Determination of Cadmium in Brown Rice Samples by Fluorescence Spectroscopy Using a Fluoroionophore after Purification of Cadmium by Anion Exchange Resin
<p>Chemical structure of 2,2′:6′,2″-terpyridine-substituted BODIPY (BDP-TPY).</p> "> Figure 2
<p>Extraction efficiency of Cd from brown rice samples as a function of grinding time. Error bars indicate the standard deviation, which was determined using three replicates.</p> "> Figure 3
<p>Relationship between Cd concentrations extracted by the standard (ICP-OES) and our developed methods.</p> "> Figure 4
<p>Relative amounts of Cd, Zn, Cu, and Fe from a real rice sample in each column fraction. Inj.: injection; F.T.: flow-through fraction; W.: washout fraction; Elu.: elution fraction. Error bars indicate the standard deviation, which was determined using three replicates.</p> "> Figure 5
<p>Amounts of Cd and Zn from a real rice sample in each CV of each column fraction. Inj.: injection; F.T.: flow-through fraction; W.: washout fraction; Elu.: elution fraction. Error bars indicate the standard deviation, which was determined using three replicates.</p> "> Figure 6
<p>(<b>A</b>) Spectra and (<b>B</b>) calibration curve for Cd by fluorescence spectroscopy. Error bars indicate the standard deviation, which was determined using three replicates.</p> "> Figure 7
<p>Effect of Zn concentrations on fluorescence intensity ratio (F539/F562) in the sample containing Cd (0.3 μM).</p> "> Figure 8
<p>Relationship between concentrations of Cd in brown rice samples determined by fluorescence spectroscopy with the fluoroionophore and by ICP-OES.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Methods of Rice Digestion and Metal Determination
2.2. Hydrochloric Acid Digestion of Rice Samples
2.3. Purification of Cd by Anion-Exchange Resin
2.4. Determination of Cd by Fluorescence Spectroscopy
3. Results and Discussion
3.1. Acid Digestion of Rice Samples
3.2. Metals in Column Fractions
3.3. Determination of Cd by Fluorescence Spectroscopy
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hu, Y.N.; Cheng, H.F.; Tao, S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review. Environ. Int. 2016, 92–93, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Sharma, A. Mercury toxicity in plants. Bot. Rev. 2000, 66, 379–422. [Google Scholar] [CrossRef]
- Liu, W.H.; Zhao, J.Z.; Ouyang, Z.Y.; Soderlund, L.; Liu, G.H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, H.; Oguma, E.; Sasaki, S.; Okubo, H.; Murakami, K.; Miyamoto, K.; Hosoi, Y.; Murata, K.; Kayama, F. Age-relevant renal effects of cadmium exposure through consumption of home-harvested rice in female Japanese farmers. Environ. Int. 2013, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kosolsaksakul, P.; Farmer, J.G.; Oliver, I.W.; Graham, M.C. Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environ. Pollut. 2014, 187, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.A.; Clarke, J.M.; Duguid, S.; Chaney, R.L. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ. 2008, 390, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Norton, G.; Deacon, C.; Williams, P.; Adomako, E.E.; Price, A.; Zhu, Y.G.; Li, G.; Zhao, F.J.; McGrath, S.; et al. Variation in Rice Cadmium Related to Human Exposure. Environ. Sci. Technol. 2013, 47, 5613–5618. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F. Historical perspectives on cadmium toxicology. Toxicol. Appl. Pharmacol. 2009, 238, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Inaba, T.; Kobayashi, E.; Suwazono, Y.; Uetani, M.; Oishi, M.; Nakagawa, H.; Nogawa, K. Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol. Lett. 2005, 159, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Hu, B. Thermo-responsive polymer coated fiber-in-tube capillary microextraction and its application to on-line determination of Co, Ni and Cd by inductively coupled plasma mass spectrometry (ICP-MS). Talanta 2011, 85, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, S.; Yoshioka, N.; Mitsuhashi, T. Sensitive determination of cadmium in brown rice and spinach by flame atomic absorption spectrometry with solid-phase extraction. Food Addit. Contam. Part A 2012, 29, 1696–1700. [Google Scholar] [CrossRef] [PubMed]
- Groombridge, A.S.; Inagaki, K.; Fujii, S.; Nagasawa, K.; Okahashi, T.; Takatsu, A.; Chiba, K. Modified high performance concentric nebulizer for inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. 2012, 27, 1787–1793. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, P.; Jin, L.L.; Hu, S.H. Rice cadmium monitoring using heat-extraction electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 2014, 29, 1949–1954. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Wang, H.; Zhang, Z.H.; Liu, G. Electrochemical determination of lead and cadmium in rice by a disposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode. Sens. Actuator B Chem. 2014, 199, 7–14. [Google Scholar] [CrossRef]
- Yu, H.M.; Ai, X.; Xu, K.L.; Zheng, C.B.; Hou, X.D. UV-assisted Fenton digestion of rice for the determination of trace cadmium by hydride generation atomic fluorescence spectrometry. Analyst 2016, 141, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Nakamura, K.; Arao, T.; Sakurai, Y.; Nakano, A.; Suginuma, C.; Tawarada, K.; Sasaki, K. Immunochromatography for the rapid determination of cadmium concentrations in wheat grain and eggplant. J. Sci. Food Agric. 2011, 91, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.D.; Deng, Q.W.; Guo, J.; Yang, S.C. Ultra-sensitive determination of cadmium in rice and water by UV-vis spectrophotometry after single drop microextraction. Acta Mol. Biomol. Spectrosc. 2011, 79, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.M.; Zhang, Y.; Shao, H.W.; Wang, Z.; Wang, X.F.; Jiang, X.Y. Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles. Anal. Chem. 2014, 86, 8530–8534. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Zhang, Y.; Li, H.; Niu, L.Y.; Yang, Q.Z.; Guan, Y.F.; Feng, L. An SPE-assisted BODIPY fluorometric paper sensor for the highly selective and sensitive determination of Cd2+ in complex sample: Rice. Analyst 2014, 139, 3146–3153. [Google Scholar] [CrossRef] [PubMed]
- Kallmann, S.; Steele, C.G.; Chu, N.Y. Determination of Cadmium and Zinc. Anal. Chem. 1956, 28, 230–233. [Google Scholar] [CrossRef]
- Hafuka, A.; Taniyama, H.; Son, S.H.; Yamada, K.; Takahashi, M.; Okabe, S.; Satoh, H. BODIPY-Based Ratiometric Fluoroionophores with Bidirectional Spectral Shifts for the Selective Recognition of Heavy Metal Ions. Bull. Chem. Soc. Jpn. 2013, 86, 37–44. [Google Scholar] [CrossRef]
- Hafuka, A.; Yoshikawa, H.; Yamada, K.; Kato, T.; Takahashi, M.; Okabe, S.; Satoh, H. Application of fluorescence spectroscopy using a novel fluoroionophore for quantification of zinc in urban runoff. Water Res. 2014, 54, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Valeur, B. Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Hafuka, A.; Kando, R.; Ohya, K.; Yamada, K.; Okabe, S.; Satoh, H. Substituent Effects at the 5-Position of 3-[Bis(pyridine-2-ylmethyl)amino]-BODIPY Cation Sensor Used for Ratiometric Quantification of Cu2+. Bull. Chem. Soc. Jpn. 2015, 88, 447–454. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafuka, A.; Takitani, A.; Suzuki, H.; Iwabuchi, T.; Takahashi, M.; Okabe, S.; Satoh, H. Determination of Cadmium in Brown Rice Samples by Fluorescence Spectroscopy Using a Fluoroionophore after Purification of Cadmium by Anion Exchange Resin. Sensors 2017, 17, 2291. https://doi.org/10.3390/s17102291
Hafuka A, Takitani A, Suzuki H, Iwabuchi T, Takahashi M, Okabe S, Satoh H. Determination of Cadmium in Brown Rice Samples by Fluorescence Spectroscopy Using a Fluoroionophore after Purification of Cadmium by Anion Exchange Resin. Sensors. 2017; 17(10):2291. https://doi.org/10.3390/s17102291
Chicago/Turabian StyleHafuka, Akira, Akiyoshi Takitani, Hiroko Suzuki, Takuya Iwabuchi, Masahiro Takahashi, Satoshi Okabe, and Hisashi Satoh. 2017. "Determination of Cadmium in Brown Rice Samples by Fluorescence Spectroscopy Using a Fluoroionophore after Purification of Cadmium by Anion Exchange Resin" Sensors 17, no. 10: 2291. https://doi.org/10.3390/s17102291
APA StyleHafuka, A., Takitani, A., Suzuki, H., Iwabuchi, T., Takahashi, M., Okabe, S., & Satoh, H. (2017). Determination of Cadmium in Brown Rice Samples by Fluorescence Spectroscopy Using a Fluoroionophore after Purification of Cadmium by Anion Exchange Resin. Sensors, 17(10), 2291. https://doi.org/10.3390/s17102291