimaa, D.; Matsuo, T.; Nakajima, M.; Takahashi, M. Sensory measurements of the main mechanical parameters of knitted fabrics. Text. Res. J. 2000, 70, 985–990. [Google Scholar] [CrossRef]
- Nishimatsu, T.; Hayakawa, H.; Shimizu, Y.; Toba, E. Influence of top coated cloth for sitting comfort of car driver’s seat. In Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, Baltimore, MD, USA, 1–4 May 2000; Volume 2, pp. 915–919. [Google Scholar]
- Hatta, K.; Ueno, Y.; Nagashima, H. Study on the cushion characteristics of automobile seats. (Part 1) Preference survey in static conditions. Jpn. J. Ergon. 1987, 23, 173–180. [Google Scholar] [CrossRef]
- Tada, M.; Nisimatsu, T.; Toba, E. Relation between seat shape and sitting comfort evaluation on car driver’s seat. Sen’i Gakkaishi 1999, 55, 432–439. [Google Scholar] [CrossRef]
- Matsubara, Y.; Nagamachi, M. Hybrid kansei engineering system and design support. Int. J. Ind. Ergon. 1997, 19, 81–92. [Google Scholar] [CrossRef]
- Nagamachi, M. Kansei engineering: The implication and applications to product development. In Proceedings of the 1999 IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan, 12–15 October 1999; Volume 6, pp. 273–278. [Google Scholar]
- Guest, S.; Dessirier, J.M.; Mehrabyan, A.; McGlone, F.; Essick, G.; Gescheider, G.; Fontana, A.; Xiong, R.; Ackerley, R.; Blot, K. The development and validation of sensory and emotional scales of touch perception. Atten. Percept. Psychophys. 2011, 73, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Barnes, C.J.; Childs, T.H.C.; Henson, B.; Shao, F. Materials’ tactile testing and characterisation for consumer products’ affective packaging design. Mater. Des. 2009, 30, 4299–4310. [Google Scholar] [CrossRef]
- Okamoto, S.; Nagano, H.; Kidoma, K.; Yamada, Y. Specification of individuality in causal relationships among texture-related attributes, emotions, and preferences. Int. J. Affect. Eng. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Niwa, M. Hand evaluation by instrumentation. J. Text. Mach. Soc. Jpn. 1975, 28, 503–518. [Google Scholar] [CrossRef]
- Barnes, C.J.; Childs, T.H.C.; Henson, B.; Southee, C.H. Surface finish and touch—A case study in a new human factors tribology. Wear 2004, 257, 740–750. [Google Scholar] [CrossRef]
- Klöcker, A.; Oddo, C.M.; Camboni, D.; Penta, M.; Thonnard, J.-L. Physical factors influencing pleasant touch during passive fingertip stimulation. PLoS ONE 2014, 9, e101361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.M.; Lederman, S.J.; Gibson, R.H. Tactual perception of texture. In Handbook of Perception; Carterette, E., Friedman, M., Eds.; Academic Press: New York, NY, USA, 1973; Volume III, pp. 251–271. [Google Scholar]
- Kringelbach, M.L. The human orbitofrontal cortex: Linking reward to hedonic experience. Nat. Rev. Neurosci. 2005, 6, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Nagano, H.; Okamoto, S.; Yamada, Y. Semantically layered structure of tactile textures. In Proceedings of the International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Versailles, France, 24–26 June 2014; Volume 8618, pp. 3–9. [Google Scholar]
- Bergmann Tiest, W.M. Tactual perception of material properties. Vis. Res. 2010, 50, 2775–2782. [Google Scholar] [CrossRef] [PubMed]
- Lederman, S.J.; Loomis, J.M.; Williams, D.A. The role of vibration in the tactual perception of roughness. Percept. Psychophys. 1982, 32, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Bergmann Tiest, W.M.; Kappers, A.M.L. Cues for haptic perception of compliance. IEEE Trans. Haptics 2009, 2, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Businger, J.A.; Buettner, K.J.K. Thermal contact coefficient (A term proposed for use in heat transfer). J. Meteorol. 1961, 18, 422. [Google Scholar] [CrossRef]
- Provancher, W.R.; Sylvester, N.D. Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans. Haptics 2009, 2, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Tuorila, H.; Huotilainen, A.; Lähteenmäki, L.; Ollila, S.; Tuomi-Nurmi, S.; Urala, N. Comparison of affective rating scales and their relationship to variables reflecting food consumption. Food Qual. Prefer. 2008, 19, 51–61. [Google Scholar] [CrossRef]
- Cantin, I.; Dubé, L. Attitudinal moderation of correlation between food liking and consumption. Appetite 1999, 32, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Asaga, E. Development of Tactile Evaluation Method Based on Human Tactile Perception Mechanism. Master Thesis, Keio University, Minato, Japan, 2012. (In Japanese). [Google Scholar]
- Shirado, H.; Maeno, T. Psychological Properties of Tactile Sensatio. In Tactile Perceptive Mechanism and Its Application—Tactile Sensor and Tactile Display; Shimojo, M., Maeno, T., Shinoda, H., Sano, A., Eds.; S & T Publisher: Tokyo, Japan, 2014; pp. 100–143. (In Japanese) [Google Scholar]
- Guest, S.; Essick, G.; Dessirier, J.M.; Blot, K.; Lopetcharat, K.; McGlone, F. Sensory and affective judgements of skin during inter- and intrapersonal touch. Acta Psychol. (Amst) 2009, 130, 115–126. [Google Scholar]
- Okamoto, S.; Nagano, H.; Yamada, Y. Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 2013, 6, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Watanabe, J. Exploring tactile perceptual dimensions using materials associated with sensory vocabulary. Front. Psychol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Miyaoka, T. Tactile information processing in the touch receptors and peripheral. In Tactile Perceptive Mechanism and its Application—Tactile Sensor and Tactile Display; S & T Publisher: Tokyo, Japan, 2010; pp. 3–18. (In Japanese) [Google Scholar]
- Gescheider, A.; Bolanowski, S.J.; Hardick, K.R. The frequency selectivity of information-processing channels in the tactile sensory system. Somatosens. Mot. Res. 2001, 18, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zaitsev, Y.; Velásquez-García, L.F.; Teller, S.J.; Livermore, C. Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays. J. Micromech. Microeng. 2014, 24, 125014. [Google Scholar] [CrossRef]
- Xie, X.; Livermore, C. Passively self-aligned assembly of compact barrel hinges for high-performance, out-of-plane mems actuators. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 22–26 January 2017; pp. 813–816. [Google Scholar]
- Xie, X.; Livermore, C. A pivot-hinged, multilayer SU-8 micro motion amplifier assembled by a self-aligned approach. In Proceedings of the IEEE 29th International Conference on Micro Electro Mechanical Systems, Shanghai, China, 24–28 January 2016; pp. 75–78. [Google Scholar]
- Dargahi, J.; Payandeh, S. Surface texture measurement by combining signals from two sensing elements of a piezoelectric tactile sensor. In Proceedings of the Sensor Fusion: Architectures, Algorithms, and Applications II, Orlando, FL, USA, 20 March 1998; Dasarathy, B.V., Ed.; Volume 3376, pp. 122–128. [Google Scholar]
- Jones, L.A.; Ho, H.-N. Warm or cool, large or small? The challenge of thermal displays. IEEE Trans. Haptics 2008, 1, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Guest, S.; Mehrabyan, A.; Essick, G.; Phillips, N.; Hopkinson, A.; Mcglone, F. Physics and tactile perception of fluid-covered surfaces. J. Texture Stud. 2012, 43, 77–93. [Google Scholar] [CrossRef]
- Smith, A.M.; Scott, S.H. Subjective scaling of smooth surface friction. J. Neurophysiol. 1996, 75, 1957–1962. [Google Scholar] [PubMed]
- Shirado, H.; Maeno, T.; Nonomura, Y. Realization of human skin-like texture by emulating surface shape pattern and elastic structure. In Proceedings of the Haptic Interfaces for Virtual Environment and Teleoperator Systems, Alexandria, VA, USA, 8–11 April 2006; Volume 2006, p. 98. [Google Scholar]
- Jindo, T.; Hirasago, K. Application studies to car interior of Kansei engineering. Int. J. Ind. Ergon. 1997, 19, 105–114. [Google Scholar] [CrossRef]
- Nagamachi, M. Kansei Engineering: A new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 1995, 15, 3–11. [Google Scholar] [CrossRef]
- Elkharraz, G.; Thumfart, S.; Akay, D.; Eitzinger, C.; Henson, B. Making tactile textures with predefined affective properties. IEEE Trans. Affect. Comput. 2014, 5, 57–70. [Google Scholar] [CrossRef]
- Barnes, C.; Lillford, S.P. Decision support for the design of affective products. J. Eng. Des. 2009, 20, 477–492. [Google Scholar] [CrossRef]
- Shimojo, M. Basic of tactile sensor: Overview of sensor, and its structure and function. In Tactile Perceptive Mechanism and Its Application—Tactile Sensor and Tactile Display; Shimojo, M., Maeno, T., Shinoda, H., Sano, A., Eds.; S&T Publishing Inc.: Tokyo, Japan, 2014; pp. 191–222. (In Japanese) [Google Scholar]
- Bluman, A.G. Elementary Statistics—A Step by Step Approach, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2014; pp. 592–602. [Google Scholar]
- Ekman, G.; Akesson, C. Roughness, smoothness, and preference. A study of quantitative relations in individual subjects. Scand. J. Psychol. 1965, 6, 241–253. [Google Scholar] [CrossRef] [PubMed]
Adjective | Adjective | ||
---|---|---|---|
LTS | Wet | HTS | Fit |
Damp | Embraceable | ||
Chilly | Reviving | ||
Cold | Refreshing | ||
Smooth | Exciting | ||
Silky | Exhilarating | ||
Rough | Cheap | ||
Bumpy | Luxury | ||
Tough | Preference | ||
Hard | Prefer | ||
Brittle | Pleasant | ||
Hollow |
#1 | #2 | #3 | #4 | ||||
Genuine leather | Resin | Synthetic leather | Synthetic leather | ||||
Type A | Type E | Type A | Type B | ||||
#5 | #6 | #7 | #8 | ||||
Synthetic leather | Synthetic leather | Fabric | Resin | ||||
Type A | Type B | Type A | Type B | ||||
#9 | #10 | #11 | #12 | ||||
Synthetic leather | Synthetic leather | Polyvinyl chloride | Genuine leather | ||||
Type C | Type A | Type C | Type C | ||||
#13 | #14 | #15 | #16 | ||||
Synthetic leather | Genuine leather | Synthetic leather | Fabric | ||||
Type C | Type A | Type A | Type D | ||||
#17 | #18 | #19 | #20 | ||||
Synthetic leather | Synthetic leather | Synthetic leather | Fabric | ||||
Type C | Type A | Type A | Type A | ||||
#21 | #22 | #23 | #24 | ||||
Polyvinyl chloride | Polyvinyl chloride | Synthetic leather | Synthetic leather | ||||
Type C | Type C | Type A | Type A | ||||
#25 | #26 | ||||||
Polyvinyl chloride | Resin | ||||||
Type C | Type E |
Adjective | Principal Components | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Wet | 0.971 | 0.091 | 0.081 | −0.014 | −0.057 | −0.010 |
Damp | 0.967 | 0.098 | 0.125 | −0.018 | −0.053 | −0.028 |
Chilly | 0.088 | 0.966 | 0.091 | 0.066 | 0.067 | 0.084 |
Cold | 0.104 | 0.963 | 0.091 | 0.066 | 0.112 | 0.038 |
Smooth | 0.100 | 0.106 | 0.915 | −0.176 | −0.105 | −0.057 |
Silky | 0.118 | 0.084 | 0.908 | −0.127 | −0.199 | 0.000 |
Rough | −0.019 | 0.105 | −0.093 | 0.917 | 0.219 | 0.006 |
Bumpy | −0.014 | 0.031 | −0.227 | 0.886 | 0.216 | 0.100 |
Tough | −0.023 | 0.140 | −0.131 | 0.239 | 0.893 | −0.129 |
Hard | −0.102 | 0.061 | −0.193 | 0.220 | 0.887 | −0.143 |
Brittle | −0.101 | 0.069 | −0.139 | 0.144 | −0.024 | 0.900 |
Hollow | 0.063 | 0.052 | 0.084 | −0.052 | −0.223 | 0.892 |
Eigen value | 3.430 | 2.513 | 1.899 | 1.490 | 0.983 | 0.693 |
Cumulative contribution ratio | 16.22 | 32.39 | 47.74 | 62.84 | 77.86 | 91.74 |
Adjective | Principal Components | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Fit | 0.920 | 0.025 | 0.188 | 0.241 |
Embraceable | 0.887 | 0.108 | 0.272 | 0.245 |
Reviving | 0.075 | 0.945 | 0.173 | 0.049 |
Refreshing | 0.057 | 0.865 | 0.378 | 0.039 |
Exciting | 0.287 | 0.314 | 0.858 | 0.160 |
Exhilarating | 0.256 | 0.322 | 0.858 | 0.194 |
Cheap | −0.216 | 0.018 | −0.115 | −0.941 |
Luxury | 0.501 | 0.203 | 0.287 | 0.695 |
Eigen value | 4.369 | 1.741 | 0.708 | 0.570 |
Cumulative contribution ratio | 26.09 | 49.82 | 72.94 | 92.35 |
Physical Measures | Principal Components | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
d20N | 0.920 | 0.347 | −0.124 | 0.083 |
d15N | 0.919 | 0.340 | −0.165 | 0.087 |
d25N | 0.910 | 0.350 | −0.113 | 0.062 |
d10N | 0.897 | 0.308 | −0.248 | 0.061 |
d30N | 0.894 | 0.344 | −0.106 | 0.032 |
d5N | 0.825 | 0.183 | −0.400 | −0.021 |
IFA I | −0.418 | −0.840 | −0.056 | 0.114 |
IFA II | −0.477 | −0.765 | 0.268 | −0.103 |
qmax | −0.250 | −0.063 | 0.955 | 0.040 |
Afric | 0.084 | −0.021 | 0.035 | 0.992 |
Eigen value | 6.931 | 1.061 | 0.951 | 0.545 |
Cumulative contribution ratio | 52.77 | 71.77 | 84.54 | 94.87 |
a | b | c | |||
Synthetic leather | Fabric | Genuine leather | |||
Type C | Type D | Type A |
Samples | Prefer | Pleasure |
---|---|---|
a | 7.56% | 13.6% |
b | 14.3% | 12.0% |
c | 6.71% | 2.64% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashim, I.H.M.; Kumamoto, S.; Takemura, K.; Maeno, T.; Okuda, S.; Mori, Y. Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism. Sensors 2017, 17, 2601. https://doi.org/10.3390/s17112601
Hashim IHM, Kumamoto S, Takemura K, Maeno T, Okuda S, Mori Y. Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism. Sensors. 2017; 17(11):2601. https://doi.org/10.3390/s17112601
Chicago/Turabian StyleHashim, Iza Husna Mohamad, Shogo Kumamoto, Kenjiro Takemura, Takashi Maeno, Shin Okuda, and Yukio Mori. 2017. "Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism" Sensors 17, no. 11: 2601. https://doi.org/10.3390/s17112601
APA StyleHashim, I. H. M., Kumamoto, S., Takemura, K., Maeno, T., Okuda, S., & Mori, Y. (2017). Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism. Sensors, 17(11), 2601. https://doi.org/10.3390/s17112601