New ZnO-Based Glass Ceramic Sensor for H2 and NO2 Detection
<p>Flow-chart of the sensing material and of the sensors preparation and characterization.</p> "> Figure 2
<p>Ternary diagram of ZnO-Bi<sub>2</sub>O<sub>3</sub>-WO<sub>3</sub> system, where (○) indicate glasses and (●) crystalline phases; (<span class="html-fig-inline" id="sensors-17-02538-i001"> <img alt="Sensors 17 02538 i001" src="/sensors/sensors-17-02538/article_deploy/html/images/sensors-17-02538-i001.png"/></span>) 58ZnO:4Bi<sub>2</sub>O<sub>3</sub>:4WO<sub>3</sub>:33.3B<sub>2</sub>O<sub>3</sub>.</p> "> Figure 3
<p>Screen-printed glass ceramic (GC) film onto alumina substrate with Pt interdigitated electrodes.</p> "> Figure 4
<p>DTA curve of glass with nominal composition 58ZnO:4Bi<sub>2</sub>O<sub>3</sub>:4WO<sub>3</sub>:33.3B<sub>2</sub>O<sub>3</sub>.</p> "> Figure 5
<p>Particle size distribution of glass–ceramic powder before and after sonication.</p> "> Figure 6
<p>XRD pattern of glass ceramic with nominal composition 58ZnO:4WO<sub>3</sub>:4Bi<sub>2</sub>O<sub>3</sub>:33.4B<sub>2</sub>O<sub>3</sub> heat treated at 500 °C for 15 h.</p> "> Figure 7
<p>FE-SEM micrographs of as prepared glass ceramic, magnification = 1000× (<b>a</b>); 50,000× (<b>b</b>).</p> "> Figure 8
<p>GC sensor response towards RH at RT.</p> "> Figure 9
<p>FE-SEM micrographs of sol-gel glass ceramic thick-film: pores in the screen-printed film (<b>a</b>–<b>c</b>); cracks (<b>d</b>); small particles due to sol-gel phase (<b>e</b>); ZnO crystals from sol-gel phase (<b>f</b>).</p> "> Figure 10
<p>Resistance of sol-gel GC sensor at 150, 200 and 250 °C under NO<sub>2</sub> and H<sub>2</sub>.</p> "> Figure 11
<p>Sensor response of GC sol-gel sensor at 150, 200 and 250 °C under NO<sub>2</sub> in dry air and under 50 RH%.</p> "> Figure 12
<p>Response time of GC sol-gel sensor in function of NO<sub>2</sub> concentration and temperature.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Differential Thermal Analysis
3.2. Particle Size Distribution
3.3. X-ray Diffraction
3.4. SEM/FE-SEM Observations and Elemental Microanalysis
3.5. Sensitivity towards Humidity at Room Temperature
3.6. Sensitivity towards NH3 at Room Temperature
3.7. Sensitivity towards H2 and NO2 at High Temperature
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Akbar, S.A.; Park, C.-O. Guest editorial: Chemical sensors for pollution monitoring and control. J. Mater. Sci. 2003, 38, 4237. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Kanan, S.M.; El-Kadri, O.M.; Abu-Yousef, I.A.; Kanan, M.C. Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 2009, 9, 8158–8196. [Google Scholar] [CrossRef] [PubMed]
- Siriwong, C.; Wetchakun, K.; Wisitsoraat, A.; Phanichphant, S. Gas sensing properties of WO3-doped ZnO nanoparticles synthesized by flame spray pyrolysis. In Proceedings of the IEEE Sensors Conference, Christchurch, New Zealand, 25–28 October 2009; pp. 118–122. [Google Scholar] [CrossRef]
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuator B Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Stankova, M.; Vilanova, X.; Calderer, J.; Llobet, E.; Brezmes, J.; Gràcia, I.; Cané, C.; Correig, X. Sensitivity and selectivity improvement of rf sputtered WO3 micro hot plate gas sensors. Sens. Actuators B Chem. 2006, 113, 241–248. [Google Scholar] [CrossRef]
- Rotzetter, A.C.C.; Luechinger, N.A.; Athanassiou, E.K.; Mohn, D.; Koehler, F.M.; Grass, R.N. Sintering of core–shell Ag/glass nanoparticles: Metal percolation at the glass transition temperature yields metal/glass/ceramic composites. J. Mater. Chem. 2010, 20, 7769–7775. [Google Scholar] [CrossRef]
- Razza, N.; Blanchet, B.; Lamberti, A.; Pirri, F.C.; Tulliani, J.-M.; Bozano, L.D.; Sangermano, M. UV-Printable and Flexible Humidity Sensors Based on Conducting/Insulating Semi-Interpenetrated Polymer Networks. Macromol. Mater. Eng. 2017, 302. [Google Scholar] [CrossRef]
- Gwirc, S.N. Glass modified sensitive surface thick film humidity sensor. Sens. Actuators B Chem. 1994, 18–19, 107–110. [Google Scholar] [CrossRef]
- Kokubu, T.; Nakahara, Y.; Yamane, M.; Aizawa, M. Electrical and electrochemical properties of TiO2-SiO2 porous glass ceramics and their application. J. Electroanal. Chem. 1993, 347, 123–136. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kasuga, T.; Nogami, M. An oxygen sensor based on copper(I)-conducting CuTi2(PO4)3 glass ceramics. Appl. Phys. Lett. 1998, 73, 3297–3299. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kasuga, T.; Nogami, M. Copper-conducting NASICON-type CuTi2(PO4)3 glass-ceramics for application to a novel O2 sensor. Mater. Res. Soc. Symp. Proc. 1999, 548, 641–646. [Google Scholar] [CrossRef]
- Ambekar, P.; Randhawa, J.; Bhoga, S.S.; Singh, K. Galvanic CO2 Sensor with Li2O: B2O3 Glass Ceramics Based Composite. Ionics 2004, 10, 45–49. [Google Scholar] [CrossRef]
- Tripathy, M.R.; Joshi, R.; Mehra, N.C.; Kumar, S.; Tandon, R.P. Electrical conduction and gas sensing characteristics of 15Fe2O3–5ZnO–80TeO2. Mater. Lett. 2007, 61, 585–587. [Google Scholar] [CrossRef]
- Karakuscu, A.; Ponzoni, A.; Aravind, P.R.; Sberveglieri, G.; Soraru, G.D. Gas Sensing Behavior of Mesoporous SiOC Glasses. J. Am. Ceram. Soc. 2013, 96, 2366–2369. [Google Scholar] [CrossRef]
- Barde, R.V.; Waghuley, S.A. V2O5-P2O5 Glass Ceramic as a Resistive Solid-State CO2 Gas Sensor. Asian J. Chem. 2012, 24, 5622–5624. [Google Scholar]
- Milanova, M.; Iordanova, R.; Aleksandrov, L.; Hassan, M.; Dimitriev, Y. Glass formation and structure of glasses in the ZnO-Bi2O3-WO3-MoO3 system. J. Non-Cryst. Solids 2011, 357, 2713–2718. [Google Scholar] [CrossRef]
- Ataalla, M.; Milanova, M.; Hassan, M.; Afify, A.S.; Tulliani, J.M.; Dimitriev, Y. Nano- and microsized phases in the WO3-ZnO-Nd2O3-Al2O3 system for applications in environmental monitoring. In NATO Science for Peace and Security Series A: Chemistry and Biology; Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 451–459. ISBN 978-94-017-9699-6. [Google Scholar]
- Tulliani, J.-M.; Bonville, P. Influence of the dopants on the electrical resistance of hematite-based humidity sensors. Ceram. Int. 2005, 31, 507–514. [Google Scholar] [CrossRef]
- Tulliani, J.-M.; Cavalieri, A.; Musso, S.; Sardella, E.; Geobaldo, F. Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sens. Actuators B Chem. 2011, 152, 144–154. [Google Scholar] [CrossRef]
- Simmendinger, W.; Oprea, A.; Bârsan, N.; Weimar, U. Non-conventional Phthalocyanines for field effect gas detection. Sens. Actuators B Chem. 2013, 179, 54–60. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Guglielmi, M.; Martucci, A.; Giancaterini, L.; Cantalini, C. Enhanced optical and electrical gas sensing response of sol–gel based NiO–Au and ZnO–Au nanostructured thin films. Sens. Actuators B Chem. 2012, 164, 54–63. [Google Scholar] [CrossRef]
- Traversa, E. Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuators B Chem. 1995, 23, 135–156. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed]
- Hilla, J.C.; Choi, K.-S. Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photo anodes for solar water oxidation. J. Mater. Chem. A 2013, 1, 5006–5014. [Google Scholar] [CrossRef]
- Bârsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Xue, X.; Nie, Y.; He, B.; Xing, L.; Zhang, Y.; Wang, Z.L. Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 2013, 24, 225501. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Fu, Y.; Yu, B.; Zhao, Y.; Xing, L.; Xue, X. Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics. J. Mater. Chem. A 2015, 3, 3529–3535. [Google Scholar] [CrossRef]
- Berger, O.; Hoffmann, T.; Fischer, W.-J.; Melev, V. Influence of microstructure of tungsten oxide thin films on their general performance as ozone and NOx gas sensor. In Smart Sensors, Actuators, and MEMS, Proceedings of the Microtechnologies for the New Millennium, Maspalomas, Gran Canaria, Canary Islands, Spain, 19–21 May 2003; Chiao, J.-C., Varadan, V.K., Cané, C., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Washington, DC, USA, 2003; pp. 870–881. [Google Scholar] [CrossRef]
- Chiorino, A.; Ghiotti, G.; Prinetto, F.; Carotta, M.C.; Gnani, D.; Martinelli, G. Preparation and characterization of SnO2 and MoOx–SnO2 nanosized powders for thick films gas sensors. Sens. Actuators B Chem. 1999, 58, 338–349. [Google Scholar] [CrossRef]
- Gurlo, A.; Bârsan, N.; Oprea, A.; Sahm, M.; Sahm, T.; Weimar, U. An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3. Appl. Phys. Lett. 2004, 85, 2280–2282. [Google Scholar] [CrossRef]
- Pati, S.; Banerji, P.; Majumder, S.B. N- to p-type carrier reversal in nanocrystalline indium doped ZnO thin film gas sensors. Int. J. Hydrogen Energy 2014, 39, 15134–15141. [Google Scholar] [CrossRef]
- Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide–ZnO nanoparticles hybrids. Sens. Actuators B Chem. 2014, 202, 272–278. [Google Scholar] [CrossRef]
- Abideen, Z.U.; Katoch, A.; Kim, J.-H.; Kwon, Y.J.; Kim, H.W.; Kim, S.S. Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets. Sens. Actuators B Chem. 2015, 221, 1499–1507. [Google Scholar] [CrossRef]
- Cho, P.S.; Kim, K.W.; Lee, J.H. NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J. Electroceram. 2006, 17, 975–978. [Google Scholar] [CrossRef]
- Albiss, B.A.; Sakhaneh, W.A.; Jumah, I.; Obaidat, I.M. NO2 Gas Sensing Properties of ZnO/Single-Wall Carbon Nanotube Composites. IEEE Sens. J. 2010, 10, 1807–1812. [Google Scholar] [CrossRef]
- Öztürk, S.; Kılınç, N.; Öztürk, Z.Z. Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrode position. J. Alloys Compd. 2013, 581, 196–201. [Google Scholar] [CrossRef]
- Vyas, R.; Sharma, S.; Gupta, P.; Prasad, A.K.; Dhara, S.K.; Tyagi, A.K.; Sachdev, K.; Sharma, S.K. Nitrogen dioxide induced conductivity switching in ZnO thin film. J. Alloys Compd. 2013, 571, 6–11. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Sun, J. Enhanced NO2 detection using hierarchical porous ZnO nanoflowers modified with graphene. Ceram. Int. 2016, 42, 9851–9857. [Google Scholar] [CrossRef]
- Vanalakara, S.A.; Patil, V.L.; Harale, N.S.; Vhanalakar, S.A.; Gang, V.; Kim, V.; Patil, P.S.; Kim, J.H. Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens. Actuators B Chem. 2015, 221, 1195–1201. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Xie, D.; Xu, J.; Xia, Y.; Xiang, L. Enhanced p-type NO2-sensing properties of ZnO nanowires utilizing CNTs electrode. Mater. Lett. 2017, 206, 18–21. [Google Scholar] [CrossRef]
- Rane, Y.N.; Shende, D.A.; Raghuwanshi, M.G.; Ghule, A.V.; Patil, V.L.; Patil, P.S.; Gosavi, S.R.; Deshpande, N.G. Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas. Microchim. Acta 2017, 184, 2455–2463. [Google Scholar] [CrossRef]
- Sayago, I.; Hontañón, E.; Aleixandre, M.; Fernández, M.J.; Santos, J.P.; Gràcia, I. ZnO and ZnO/SnO2 nanofibers as resistive gas sensors for NO2 detection. In Proceedings of the 2017 Spanish Conference on Electron Devices, CDE, Barcelona, Spain, 8–10 February 2017; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Oh, E.; Choi, H.-Y.; Jung, S.-H.O.; Cho, S.; Kim, J.C.; Lee, K.-H.; Kang, S.-W.; Kim, J.; Yun, J.-Y.; Jeong, S.-H. High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B Chem. 2009, 141, 239–243. [Google Scholar] [CrossRef]
- Navale, Y.H.; Navale, S.T.; Ramgir, N.S.; Stadler, F.J.; Gupta, S.K.; Aswal, D.K.; Patil, V.B. Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sens. Actuators B Chem. 2017, 251, 551–563. [Google Scholar] [CrossRef]
- Patil, V.L.; Vanalakara, S.A.; Patil, P.S.; Kim, J.H. Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens. Actuators B Chem. 2017, 239, 1185–1193. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, C.; Luo, Y.; Debliquy, M. Flexible NO2 gas sensors based on sheet-like hierarchical ZnO1−x coatings deposited on polypropylene papers by suspension flame spraying. J. Taiwan Inst. Chem. Eng. 2017, 75, 280–286. [Google Scholar] [CrossRef]
- Fan, F.; Feng, Y.; Bai, S.; Feng, J.; Chen, A.; Li, D. Synthesis and gas sensing properties to NO2 of ZnO nanoparticles. Sens. Actuators B Chem. 2013, 185, 377–382. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, J.; Li, X.; Xie, D.; Zhou, D.; Xiang, L.; Komarneni, S. Nanoseed-assisted rapid formation of ultrathin ZnO nanorods for efficient room temperature NO2 detection. Ceram. Int. 2016, 42, 15876–15880. [Google Scholar] [CrossRef]
- Shingange, K.; Swart, H.C.; Mhlongo, G.H. Au functionalized ZnO rose-like hierarchical structures and their enhanced NO2 sensing performance. Physica B 2017. [Google Scholar] [CrossRef]
- Hassan, M.; Afify, A.S.; Tulliani, J.M. Synthesis of ZnO Nanoparticles onto Sepiolite Needles and Determination of Their Sensitivity toward Humidity, NO2 and H2. J. Mater. Sci. Technol. 2016, 32, 573–582. [Google Scholar] [CrossRef]
- Tulliani, J.-M.; Baroni, C.; Lopez, C.; Dessemond, L. New NOx sensors based on hematite doped with alkaline and alkaline-earth elements. J. Eur. Ceram. Soc. 2011, 31, 2357–2364. [Google Scholar] [CrossRef]
- Vallejos, S.; Gràcia, I.; Pizúrová, N.; Figueras, E.; Hubálek, J.; Cané, C. Tuning of the Humidity-Interference in Gas Sensitive Columnar ZnO Structures. In Proceedings of the Eurosensors Conference 2017, Paris, France, 3–6 September 2017; MDPI: Basel, Switzerland, 2017. [Google Scholar] [CrossRef]
- Patankar, N.A. Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars. Langmuir 2004, 20, 8209–8213. [Google Scholar] [CrossRef] [PubMed]
Cumulative wt% Below | Before Sonication (µm) | After Sonication (µm) |
---|---|---|
90 | 97 | 67 |
50 | 32 | 26 |
20 | 14 | 11 |
At % | ||
---|---|---|
Element | Crystal | Matrix |
Zn | 84.94 | 79.94 |
W | 0.85 | 3.35 |
Bi | 14.21 | 16.71 |
[gas] (ppm) | 1 | 2.5 | 5 |
---|---|---|---|
Response time (dry air 150 °C) | 5 min 10 s | 1 min 30 s | 22 s |
Response time (humid air 150 °C) | 3 min 54 s | 1 min 40 s | 1 min 40 s |
Response time (dry air 200 °C) | 4 min 40 s | 2 min 2 s | 47 s |
Response time (humid air 200 °C) | 3 min | 54 s | 47 s |
Response time (dry air 250 °C) | 3 min 32 s | 43 s | 25 s |
Response time (humid air 250 °C) | 3 min | 1 min 19 s | 47 s |
Technological Route | Film Type | NO2 Sensor Response (SR) | Conditions of Measurement | Reference |
---|---|---|---|---|
In-situ production of ZnO nanoparticles onto reduced graphene oxide | n.m.1 | SR = (Ra – Rg)/Ra 0.26 under 5 ppm | RT | [33] |
Reduced graphene oxide nanosheets-loaded ZnO nanofibers via electrospinning | Thin-film | SR = Rg/Ra ca. 90 under 1 ppm | 400 °C | [34] |
ZnO nanorods prepared by hydrothermal method | n.m. | SR = Rg/Ra 1.8 under 1 ppm | 300 °C | [35] |
ZnO/Single Walled Nano-Tubes 1:1 in wt spin coated | Thick-film | SR = Ra/Rg 0.7 under 1 ppm | 300 °C | [36] |
ZnO nanorods prepared by hydrothermal method | Thin-film | SR = Rg − Ra/Rg 12.4 under 0.1 ppm | 100 °C | [37] |
ZnO produced by wet chemical route | Thin-film | SR = Ra/Rg 1.01 under 2 ppm | 300 °C | [38] |
ZnO nanoflowers prepared by hydrothermal synthesis + reduced graphene oxide | Thick-film | SR = Rg/Ra ca. 13 under 1 ppm | 174 °C | [39] |
ZnO nanorods deposited using a wet chemical route | Thin-film | SR = Rg − Ra/Rg ca. 5.7 under 20 ppm | 175 °C | [40] |
Metallic single-walled carbon nanotubes electrodes with ZnO nanowires | Thick-film | SR = Rg − Ra/Ra 2 under 2.5 ppm | 25 °C | [41] |
Soft chemical synthesis of flower-shaped ZnO | Thin-film | SR = Rg/Ra 1.4 under 10 ppm | 200 °C | [42] |
Electrospun ZnO fibers | Thin-film | SR = Rg/Ra ca. 5.5 under 0.1 ppm | 200 °C | [43] |
Sonochemical growth of high-density ZnO nanorod arrays | Thin-film | SR = Rg − Ra/Ra ca. 8 under 0.1 ppm | 250 °C | [44] |
Hierarchical ZnO nanostructures by thermal evaporation method | Thick-film | SR = Rg − Ra/Ra 0.41 under 1 ppm | 200 °C | [45] |
ZnO film produced via ion layer adsorption and reaction (SILAR) technique | Thin-film | SR = Rg − Ra/Ra 1.37 under 10 ppm | 150 °C | [46] |
Sheet-like hierarchical ZnO coatings deposited by suspension flame spraying | Thick-film | SR = Rg − Ra/Ra 2.6 under 1 ppm | RT + white light | [47] |
ZnO nanoparticles produced by separate nucleation and aging steps (SNAS) | Pellet | SR = Rg/Ra ca. 226 under 40 ppm | 290 °C | [48] |
ZnO submicron rods drop cast on oxidized silicon substrate | Thick-film | SR = Rg − Ra/Ra 1 under 1 ppm | RT | [49] |
Drop coating of ZnO and Au/ZnO rose-like structures made by microwave-assisted hydrothermal method | n.m. | S = (Rg − Ra)/Ra 75 under 5 ppm | 300 °C | [50] |
ZnO nanoparticles precipitated on sepiolite needles | Thick-film | SR = Ra/Rg ca. 1.08 under 1 ppm | 300 °C | [51] |
ZnO-based glass ceramic sensor | Thick-film | SR = Rg/Ra ca. 17 under 1 ppm | 150 °C | This work |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.; Afify, A.S.; Ataalla, M.; Milanese, D.; Tulliani, J.-M. New ZnO-Based Glass Ceramic Sensor for H2 and NO2 Detection. Sensors 2017, 17, 2538. https://doi.org/10.3390/s17112538
Hassan M, Afify AS, Ataalla M, Milanese D, Tulliani J-M. New ZnO-Based Glass Ceramic Sensor for H2 and NO2 Detection. Sensors. 2017; 17(11):2538. https://doi.org/10.3390/s17112538
Chicago/Turabian StyleHassan, Mohamed, Ahmed S. Afify, Mohamed Ataalla, Daniel Milanese, and Jean-Marc Tulliani. 2017. "New ZnO-Based Glass Ceramic Sensor for H2 and NO2 Detection" Sensors 17, no. 11: 2538. https://doi.org/10.3390/s17112538
APA StyleHassan, M., Afify, A. S., Ataalla, M., Milanese, D., & Tulliani, J. -M. (2017). New ZnO-Based Glass Ceramic Sensor for H2 and NO2 Detection. Sensors, 17(11), 2538. https://doi.org/10.3390/s17112538